#LyX 2.4 created this file. For more info see https://www.lyx.org/ \lyxformat 620 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \use_default_options true \maintain_unincluded_children no \language american \language_package default \inputencoding utf8 \fontencoding auto \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_roman_osf false \font_sans_osf false \font_typewriter_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \float_placement class \float_alignment class \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_formatted_ref 0 \use_minted 0 \use_lineno 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style english \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tablestyle default \tracking_changes false \output_changes false \change_bars false \postpone_fragile_content true \html_math_output 0 \html_css_as_file 0 \html_be_strict false \docbook_table_output 0 \docbook_mathml_prefix 1 \end_header \begin_body \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash exerc1[10] \end_layout \end_inset Determine the value of \begin_inset Formula $p_{n0}$ \end_inset from Eqs. (4) and (5) and interpret this result from the standpoint of Algorithm M. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset For \begin_inset Formula $n=1$ \end_inset , \begin_inset Formula $p_{10}=1$ \end_inset , and for \begin_inset Formula $n>1$ \end_inset , \begin_inset Formula \[ p_{n0}=\frac{1}{n}p_{(n-1)(-1)}+\frac{n-1}{n}p_{(n-1)0}=\frac{n-1}{n}p_{(n-1)0}=\dots=\frac{n-1}{n}\frac{n-2}{n-1}\cdots\frac{1}{2}p_{10}=\frac{1}{n}, \] \end_inset so in general the probability that step M4 is never run (which happens when \begin_inset Formula $a_{n}$ \end_inset is already the maximum value) is \begin_inset Formula $p_{n0}=\frac{1}{n}$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash exerc4[M10] \end_layout \end_inset Give an explicit, closed formula for the values of \begin_inset Formula $p_{nk}$ \end_inset in the coin-tossing experiment, Eq. (17). \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset \begin_inset Formula $p_{nk}=\binom{n}{k}p^{k}q^{n-k}$ \end_inset . To show that this derives from Eq. (17), we see that, when \begin_inset Formula $n=0$ \end_inset , \begin_inset Formula $p_{0k}=\delta_{k0}$ \end_inset , matching the formula, and then, by induction, \begin_inset Formula \[ p_{nk}=pp_{n-1,k-1}+qp_{n-1,k}=\binom{n-1}{k-1}p^{k}q^{n-k}+\binom{n-1}{k}p^{k}q^{n-k}=\binom{n}{k}p^{k}q^{n-k}. \] \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc8[M20] \end_layout \end_inset Suppose that each \begin_inset Formula $X[k]$ \end_inset is taken at random from a set of \begin_inset Formula $M$ \end_inset distinct elements, so that each of the \begin_inset Formula $M^{n}$ \end_inset possible choices for \begin_inset Formula $X[1],X[2],\dots,X[n]$ \end_inset is considered equally likely. What is the probability that all the \begin_inset Formula $X[k]$ \end_inset will be distinct? \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset We need calculate the number of choices out of those \begin_inset Formula $M^{n}$ \end_inset that do not repeat numbers. These choices can be considered as taking a subset of \begin_inset Formula $n$ \end_inset elements from those \begin_inset Formula $M$ \end_inset (if \begin_inset Formula $n>M$ \end_inset then we must necessarily repeat) and then ordering them somehow, so the total number of choices is \begin_inset Formula $\binom{M}{n}n!$ \end_inset , and the probability is \begin_inset Formula \[ \frac{\binom{M}{n}n!}{M^{n}}=\frac{M(M-1)\cdots(M-n+1)}{M^{n}}=\frac{M^{\underline{n}}}{M^{n}}. \] \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc11[M15] \end_layout \end_inset What happens to the semi-invariants of a distribution if we change \begin_inset Formula $G(z)$ \end_inset to \begin_inset Formula $F(z)=z^{n}G(z)$ \end_inset ? \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset Let \begin_inset Formula $H(z)\coloneqq z^{n}$ \end_inset , then \begin_inset Formula $h(t)\coloneqq\ln H(\text{e}^{t})=\ln\text{e}^{nt}=nt$ \end_inset , so \begin_inset Formula $\dot{h}(t)=n$ \end_inset and \begin_inset Formula $\ddot{h}(t)=\dddot{h}(t)=\dots=0$ \end_inset . Therefore \begin_inset Formula \begin{align*} \kappa_{1} & =\dot{h}(0)=n; & \kappa_{n} & =h^{(n)}(0)=0, & n & >1. \end{align*} \end_inset Thus, by Theorem A, the mean increases by \begin_inset Formula $n$ \end_inset and all the other semi-invariants stay the same. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc20[M22] \end_layout \end_inset Suppose we want to calculate \begin_inset Formula $\max\{|a_{1}-b_{1}|,|a_{2}-b_{2}|,\dots,|a_{n}-b_{n}|\}$ \end_inset when \begin_inset Formula $b_{1}\leq b_{2}\leq\dots\leq b_{n}$ \end_inset . Show that it is sufficient to calculate \begin_inset Formula $\max\{m_{\text{L}},m_{\text{R}}\}$ \end_inset , where \begin_inset Formula \begin{align*} m_{\text{L}} & =\max\{a_{k}-b_{k}\mid a_{k}\text{ is a left-to-right maximum of }a_{1}a_{2}\cdots a_{n}\},\\ m_{\text{R}} & =\max\{b_{k}-a_{k}\mid a_{k}\text{ is a right-to-left minimum of }a_{1}a_{2}\cdots a_{n}\}. \end{align*} \end_inset (Thus, if the \begin_inset Formula $a$ \end_inset 's are in random order, the number of \begin_inset Formula $k$ \end_inset 's for which a subtraction must be performed is only about \begin_inset Formula $2\ln n$ \end_inset .) \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset We interpret the concepts of \begin_inset Quotes eld \end_inset directional \begin_inset Quotes erd \end_inset maximum and minimum as meaning that \begin_inset Formula $a_{k}\geq a_{k-1},\dots,a_{1}$ \end_inset or that \begin_inset Formula $a_{k}\leq a_{k+1},\dots,a_{n}$ \end_inset , respectively. Then, if \begin_inset Formula $a_{j}$ \end_inset is not a left-to-right maximum, there is a \begin_inset Formula $ka_{j}$ \end_inset and therefore \begin_inset Formula $a_{k}-b_{k}>a_{j}-b_{j}$ \end_inset (as \begin_inset Formula $b_{k}\leq b_{j}$ \end_inset ), so \begin_inset Formula $a_{j}-b_{j}$ \end_inset is not a maximum of \begin_inset Formula $\{a_{k}-b_{k}\}$ \end_inset . Similarly, if \begin_inset Formula $a_{j}$ \end_inset is not a right-to-left minimum, there is a \begin_inset Formula $k>j$ \end_inset with \begin_inset Formula $a_{k}b_{j}-a_{j}$ \end_inset . \end_layout \begin_layout Standard Thus \begin_inset Formula $m_{\text{L}}=\max\{a_{k}-b_{k}\}$ \end_inset and \begin_inset Formula $m_{\text{R}}=\max\{b_{k}-a_{k}\}$ \end_inset . Since at least one of them is non-negative, \begin_inset Formula $\max\{m_{\text{L}},m_{\text{R}}\}$ \end_inset is also non-negative and it is therefore \begin_inset Formula $|a_{k}-b_{k}|$ \end_inset for some \begin_inset Formula $k$ \end_inset , and it is no lower than any \begin_inset Formula $|a_{j}-b_{j}|$ \end_inset as those are either \begin_inset Formula $a_{j}-b_{j}$ \end_inset or \begin_inset Formula $b_{j}-a_{j}$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc21[HM21] \end_layout \end_inset Let \begin_inset Formula $X$ \end_inset be the number of heads that occur when a random coin is flipped \begin_inset Formula $n$ \end_inset times, with generating function (18). Use (25) to prove that \begin_inset Formula \[ \text{Pr}(X\geq n(p+\epsilon))\leq\text{e}^{-\epsilon^{2}n/(2q)} \] \end_inset when \begin_inset Formula $\epsilon\geq0$ \end_inset , and obtain a similar estimate for \begin_inset Formula $\text{Pr}(X\leq n(p-\epsilon))$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset First, we tackle the edge cases. If \begin_inset Formula $n=0$ \end_inset , then \begin_inset Formula $X=0$ \end_inset and \begin_inset Formula $\text{Pr}(X\geq0)\leq1$ \end_inset trivially, so we may consider \begin_inset Formula $n>0$ \end_inset . If \begin_inset Formula $p=0$ \end_inset , then \begin_inset Formula $\text{Pr}(X=0)=1$ \end_inset and \begin_inset Formula $\text{Pr}(X\geq n\epsilon)\leq\text{e}^{-\epsilon^{2}n/2}$ \end_inset trivially, so we may consider \begin_inset Formula $p>0$ \end_inset . Finally, if \begin_inset Formula $\epsilon>q$ \end_inset then \begin_inset Formula $\text{Pr}(X\geq n(p+\epsilon))=0\leq\text{e}^{-\epsilon^{2}n/(2q)}$ \end_inset and if \begin_inset Formula $\epsilon=q$ \end_inset then \begin_inset Formula $\text{Pr}(X\geq n)=p^{n}\leq(\text{e}^{-q})^{n}\leq\text{e}^{-qn/2}$ \end_inset , using the fact that \begin_inset Formula $t\leq\text{e}^{t-1}$ \end_inset for every \begin_inset Formula $t\in\mathbb{R}$ \end_inset , so we may consider \begin_inset Formula $\epsilon0$ \end_inset . \end_layout \begin_layout Standard Now let \begin_inset Formula $r=n(p+\epsilon)$ \end_inset . Then \begin_inset Formula $\text{Pr}(X\geq n(p+\epsilon))\leq x^{-n(p+\epsilon)}(q+px)^{n}$ \end_inset , and we just need to find \begin_inset Formula $x\geq1$ \end_inset such that \begin_inset Formula \[ \ln(q+px)-(p+\epsilon)\ln x\leq-\frac{\epsilon^{2}}{2q}. \] \end_inset \begin_inset Note Greyedout status open \begin_layout Plain Layout (I had to look at the solution, esp. for the right value of \begin_inset Formula $x$ \end_inset .) \end_layout \end_inset If \begin_inset Formula $x\coloneqq\frac{p+\epsilon}{p}\frac{q}{q-\epsilon}$ \end_inset , we have \begin_inset Formula \begin{multline*} \ln(q+px)-(p+\epsilon)\ln x=\ln\left(q+(p+\epsilon)\frac{q}{q-\epsilon}\right)-(p+\epsilon)\ln\left(\frac{p+\epsilon}{p}\frac{q}{q-\epsilon}\right)=\\ =\ln q-\ln(q-\epsilon)-(p+\epsilon)(\ln q-\ln(q-\epsilon)+\ln(p+\epsilon)-\ln p)=\\ =(q-\epsilon)\ln\frac{q}{q-\epsilon}-(p+\epsilon)\ln\frac{p+\epsilon}{p}, \end{multline*} \end_inset where we are assuming that \begin_inset Formula $\epsilonr_{0}$ \end_inset , this fraction is less than 1. \end_layout \end_body \end_document