#LyX 2.4 created this file. For more info see https://www.lyx.org/ \lyxformat 620 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \begin_preamble \input defs \end_preamble \use_default_options true \maintain_unincluded_children no \language english \language_package default \inputencoding utf8 \fontencoding auto \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_roman_osf false \font_sans_osf false \font_typewriter_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_formatted_ref 0 \use_minted 0 \use_lineno 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style english \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tablestyle default \tracking_changes false \output_changes false \change_bars false \postpone_fragile_content false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \docbook_table_output 0 \docbook_mathml_prefix 1 \end_header \begin_body \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash exerc1[00] \end_layout \end_inset How many ways are there to shuffle a 52-card deck? \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset \begin_inset Formula $52!=80658175170943878571660636856403766975289505440883277824000000000000$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash exerc2[10] \end_layout \end_inset In the notation of Eq. (2), show that \begin_inset Formula $p_{n(n-1)}=p_{nn}$ \end_inset , and explain why this happens. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset \begin_inset Formula $p_{n(n-1)}=n(n-1)\cdots(n-(n-1)+1)=n(n-1)\cdots2=n(n-1)\cdots1=p_{nn}$ \end_inset . This is because \begin_inset Formula $p_{n(n-1)}$ \end_inset is the number of ways to take and arrange \begin_inset Formula $n-1$ \end_inset objects out \begin_inset Formula $n$ \end_inset and \begin_inset Formula $p_{nn}$ \end_inset is the number of ways to take and arrange the \begin_inset Formula $n$ \end_inset objects, which consists of first arranging \begin_inset Formula $n-1$ \end_inset objects out of the \begin_inset Formula $n$ \end_inset objects and then adding the one remaining. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash exerc3[10] \end_layout \end_inset What permutations of \begin_inset Formula $\{1,2,3,4,5\}$ \end_inset would be constructed from the permutation \begin_inset Formula $3\,1\,2\,4$ \end_inset using Methods 1 and 2, respectively? \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset \end_layout \begin_layout Enumerate \series bold Method 1: \series default \begin_inset Formula $5\,3\,1\,2\,4$ \end_inset , \begin_inset Formula $3\,5\,1\,2\,4$ \end_inset , \begin_inset Formula $3\,1\,5\,2\,4$ \end_inset , \begin_inset Formula $3\,1\,2\,5\,4$ \end_inset , \begin_inset Formula $3\,1\,2\,4\,5$ \end_inset . \end_layout \begin_layout Enumerate \series bold Method 2: \series default \begin_inset Formula $4\,2\,3\,5\,1$ \end_inset , \begin_inset Formula $4\,1\,3\,5\,2$ \end_inset , \begin_inset Formula $4\,1\,2\,5\,3$ \end_inset , \begin_inset Formula $3\,1\,2\,5\,4$ \end_inset , \begin_inset Formula $3\,1\,2\,4\,5$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc4[13] \end_layout \end_inset Given the fact that \begin_inset Formula $\log_{10}1000!=2567.60464...$ \end_inset , determine exactly how many decimal digits are present in the number \begin_inset Formula $1000!$ \end_inset . What is the \emph on most significant \emph default digit? What is the \emph on least significant \emph default digit? \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset Given a number \begin_inset Formula $x$ \end_inset with \begin_inset Formula $n+1$ \end_inset digits \begin_inset Formula $x_{n}x_{n-1}\cdots x_{1}x_{0}$ \end_inset , we have \begin_inset Formula $x_{n}10^{n}\leq x<(x_{n}+1)10^{n}$ \end_inset and therefore \begin_inset Formula $n+\log_{10}x_{n}\leq\log xe_{2}>\dots>e_{r}\geq0$ \end_inset . Show that \begin_inset Formula $n!$ \end_inset is divisible by \begin_inset Formula $2^{n-r}$ \end_inset but not by \begin_inset Formula $2^{n-r+1}$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset This is exactly to say that, for \begin_inset Formula $p=2$ \end_inset , \begin_inset Formula $\mu=n-r$ \end_inset . But \begin_inset Formula $r$ \end_inset is the sum of all bits of \begin_inset Formula $n$ \end_inset in base 2, so by Exercise 12, \begin_inset Formula $\mu=\frac{1}{2-1}(n-r)=n-r$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc12[M22] \end_layout \end_inset (A. Legendre, 1808.) Generalizing the result of the previous exercise, let \begin_inset Formula $p$ \end_inset be a prime number, and let the representation of \begin_inset Formula $n$ \end_inset in the \begin_inset Formula $p$ \end_inset -ary number system be \begin_inset Formula $n=a_{k}p^{k}+a_{k-1}p^{k-1}+\dots+a_{1}p+a_{0}$ \end_inset . Express the number \begin_inset Formula $\mu$ \end_inset of Eq. (8) in a simple formula involving \begin_inset Formula $n$ \end_inset , \begin_inset Formula $p$ \end_inset , and \begin_inset Formula $a$ \end_inset 's. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset The question makes sense for \begin_inset Formula $n\in\mathbb{N}^{*}$ \end_inset . Then, given that the previous exercise showed that, for \begin_inset Formula $p=2$ \end_inset , \begin_inset Formula $\mu=n-r$ \end_inset , where \begin_inset Formula $r\coloneqq|\{k\in\mathbb{N}\mid a_{k}\neq0\}|=\sum_{k}a_{k}$ \end_inset , a guess is that \begin_inset Formula $\mu=n-\sum_{k}a_{k}$ \end_inset for any other positive prime integer \begin_inset Formula $p$ \end_inset as well, that is, \begin_inset Formula $n-\mu=\sum_{k}a_{k}$ \end_inset . To prove this, \begin_inset Formula \[ \mu=\sum_{j\geq1}\left\lfloor \frac{n}{p^{j}}\right\rfloor =\sum_{j=1}^{k}\sum_{i=j}^{k}a_{i}p^{i-j}=\sum_{1\leq j\leq i\leq k}a_{i}p^{i-j}=\sum_{i=1}^{k}a_{i}\left(\sum_{j=0}^{i-1}p^{j}\right)=\sum_{i=1}^{k}\frac{a_{i}(p^{i}-1)}{p-1}, \] \end_inset where the latter identity is because of the cyclotomic formula. Then, \begin_inset Formula \begin{align*} \sum_{i=1}^{k}\frac{a_{i}(p^{i}-1)}{p-1} & =\frac{1}{p-1}\left(\sum_{i=1}^{k}a_{i}p^{i}-\sum_{i=1}^{k}a_{i}\right)=\frac{1}{p-1}\left((n-a_{0})-\sum_{i\geq1}a_{i}\right)\\ & =\frac{1}{p-1}\left(n-\sum_{i\geq0}a_{i}\right). \end{align*} \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc22[HM20] \end_layout \end_inset Try to put yourself in Euler's place, looking for a way to generalize \begin_inset Formula $n!$ \end_inset to noninteger values of \begin_inset Formula $n$ \end_inset . Since \begin_inset Formula $(n+\frac{1}{2})!/n!$ \end_inset times \begin_inset Formula $((n+\frac{1}{2})+\frac{1}{2})!/(n+\frac{1}{2})!$ \end_inset equals \begin_inset Formula $(n+1)!/n!=n+1$ \end_inset , it seems natural that \begin_inset Formula $(n+\frac{1}{2})!/n!$ \end_inset should be approximately \begin_inset Formula $\sqrt{n}$ \end_inset . Similarly, \begin_inset Formula $(n+\frac{1}{3})!/n!$ \end_inset should be \begin_inset Formula $\approx\sqrt[3]{n}$ \end_inset . Invent a hypothesis about the ratio \begin_inset Formula $(n+x)!/n!$ \end_inset as \begin_inset Formula $n$ \end_inset approaches infinity. Is your hypothesis correct when \begin_inset Formula $x$ \end_inset is an integer? Does it tell anything about the appropriate value of \begin_inset Formula $x!$ \end_inset when \begin_inset Formula $x$ \end_inset is not an integer? \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset The previous examples show \begin_inset Formula $\frac{(n+\frac{1}{m})!}{n!}\approx\sqrt[m]{n}=n^{\frac{1}{m}}$ \end_inset , which is to say that \begin_inset Formula $\frac{(n+x)!}{n!}\approx n^{x}$ \end_inset for \begin_inset Formula $x=\frac{1}{m}$ \end_inset . As \begin_inset Formula $n$ \end_inset gets bigger, the approximation should probably be more accurate for the same value of \begin_inset Formula $x$ \end_inset , so we could see that \begin_inset Formula $(n+x)!\approx n^{x}n!$ \end_inset . For a non-negative integer \begin_inset Formula $x$ \end_inset , \begin_inset Formula $(n+x)!=(n+1)\cdots(n+x)\cdot n!$ \end_inset , so as \begin_inset Formula $n$ \end_inset gets bigger the approximation is more and more precise, and in fact, \begin_inset Formula \[ \lim_{n}\frac{n^{x}n!}{(n+x)!}=\lim_{n}\frac{n^{x}}{(n+1)\cdots(n+x)}=\lim_{n}\prod_{k=1}^{x}\frac{n}{n+k}=1. \] \end_inset Multiplying by \begin_inset Formula $x!$ \end_inset , \begin_inset Formula \[ x!=\lim_{n}\frac{n^{x}x!n!}{(n+x)!}=\lim_{n}(n^{x}n!)\frac{x!}{(n+x)!}=\lim_{n}\frac{n^{x}n!}{(x+1)\cdots(x+n)}, \] \end_inset which is Euler's factorial formula. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc24[HM21] \end_layout \end_inset Prove the handy inequalities \begin_inset Formula \begin{align*} \frac{n^{n}}{\text{e}^{n-1}} & \leq n!\leq\frac{n^{n+1}}{\text{e}^{n-1}}, & \text{integer }n & \geq1. \end{align*} \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset \begin_inset Note Greyedout status open \begin_layout Plain Layout (Looking at the answers.) \end_layout \end_inset We have \begin_inset Formula \begin{align*} \frac{n^{n}}{n!} & =\prod_{k=1}^{n}\frac{n}{k}=\prod_{k=1}^{n-1}\frac{n}{k}=\prod_{k=1}^{n-1}\prod_{j=k}^{n-1}\frac{j+1}{j}=\prod_{1\leq k\leq j