From 4f670b750af5c11e1eac16d9cd8556455f89f46a Mon Sep 17 00:00:00 2001 From: Juan Marín Noguera Date: Fri, 16 May 2025 22:18:44 +0200 Subject: Changed layout for more manageable volumes --- vol1/2.3.lyx | 884 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 884 insertions(+) create mode 100644 vol1/2.3.lyx (limited to 'vol1/2.3.lyx') diff --git a/vol1/2.3.lyx b/vol1/2.3.lyx new file mode 100644 index 0000000..a1ad67d --- /dev/null +++ b/vol1/2.3.lyx @@ -0,0 +1,884 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input defs +\end_preamble +\use_default_options true +\maintain_unincluded_children no +\language english +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc4[01] +\end_layout + +\end_inset + +True or false: + In a conventional tree diagram (root at the top), + if node +\begin_inset Formula $X$ +\end_inset + + has a +\emph on +higher +\emph default + level number than node +\begin_inset Formula $Y$ +\end_inset + +, + then node +\begin_inset Formula $X$ +\end_inset + + appears +\emph on +lower +\emph default + in the diagram than node +\begin_inset Formula $Y$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +True. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc5[02] +\end_layout + +\end_inset + +If node +\begin_inset Formula $A$ +\end_inset + + has three siblings and +\begin_inset Formula $B$ +\end_inset + + is the parent of +\begin_inset Formula $A$ +\end_inset + +, + what is the degree of +\begin_inset Formula $B$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +4. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc6[21] +\end_layout + +\end_inset + +Define the statement +\begin_inset Quotes eld +\end_inset + + +\begin_inset Formula $X$ +\end_inset + + is an +\begin_inset Formula $m$ +\end_inset + +th cousin of +\begin_inset Formula $Y$ +\end_inset + +, + +\begin_inset Formula $n$ +\end_inset + + times removed +\begin_inset Quotes erd +\end_inset + + as a meaningful relation between nodes +\begin_inset Formula $X$ +\end_inset + + and +\begin_inset Formula $Y$ +\end_inset + + of a tree, + by analogy with family trees, + if +\begin_inset Formula $m>0$ +\end_inset + + and +\begin_inset Formula $n\geq0$ +\end_inset + +. + (See a dictionary for the meaning of these terms in regard to family trees.) +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +It means that there exists a node +\begin_inset Formula $X'$ +\end_inset + + such that either +\begin_inset Formula $X$ +\end_inset + + is the +\begin_inset Formula $n$ +\end_inset + +th ancestor of +\begin_inset Formula $X'$ +\end_inset + + or vice versa (that is, + the ancestor +\begin_inset Formula $n$ +\end_inset + + levels below, + where for +\begin_inset Formula $n=0$ +\end_inset + + we would take +\begin_inset Formula $X'=X$ +\end_inset + +), + +\begin_inset Formula $X'$ +\end_inset + + and +\begin_inset Formula $Y$ +\end_inset + + are at the same level, + the +\begin_inset Formula $(m+1)$ +\end_inset + +th ancestor of +\begin_inset Formula $X'$ +\end_inset + + and +\begin_inset Formula $Y$ +\end_inset + + is the same, + and the +\begin_inset Formula $m$ +\end_inset + +th ancestor isn't. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc8[03] +\end_layout + +\end_inset + +What binary tree is not a tree? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +By the definitions in this book, + the empty binary tree. + Actually binary trees and trees are very separate concepts and therefore none is. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc9[00] +\end_layout + +\end_inset + +In the two binary trees of (1), + which node is the root ( +\begin_inset Formula $B$ +\end_inset + + or +\begin_inset Formula $A$ +\end_inset + +)? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +By the current conventions, + +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc13[10] +\end_layout + +\end_inset + +Suppose that node +\begin_inset Formula $X$ +\end_inset + + is numbered +\begin_inset Formula $a_{1}.a_{2}.\cdots.a_{k}$ +\end_inset + + in the Dewey decimal system; + what are the Dewey numbers of the nodes in the path from +\begin_inset Formula $X$ +\end_inset + + to the root (see exercise 3)? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +They would be +\begin_inset Formula $a_{1}.a_{2}.\cdots.a_{k};a_{1}.a_{2}.\cdots.a_{k-1};\dots;a_{1}.a_{2};a_{1}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc15[20] +\end_layout + +\end_inset + +Invent a notation for the nodes of binary trees, + analogous to the Dewey decimal notation for nodes of trees. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We could call the root +\begin_inset Formula $\%$ +\end_inset + + and, + for a given nonempty node called +\begin_inset Formula $\lambda$ +\end_inset + + (a string), + its left child could be called +\begin_inset Formula $\lambda L$ +\end_inset + + and its right child +\begin_inset Formula $\lambda R$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc17[01] +\end_layout + +\end_inset + +If +\begin_inset Formula $Z$ +\end_inset + + stands for Fig. + 19 regarded as a forest, + what node is +\begin_inset Formula $\text{parent}(Z[1,2,2])$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $\text{parent}(Z[1,2,2])=\text{parent}(\text{children of node }1.2.2)=E$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc18[08] +\end_layout + +\end_inset + +In List (3), + what is +\begin_inset Formula $L[5,1,1]$ +\end_inset + +? + What is +\begin_inset Formula $L[3,1]$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $L[5,1,1]=(2)$ +\end_inset + +, + +\begin_inset Formula $L[3,1]$ +\end_inset + + doesn't exist. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc20[M21] +\end_layout + +\end_inset + +Define a +\emph on +0-2-tree +\emph default + as a tree in which each node has exactly zero or two children. + (Formally, + a 0-2-tree consists of a single node, + called its root, + plus 0 or 2 disjoint 0-2-trees.) Show that every 0-2-tree has an odd number of nodes; + and give a one-to-one correspondence between binary trees with +\begin_inset Formula $n$ +\end_inset + + nodes and (ordered) 0-2-trees with +\begin_inset Formula $2n+1$ +\end_inset + + nodes. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We can prove that 0-2-trees have an odd number of nodes by induction on the depth of the tree: + for depth 0, + we just have one node with no children, + and for depth greater than 0, + we have the root and two children whose subtrees have each an odd number of nodes, + so the main tree also has an odd number of nodes. +\end_layout + +\begin_layout Standard +For the bijection, + an empty binary tree corresponds to a node with 0 children, + and any other binary tree corresponds to a node whose children are the left and right nodes. + This is clearly bijective, + and we can prove that the bijection sends binary trees with +\begin_inset Formula $n$ +\end_inset + + nodes to ordered 0-2-trees with +\begin_inset Formula $2n+1$ +\end_inset + + nodes by induction on +\begin_inset Formula $n$ +\end_inset + +. + For +\begin_inset Formula $n=0$ +\end_inset + +, + this is obvious; + for +\begin_inset Formula $n>0$ +\end_inset + +, + let +\begin_inset Formula $m$ +\end_inset + + be the number of nodes in the left subtree, + clearly +\begin_inset Formula $0\leq m