#LyX 2.4 created this file. For more info see https://www.lyx.org/ \lyxformat 620 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \begin_preamble \input defs \end_preamble \use_default_options true \maintain_unincluded_children no \language english \language_package default \inputencoding utf8 \fontencoding auto \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_roman_osf false \font_sans_osf false \font_typewriter_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_formatted_ref 0 \use_minted 0 \use_lineno 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style english \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tablestyle default \tracking_changes false \output_changes false \change_bars false \postpone_fragile_content false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \docbook_table_output 0 \docbook_mathml_prefix 1 \end_header \begin_body \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash exerc1[00] \end_layout \end_inset What are \begin_inset Formula $\lfloor1.1\rfloor$ \end_inset , \begin_inset Formula $\lfloor-1.1\rfloor$ \end_inset , \begin_inset Formula $\lceil-1.1\rceil$ \end_inset , \begin_inset Formula $\lfloor0.99999\rfloor$ \end_inset , and \begin_inset Formula $\lfloor\lg35\rfloor$ \end_inset ? \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset \begin_inset Formula $\lfloor1.1\rfloor=1$ \end_inset , \begin_inset Formula $\lfloor-1.1\rfloor=-2$ \end_inset , \begin_inset Formula $\lceil-1.1\rceil=-1$ \end_inset , \begin_inset Formula $\lfloor0.99999\rfloor=0$ \end_inset , \begin_inset Formula $\lfloor\lg35\rfloor=5$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc2[01] \end_layout \end_inset What is \begin_inset Formula $\lceil\lfloor x\rfloor\rceil$ \end_inset ? \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset The same as \begin_inset Formula $\lfloor x\rfloor$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash exerc3[10] \end_layout \end_inset Let \begin_inset Formula $n$ \end_inset be an integer, and let \begin_inset Formula $x$ \end_inset be a real number. Prove that \end_layout \begin_layout Enumerate \begin_inset Formula $\lfloor x\rfloorn\#$ \end_inset . \end_layout \begin_layout Description \begin_inset Formula $2\implies3]$ \end_inset Multiply the inequality by \begin_inset Formula $-1$ \end_inset and add \begin_inset Formula $x+n$ \end_inset to each member. \end_layout \begin_layout Description \begin_inset Formula $3\implies1]$ \end_inset \begin_inset Formula $n\leq x$ \end_inset and any \begin_inset Formula $m\in\mathbb{Z}$ \end_inset with \begin_inset Formula $m\leq x$ \end_inset has \begin_inset Formula $m0$ \end_inset . Show that if \begin_inset Formula $(x-z)/y$ \end_inset is an integer and if \begin_inset Formula $0\leq z1$ \end_inset are necessary and sufficient to guarantee that \begin_inset Formula $\lfloor\log_{b}x\rfloor=\left\lfloor \log_{b}\lfloor x\rfloor\right\rfloor $ \end_inset for all real \begin_inset Formula $x\geq1$ \end_inset ? \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset It happens if and only if \begin_inset Formula $b\in\mathbb{Z}$ \end_inset . To prove this, observe that, since the logarithm in base \begin_inset Formula $b>1$ \end_inset is strictly increasing, \begin_inset Formula $\log_{b}\lfloor x\rfloor<\log_{b}x$ \end_inset , so \begin_inset Formula $\lfloor\log_{b}x\rfloor\neq\left\lfloor \log_{b}\lfloor x\rfloor\right\rfloor $ \end_inset if and only if \begin_inset Formula $\left\lfloor \log_{b}\lfloor x\rfloor\right\rfloor <\lfloor\log_{b}x\rfloor$ \end_inset , that is, if there exists an integer \begin_inset Formula $k$ \end_inset (namely \begin_inset Formula $\lfloor\log_{b}x\rfloor$ \end_inset ) such that \begin_inset Formula $\log_{b}\lfloor x\rfloor0$ \end_inset , prove that \begin_inset Formula \[ \lfloor(x+m)/n\rfloor=\left\lfloor (\lfloor x\rfloor+m)/n\right\rfloor \] \end_inset for all real \begin_inset Formula $x$ \end_inset . (When \begin_inset Formula $m=0$ \end_inset , we have an important special case.) Does an analogous result hold for the ceiling function? \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset Clearly \begin_inset Formula $\left\lfloor \frac{\lfloor x\rfloor+m}{n}\right\rfloor \leq\left\lfloor \frac{x+m}{n}\right\rfloor $ \end_inset . If this inequality were strict, however, there would be an integer \begin_inset Formula $k$ \end_inset such that \begin_inset Formula $\frac{\lfloor x\rfloor+m}{n}