#LyX 2.4 created this file. For more info see https://www.lyx.org/ \lyxformat 620 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \begin_preamble \input defs \end_preamble \use_default_options true \maintain_unincluded_children no \language english \language_package default \inputencoding utf8 \fontencoding auto \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_roman_osf false \font_sans_osf false \font_typewriter_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \float_placement class \float_alignment class \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_formatted_ref 0 \use_minted 0 \use_lineno 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style english \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tablestyle default \tracking_changes false \output_changes false \change_bars false \postpone_fragile_content false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \docbook_table_output 0 \docbook_mathml_prefix 1 \end_header \begin_body \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash exerc1[05] \end_layout \end_inset Explain how to modify the idea of proof by mathematical induction, in case we want to prove some statement \begin_inset Formula $P(n)$ \end_inset for all \emph on nonnegative \emph default integers— that is, for \begin_inset Formula $n=0,1,2,\dots$ \end_inset instead of \begin_inset Formula $n=1,2,3,\dots$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset We'd prove that \begin_inset Formula $P(0)$ \end_inset holds and that, for all \begin_inset Formula $n\geq0$ \end_inset , if \begin_inset Formula $P(0),\dots,P(n)$ \end_inset hold, then \begin_inset Formula $P(n+1)$ \end_inset holds. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc2[15] \end_layout \end_inset There must be something wrong with the following proof. What is it? \end_layout \begin_layout Standard \begin_inset Quotes eld \end_inset \series bold Theorem: \series default Let \begin_inset Formula $a$ \end_inset be any positive number. For all positive integers \begin_inset Formula $n$ \end_inset , we have \begin_inset Formula $a^{n-1}=1$ \end_inset . \emph on Proof. \emph default If \begin_inset Formula $n=1$ \end_inset , \begin_inset Formula $a^{n-1}=a^{1-1}=0$ \end_inset . And by induction, assuming that the theorem is true for \begin_inset Formula $1,2,\dots,n$ \end_inset , we have \begin_inset Formula \[ a^{(n+1)-1}=a^{n}=\frac{a^{n-1}\times a^{n-1}}{a^{(n-1)-1}}=\frac{1\times1}{1}=1; \] \end_inset so the theorem is true for \begin_inset Formula $n+1$ \end_inset as well. \begin_inset Quotes erd \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset For \begin_inset Formula $n=1$ \end_inset , \begin_inset Formula $a^{(n-1)-1}=a^{0-1}$ \end_inset , but we haven't proved the theorem for \begin_inset Formula $n=0$ \end_inset , and indeed, \begin_inset Formula $a^{0-1}=a^{-1}=\frac{1}{a}\neq1$ \end_inset if \begin_inset Formula $a\neq1$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc8[25] \end_layout \end_inset \end_layout \begin_layout Enumerate Prove the following theorem of Nicomachus (A.D. c. 100) by induction: \begin_inset Formula $1^{3}=1$ \end_inset , \begin_inset Formula $2^{3}=3+5$ \end_inset , \begin_inset Formula $3^{3}=7+9+11$ \end_inset , \begin_inset Formula $4^{3}=13+15+17+19$ \end_inset , etc. \end_layout \begin_layout Enumerate Use this result to prove the remarkable formula \begin_inset Formula $1^{3}+2^{3}+\dots+n^{3}=(1+2+\dots+n)^{2}$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset \end_layout \begin_layout Enumerate For \begin_inset Formula $n=1$ \end_inset , \begin_inset Formula $1^{3}=1$ \end_inset , and the first number of the sequence is \begin_inset Formula $n(n-1)+1=1(1-1)+1=1$ \end_inset . If these two properties are proved up to a certain number \begin_inset Formula $n$ \end_inset , then the first number of the sequence for \begin_inset Formula $n+1$ \end_inset is 2 plus the last number of the sequence for \begin_inset Formula $n$ \end_inset , that is, since the sequence for \begin_inset Formula $n$ \end_inset has \begin_inset Formula $n$ \end_inset numbers, the first number of the sequence for \begin_inset Formula $n+1$ \end_inset is \begin_inset Formula $n(n-1)+1+2n=n(n-1+2)+1=(n+1)n+1=(n+1)((n-1)+1)+1$ \end_inset . Now, \begin_inset Formula $(n+1)^{3}=n^{3}+3n^{2}+3n+1=(n(n-1)+1)+(n(n-1)+3)+\dots+(n(n-1)+2n-1)+2n\cdot n+n^{2}+3n+1=(n(n-1)+2n+1)+\dots+(n(n-1)+2n+2n-1)+n^{2}+n+2n+1=(n(n+1)+1)+\dots+(n(n+1)+2n-1)+(n(n+1)+2n+1)$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $1^{3}+2^{3}+\dots+n^{3}=1+3+\dots+((n+1)n+1-2)=1+3+\dots+((n+1)n-1)$ \end_inset . For each \begin_inset Formula $n$ \end_inset , \begin_inset Formula $n^{2}-(n-1)^{2}=n^{2}-n^{2}+2n-1=2n-1$ \end_inset , so \begin_inset Formula $1^{3}+2^{3}+\dots+n^{3}=1+3+\dots+((n+1)n-1)=(1^{2}-0^{2})+(2^{2}-1^{2})+\dots+\left(\left(\frac{(n+1)n}{2}\right)^{2}-\left(\frac{(n+1)n}{2}-1\right)^{2}\right)=\left(\frac{(n+1)n}{2}\right)^{2}=(1+2+\dots+n)^{2}$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash exerc13[M23] \end_layout \end_inset Extend Algorithm E by adding a new variable \begin_inset Formula $T$ \end_inset and adding the operation \begin_inset Quotes eld \end_inset \begin_inset Formula $T\gets T+1$ \end_inset \begin_inset Quotes erd \end_inset at the beginning of each step. (Thus, \begin_inset Formula $T$ \end_inset is like a clock, counting the number of steps executed.) Assume that \begin_inset Formula $T$ \end_inset is initially zero, so that assertion \begin_inset Formula $A1$ \end_inset in Fig. 4 becomes \begin_inset Quotes eld \end_inset \begin_inset Formula $m>0,n>0,T=0$ \end_inset . \begin_inset Quotes erd \end_inset The additional condition \begin_inset Quotes eld \end_inset \begin_inset Formula $T=1$ \end_inset \begin_inset Quotes erd \end_inset should similarly be appended to \begin_inset Formula $A2$ \end_inset . Show how to append additional conditions to the assertions in such a way that any one of \begin_inset Formula $A1,A2,\dots,A6$ \end_inset implies \begin_inset Formula $T\leq3n$ \end_inset , and such that the inductive proof can still be carried out. (Hence the computation must terminate in at most \begin_inset Formula $3n$ \end_inset steps.) \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset At \begin_inset Formula $A3$ \end_inset , we append \begin_inset Formula $T\leq3(n-r)-1$ \end_inset . From \begin_inset Formula $A2$ \end_inset , we have \begin_inset Formula $T=2$ \end_inset , and since \begin_inset Formula $c=m>0$ \end_inset and \begin_inset Formula $d=n>0$ \end_inset , we have \begin_inset Formula $rn-r$ \end_inset and \begin_inset Formula $T\leq3(n-d)+2\leq3(n-r)-3+2=3(n-r)-1$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc15[HM28] \end_layout \end_inset ( \emph on Generalized induction. \emph default ) The text shows how to prove statements \begin_inset Formula $P(n)$ \end_inset that depend on a single integer \begin_inset Formula $n$ \end_inset , but it does not describe how to prove statements \begin_inset Formula $P(m,n)$ \end_inset depending on two integers. In these circumstances a proof is often given by some sort of \begin_inset Quotes eld \end_inset double induction, \begin_inset Quotes erd \end_inset which frequently seems confusing. Actually, there is an important principle more general than simple induction that applies not only in this case but also to situations in which statements are to be proved about uncountable sets— for example, \begin_inset Formula $P(x)$ \end_inset for all real \begin_inset Formula $x$ \end_inset . This general principle is called \emph on well-ordering \emph default . \end_layout \begin_layout Standard Let \begin_inset Quotes eld \end_inset \begin_inset Formula $\prec$ \end_inset \begin_inset Quotes erd \end_inset be a relation on a set \begin_inset Formula $S$ \end_inset , satisfying the following properties: \end_layout \begin_layout Enumerate Given \begin_inset Formula $x$ \end_inset , \begin_inset Formula $y$ \end_inset , and \begin_inset Formula $z$ \end_inset in \begin_inset Formula $S$ \end_inset , if \begin_inset Formula $x\prec y$ \end_inset and \begin_inset Formula $y\prec z$ \end_inset , then \begin_inset Formula $x\prec z$ \end_inset . \end_layout \begin_layout Enumerate Given \begin_inset Formula $x$ \end_inset and \begin_inset Formula $y$ \end_inset in \begin_inset Formula $S$ \end_inset , exactly one of the following three possibilities is true: \begin_inset Formula $x\prec y$ \end_inset , \begin_inset Formula $x=y$ \end_inset , or \begin_inset Formula $y\prec x$ \end_inset . \end_layout \begin_layout Enumerate If \begin_inset Formula $A$ \end_inset is any nonempty subset of \begin_inset Formula $S$ \end_inset , there is an element \begin_inset Formula $x$ \end_inset in \begin_inset Formula $A$ \end_inset with \begin_inset Formula $x\preceq y$ \end_inset (that is, \begin_inset Formula $x\prec y$ \end_inset or \begin_inset Formula $x=y$ \end_inset ) for all \begin_inset Formula $y$ \end_inset in \begin_inset Formula $A$ \end_inset . \end_layout \begin_layout Standard This relation is said to be a well-ordering of \begin_inset Formula $S$ \end_inset . For example, it is clear that the positive integers are well-ordered by the ordinary \begin_inset Quotes eld \end_inset less than \begin_inset Quotes erd \end_inset relation, \begin_inset Formula $<$ \end_inset . \end_layout \begin_layout Enumerate Show that the set of \emph on all \emph default integers is not well-ordered by \begin_inset Formula $<$ \end_inset . \end_layout \begin_layout Enumerate Define a well-ordering relation on the set of all integers. \end_layout \begin_layout Enumerate Is the set of all nonnegative real numbers well-ordered by \begin_inset Formula $<$ \end_inset ? \end_layout \begin_layout Enumerate \begin_inset CommandInset label LatexCommand label name "enu:Lexicographic-order" \end_inset ( \emph on Lexicographic order. \emph default ) Let \begin_inset Formula $S$ \end_inset be well-ordered by \begin_inset Formula $\prec$ \end_inset , and for \begin_inset Formula $n>0$ \end_inset , let \begin_inset Formula $T_{n}$ \end_inset be the set of \begin_inset Formula $n$ \end_inset -tuples \begin_inset Formula $(x_{1},x_{2},\dots,x_{n})$ \end_inset of elements \begin_inset Formula $x_{j}$ \end_inset in \begin_inset Formula $S$ \end_inset . Define \begin_inset Formula $(x_{1},x_{2},\dots,x_{n})\prec(y_{1},y_{2},\dots,y_{n})$ \end_inset if there is some \begin_inset Formula $k$ \end_inset , \begin_inset Formula $1\leq k\leq n$ \end_inset , such that \begin_inset Formula $x_{j}=y_{j}$ \end_inset for \begin_inset Formula $1\leq j0$ \end_inset , or \begin_inset Formula $|a|<|b|$ \end_inset so \begin_inset Formula $|a|<|b|\leq|c|$ \end_inset . In both cases, \begin_inset Formula $a\prec c$ \end_inset . \end_layout \begin_layout Enumerate If \begin_inset Formula $x\neq y$ \end_inset , then either \begin_inset Formula $|x|=|y|$ \end_inset so it must be \begin_inset Formula $x\prec y$ \end_inset if \begin_inset Formula $y<0$ \end_inset or \begin_inset Formula $y\prec x$ \end_inset if \begin_inset Formula $y>0$ \end_inset , \begin_inset Formula $|x|<|y|$ \end_inset so that \begin_inset Formula $x\prec y$ \end_inset , or \begin_inset Formula $|y|>|x|$ \end_inset so that \begin_inset Formula $y\prec x$ \end_inset . It's clear that \begin_inset Formula $x\prec y$ \end_inset implies \begin_inset Formula $x\neq y$ \end_inset and \begin_inset Formula $y\nprec x$ \end_inset . \end_layout \begin_layout Enumerate Let \begin_inset Formula $S\subseteq\mathbb{Z}$ \end_inset be nonempty, then we can find the minimum element of \begin_inset Formula $S$ \end_inset by looking at the elements of \begin_inset Formula $S$ \end_inset with minimal absolute value, which form a finite, nonempty subset. \end_layout \end_deeper \begin_layout Enumerate No, as the nonempty subset \begin_inset Formula $\{x\in\mathbb{R}:x>0\}$ \end_inset doesn't have a first element: for each \begin_inset Formula $x>0$ \end_inset , \begin_inset Formula $\frac{x}{2}