From 4f670b750af5c11e1eac16d9cd8556455f89f46a Mon Sep 17 00:00:00 2001 From: Juan MarĂ­n Noguera Date: Fri, 16 May 2025 22:18:44 +0200 Subject: Changed layout for more manageable volumes --- vol2/4.1.lyx | 1922 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1922 insertions(+) create mode 100644 vol2/4.1.lyx (limited to 'vol2/4.1.lyx') diff --git a/vol2/4.1.lyx b/vol2/4.1.lyx new file mode 100644 index 0000000..b68ec0b --- /dev/null +++ b/vol2/4.1.lyx @@ -0,0 +1,1922 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input defs +\end_preamble +\use_default_options true +\maintain_unincluded_children no +\language english +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc2[24] +\end_layout + +\end_inset + +Consider the following four number systems: +\end_layout + +\begin_layout Enumerate +binary (signed magnitude); +\end_layout + +\begin_layout Enumerate +negabinary (radix +\begin_inset Formula $-2$ +\end_inset + +); +\end_layout + +\begin_layout Enumerate +balanced ternary; + and +\end_layout + +\begin_layout Enumerate +radix +\begin_inset Formula $b=\frac{1}{10}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Use each of these four number systems to express each of the following three numbers: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $-49$ +\end_inset + +; +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $-3\frac{1}{7}$ +\end_inset + + (show the repeating cycle); +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\pi$ +\end_inset + + (to a few significant figures). +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $-49\to-110001$ +\end_inset + +. + Multiplying by 2, + +\begin_inset Formula $\frac{1}{7}\to\frac{2}{7}\to\frac{4}{7}\to1+\frac{1}{7}$ +\end_inset + +, + so +\begin_inset Formula $-3\frac{1}{7}\to-11.\overbrace{001}$ +\end_inset + +. + Finally, + +\begin_inset Formula $\pi\to11.00100100001111...$ +\end_inset + + +\end_layout + +\begin_layout Enumerate +The trick is to express the number in binary and, + for the odd positions (the ones where +\begin_inset Formula $(-2)^{k}$ +\end_inset + + is negative), + add 1 to the part of the number on the right, + because we are subtracting +\begin_inset Formula $2^{k}$ +\end_inset + + instead of adding so we compensate for that. + For negative numbers, + we represent them in two's complement before this change, + effectively adding +\begin_inset Formula $2^{M}$ +\end_inset + + for some large +\begin_inset Formula $M$ +\end_inset + +, + and after it we drop that upper bit to subtract +\begin_inset Formula $2^{M}$ +\end_inset + +. + Thus +\begin_inset Formula $-49\to...111001111\to11010011$ +\end_inset + +, + +\begin_inset Formula $-3\frac{1}{7}\to...1100.\overbrace{110110}\to1101.\overbrace{001011}$ +\end_inset + +, + +\begin_inset Formula $\pi\to111.01100100010000...$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +We proceed as in the text: + +\begin_inset Formula +\begin{align*} +-49 & \to-1211\to...11102200\to\overline{1}11\overline{1}\overline{1};\\ +-3\frac{1}{7} & \to-10.\overbrace{010212}\to\dots1101.\overbrace{100122}\to\overline{1}0.\overbrace{0\overline{1}\overline{1}011};\\ +\pi & \to10.010211012\dots\to...1121.122022201\dots\to10.011\overline{1}111\overline{1}0\dots. +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Enumerate +This is like the decimal system but backwards, + so +\begin_inset Formula $-49\to-9.4$ +\end_inset + +, + +\begin_inset Formula $-3\frac{1}{7}\to-\overbrace{758241}3$ +\end_inset + +, + +\begin_inset Formula $\pi\to...51413$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc5[00] +\end_layout + +\end_inset + +Explain why a negative integer in nines' complement notation has a representation in ten's complement notation that is always one greater, + if the representations are regarded as positive. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Ten's complement of a negative number +\begin_inset Formula $s$ +\end_inset + + is +\begin_inset Formula $10^{M}+s$ +\end_inset + +, + for a suitably large integer +\begin_inset Formula $M$ +\end_inset + +, + while nines' complement is +\begin_inset Formula $(10^{M}-1)+s$ +\end_inset + +, + so the ten's complement is one greater. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc8[M10] +\end_layout + +\end_inset + +Prove Eq. + (5). +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +The part at the left is +\begin_inset Formula $\sum_{j}a_{j}b^{j}$ +\end_inset + +, + while the part at the right is +\begin_inset Formula $\sum_{j}A_{j}b^{kj}$ +\end_inset + +, + but +\begin_inset Formula $A_{j}=\sum_{i=0}^{k-1}a_{kj+i}b^{i}$ +\end_inset + +, + so this is +\begin_inset Formula +\[ +\sum_{j}A_{j}b^{kj}=\sum_{j}\sum_{i=0}^{k-1}(a_{kj+i}b^{i})b^{kj}=\sum_{j}\sum_{i=0}^{k-1}(a_{kj+i}b^{kj+i})=\sum_{j}a_{j}b^{j}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc9[15] +\end_layout + +\end_inset + +Change the following +\emph on +octal +\emph default + numbers to +\emph on +hexadecimal +\emph default + notation, + using the hexadecimal digits +\family typewriter +0 +\family default +, + +\family typewriter +1 +\family default +, + ..., + +\family typewriter +9 +\family default +, + +\family typewriter +A +\family default +, + +\family typewriter +B +\family default +, + +\family typewriter +C +\family default +, + +\family typewriter +D +\family default +, + +\family typewriter +E +\family default +, + +\family typewriter +F +\family default +: + 12; + 5655; + 2550276; + 76545336; + 3726755. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We use Eq. + (5) with base 2. +\end_layout + +\begin_layout Standard +\align center +\begin_inset Tabular + + + + + + + +\begin_inset Text + +\begin_layout Plain Layout +Octal +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +Binary +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +Hexadecimal +\end_layout + +\end_inset + + + + +\begin_inset Text + +\begin_layout Plain Layout +12 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +1 010 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout + +\family typewriter +A +\end_layout + +\end_inset + + + + +\begin_inset Text + +\begin_layout Plain Layout +5655 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +101 110 101 101 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout + +\family typewriter +BAD +\end_layout + +\end_inset + + + + +\begin_inset Text + +\begin_layout Plain Layout +2550276 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +10 101 101 000 010 111 110 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout + +\family typewriter +AD0BE +\end_layout + +\end_inset + + + + +\begin_inset Text + +\begin_layout Plain Layout +76545336 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +111 110 101 100 101 011 011 110 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout + +\family typewriter +FACADE +\end_layout + +\end_inset + + + + +\begin_inset Text + +\begin_layout Plain Layout +3726755 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout +11 111 010 110 111 101 101 +\end_layout + +\end_inset + + +\begin_inset Text + +\begin_layout Plain Layout + +\family typewriter +FADED +\end_layout + +\end_inset + + + + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Is this what academics do when they get bored? +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc13[M21] +\end_layout + +\end_inset + +In the decimal system there are some numbers with two infinite decimal expansions; + for example, + +\begin_inset Formula $2.3599999...=2.3600000...$ +\end_inset + +. + Does the +\emph on +negadecimal +\emph default + (base +\begin_inset Formula $-10$ +\end_inset + +) system have unique expansions, + or are there real numbers with two different infinite expansions in this base also? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +There are real numbers with two different infinite expansions: + +\begin_inset Formula +\[ +\tfrac{1}{11}=0.090909...=(0.090909...)_{-10}=(1.909090...)_{-10}. +\] + +\end_inset + +Effectively, + +\begin_inset Formula $(0.090909...)_{-10}=\sum_{k\geq1}9\cdot(-10)^{-2k}=9\sum_{k\geq1}100^{-k}=9\frac{\frac{1}{100}}{\frac{99}{100}}=\frac{1}{11}$ +\end_inset + +, + but +\begin_inset Formula $(1.909090...)_{-10}=1+\sum_{k\geq1}9\cdot(-10)^{-2k+1}=1-90\sum_{k\geq1}100^{-k}=1-90\frac{1}{99}=1-\frac{10}{11}=\frac{1}{11}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc19[23] +\end_layout + +\end_inset + +(David W. + Matula.) Let +\begin_inset Formula $D$ +\end_inset + + be a set of +\begin_inset Formula $b$ +\end_inset + + integers, + containing exactly one solution to the congruence +\begin_inset Formula $x\equiv j\pmod b$ +\end_inset + + for +\begin_inset Formula $0\leq j0$ +\end_inset + +, + then all numbers in +\begin_inset Formula $D$ +\end_inset + + are negative, + but the integers between +\begin_inset Formula $l$ +\end_inset + + and +\begin_inset Formula $u$ +\end_inset + + are positive so they couldn't be represented in the given form, +\begin_inset Formula $\#$ +\end_inset + + and a similar thing would happen if +\begin_inset Formula $u<0$ +\end_inset + +. + Now, + in the algorithm above, + +\begin_inset Formula $q-k=\lfloor\frac{m}{b}\rfloor-k=\frac{m-r}{b}-\frac{x-r}{b}=\frac{m-x}{b}$ +\end_inset + +. + With this, + if +\begin_inset Formula $m>u$ +\end_inset + +, + then +\begin_inset Formula $m(b-1)>-\min D$ +\end_inset + +, + but and therefore +\begin_inset Formula +\[ +m-(q-k)=m-\frac{m-x}{b}=\frac{m(b-1)+x}{b}>\frac{-\min D+\min D}{b}=0, +\] + +\end_inset + +so +\begin_inset Formula $q-km-\frac{\max D}{b}\geq m+l, +\] + +\end_inset + +so +\begin_inset Formula $q-k\geq l$ +\end_inset + +. + This means that, + on each step, + +\begin_inset Formula $m$ +\end_inset + + is smaller by at least 1, + but it doesn't become smaller than +\begin_inset Formula $l$ +\end_inset + +, + so it eventually reaches the interval +\begin_inset Formula $[l,u]$ +\end_inset + + in at most +\begin_inset Formula $|m-u|$ +\end_inset + + steps. + And if +\begin_inset Formula $mm$ +\end_inset + +, + and +\begin_inset Formula +\[ +m+(q-k)=\frac{m(b+1)-x}{b}0$ +\end_inset + +, + we take +\begin_inset Formula $k\in\mathbb{N}$ +\end_inset + + such that +\begin_inset Formula $|2^{k}-n|$ +\end_inset + + is minimum, + write a 1 at position +\begin_inset Formula $k$ +\end_inset + +, + and then write +\begin_inset Formula $n-2^{k}$ +\end_inset + + on the +\begin_inset Formula $k$ +\end_inset + + positions to the right. + If +\begin_inset Formula $n<0$ +\end_inset + +, + we do the same except that first we write +\begin_inset Formula $\overline{1}$ +\end_inset + + instead of 1. +\end_layout + +\begin_layout Standard +Now we prove that this in fact results in the representation fewest number of nonzero digits. + We only need to prove it for positive +\begin_inset Formula $n$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Now, + if +\begin_inset Formula $n=2^{k}$ +\end_inset + + or +\begin_inset Formula $3\cdot2^{k}$ +\end_inset + + for some +\begin_inset Formula $k\in\mathbb{N}$ +\end_inset + +, + the statement is trivial. + Otherwise, + if +\begin_inset Formula $2^{k}2^{k-1}$ +\end_inset + +, + +\begin_inset Formula $t$ +\end_inset + + would need to have its most significant digit in position +\begin_inset Formula $k$ +\end_inset + + or +\begin_inset Formula $k-1$ +\end_inset + +, + but any representation of +\begin_inset Formula $t$ +\end_inset + + that starts at position +\begin_inset Formula $k$ +\end_inset + + can be converted into one of +\begin_inset Formula $2^{k}-n$ +\end_inset + + by removing the 1 at that position, + and any one starting at position +\begin_inset Formula $k-1$ +\end_inset + + can be converted into one of +\begin_inset Formula $2^{k}-n$ +\end_inset + + by swapping the sign in that position, + so in general +\begin_inset Formula $\sigma(t)=\sigma(2^{k+1}-n)\geq\sigma(2^{k}-n)=\sigma(n-2^{k})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +A similar argument shows that, + if +\begin_inset Formula $n>3\cdot2^{k-1}$ +\end_inset + +, + then +\begin_inset Formula $\sigma(n-2^{k})\geq\sigma(2^{k+1}-n)$ +\end_inset + +. +\end_layout + +\end_body +\end_document -- cgit v1.2.3