From 4f670b750af5c11e1eac16d9cd8556455f89f46a Mon Sep 17 00:00:00 2001 From: Juan MarĂ­n Noguera Date: Fri, 16 May 2025 22:18:44 +0200 Subject: Changed layout for more manageable volumes --- vol1/1.2.9.lyx | 846 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 846 insertions(+) create mode 100644 vol1/1.2.9.lyx (limited to 'vol1/1.2.9.lyx') diff --git a/vol1/1.2.9.lyx b/vol1/1.2.9.lyx new file mode 100644 index 0000000..6bc6c57 --- /dev/null +++ b/vol1/1.2.9.lyx @@ -0,0 +1,846 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children no +\language american +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content true +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc2[M13] +\end_layout + +\end_inset + +Prove Eq. + (11). +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula +\[ +\left(\sum_{n\geq0}\frac{a_{n}}{n!}z^{n}\right)\left(\sum_{m\geq0}\frac{b_{m}}{m!}z^{m}\right)=\sum_{n\geq0}\left(\sum_{k}\frac{a_{k}b_{n-k}}{k!(n-k)!}\right)z^{n}=\sum_{n\geq0}\frac{1}{n!}\left(\sum_{k}\binom{n}{k}a_{k}b_{n-k}\right)z^{n}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc4[M01] +\end_layout + +\end_inset + +Explain why Eq. + (19) is a special case of Eq. + (21). +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Just set +\begin_inset Formula $t=0$ +\end_inset + +, + then +\begin_inset Formula $x=1+z$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc6[HM15] +\end_layout + +\end_inset + +Find the generating function for +\begin_inset Formula +\[ +\left\langle \sum_{0n$ +\end_inset + + are null. + Now, + +\begin_inset Formula $[z^{n-k}](1+z)^{2n-2k}=[z^{n}](z^{k}(1+z)^{2n-2k})$ +\end_inset + +, + so this is +\begin_inset Formula +\[ +S\coloneqq[z^{n}](1+z)^{2n}\sum_{k}[w^{k}](1-2w)^{n}\left(\frac{z}{(1+z)^{2}}\right)^{k}=[z^{n}](1+z)^{2n}\left(1-\frac{2z}{(1+z)^{2}}\right)^{n}, +\] + +\end_inset + +where we evaluating the sum by taking +\begin_inset Formula $\frac{z}{(1+z)^{2}}$ +\end_inset + + as the argument of the generating function in +\begin_inset Formula $w$ +\end_inset + +. + Then, + we simplify to get +\begin_inset Formula +\[ +S=[z^{n}]\left(\left((1+z)^{2}(1-\nicefrac{2z}{(1+z)^{2}})\right)^{n}\right)=[z^{n}]\left((1+z^{2})^{n}\right)=\binom{n}{\nicefrac{n}{2}}[n\text{ even}]. +\] + +\end_inset + + +\end_layout + +\end_body +\end_document -- cgit v1.2.3