#LyX 2.4 created this file. For more info see https://www.lyx.org/ \lyxformat 620 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \begin_preamble \input defs \usepackage{amsmath} \end_preamble \use_default_options true \maintain_unincluded_children no \language english \language_package default \inputencoding utf8 \fontencoding auto \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_roman_osf false \font_sans_osf false \font_typewriter_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \float_placement class \float_alignment class \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_formatted_ref 0 \use_minted 0 \use_lineno 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style english \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tablestyle default \tracking_changes false \output_changes false \change_bars false \postpone_fragile_content false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \docbook_table_output 0 \docbook_mathml_prefix 1 \end_header \begin_body \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash exerc1[01] \end_layout \end_inset What are \begin_inset Formula $H_{0}$ \end_inset , \begin_inset Formula $H_{1}$ \end_inset , and \begin_inset Formula $H_{2}$ \end_inset ? \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset \begin_inset Formula $H_{0}=0$ \end_inset , \begin_inset Formula $H_{1}=1$ \end_inset , \begin_inset Formula $H_{2}=\frac{3}{2}$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc4[10] \end_layout \end_inset Decide which of the following statements are true for all positive integers \begin_inset Formula $n$ \end_inset : \end_layout \begin_layout Enumerate \begin_inset Formula $H_{n}<\ln n$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $H_{n}>\ln n$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $H_{n}>\ln n+\gamma$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset \end_layout \begin_layout Enumerate False, since \begin_inset Formula $H_{2}=\frac{3}{2}>1>\ln2$ \end_inset . \end_layout \begin_layout Enumerate True, because the next one is true. \end_layout \begin_layout Enumerate True. If this wasn't true for some number \begin_inset Formula $n$ \end_inset , then it would be \begin_inset Formula \[ 0\geq H_{n}-(\ln n+\gamma)>\frac{1}{2n}-\frac{1}{12n^{2}}+\frac{1}{12n^{4}}-\frac{1}{252n^{6}}, \] \end_inset but \begin_inset Formula $\frac{1}{2n}>\frac{1}{12n^{2}}$ \end_inset and \begin_inset Formula $\frac{1}{12n^{4}}>\frac{1}{252n^{6}}$ \end_inset for any \begin_inset Formula $n\geq1\#$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc9[M18] \end_layout \end_inset Theorem A applies only when \begin_inset Formula $x>0$ \end_inset ; what is the value of the sum considered when \begin_inset Formula $x=-1$ \end_inset ? \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset Using Equation 1.2.6(18) in \begin_inset Formula $(*)$ \end_inset and Exercise 1.2.6–48 in \begin_inset Formula $(**)$ \end_inset , \begin_inset Formula \begin{multline*} \sum_{k=1}^{n}\binom{n}{k}(-1)^{k}H_{k}=\sum_{1\leq j\leq k\leq n}\binom{n}{k}(-1)^{k}\frac{1}{j}=\sum_{j=1}^{n}\frac{1}{j}\sum_{k=j}^{n}\binom{n}{k}(-1)^{k}=\\ =(-1)^{n}\sum_{j=1}^{n}\frac{1}{j}\sum_{k=0}^{n-j}\binom{n}{k}(-1)^{k}\overset{(*)}{=}(-1)^{\cancel{n}}\sum_{j=1}^{n}\frac{1}{j}(-1)^{\cancel{n}-j}\binom{n-1}{n-j}=\\ =\sum_{j=0}^{n}\frac{1}{j+1}(-1)^{-j-1}\binom{n-1}{n-j-1}=-\sum_{j=0}^{n-1}\frac{(-1)^{j}}{j+1}\binom{n-1}{j}\overset{(**)}{=}\frac{1}{\binom{n}{n-1}}=-\frac{1}{n}. \end{multline*} \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc11[M21] \end_layout \end_inset Using summation by parts, evaluate \begin_inset Formula \[ \sum_{10}$ \end_inset , \begin_inset Formula \[ \frac{\Gamma'(n)}{\Gamma(n)}=\lim_{m}(\ln m-H_{n+m}+H_{n-1})=H_{n-1}-\gamma, \] \end_inset and we can define \begin_inset Formula \[ H_{x}\coloneqq\frac{\Gamma'(x+1)}{\Gamma(x+1)}+\gamma \] \end_inset for any \begin_inset Formula $x\in\mathbb{C}$ \end_inset where this expression is defined or can be extended by continuity. \end_layout \end_body \end_document