#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 620
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass book
\begin_preamble
\input defs
\usepackage{amsmath}
\end_preamble
\use_default_options true
\maintain_unincluded_children no
\language english
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\float_placement class
\float_alignment class
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_formatted_ref 0
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\change_bars false
\postpone_fragile_content false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\docbook_table_output 0
\docbook_mathml_prefix 1
\end_header
\begin_body
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
exerc1[10]
\end_layout
\end_inset
What is the answer to Leonardo Fibonacci's original problem:
How many pairs of rabbits are present after a year?
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
After one month there are
\begin_inset Formula $F_{3}=2$
\end_inset
pairs of rabbits,
after two months there are
\begin_inset Formula $F_{4}=3$
\end_inset
,
etc.,
therefore after a year there are
\begin_inset Formula $F_{14}=377$
\end_inset
pairs of rabbits.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc2[20]
\end_layout
\end_inset
In view of Eq.
(15),
what is the approximate value of
\begin_inset Formula $F_{1000}$
\end_inset
?
(Use logarithms found in Appendix A.)
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
\begin_inset Formula
\begin{align*}
F_{1000} & \approx\frac{\phi^{1000}}{\sqrt{5}}=\frac{10^{\log\phi^{1000}}}{\sqrt{5}}=\frac{10^{1000(\ln\phi/\ln10)}}{\sqrt{5}}\cong\frac{10^{1000\cdot0.48121...\cdot0.43429...}}{2.23606...}\cong\frac{10^{208.9876..}}{2.23606...}\\
& \cong\frac{10^{0.9876}}{2.23606}\cdot10^{208}\cong4.3\cdot10^{208}.
\end{align*}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc4[14]
\end_layout
\end_inset
Find all
\begin_inset Formula $n$
\end_inset
for which
\begin_inset Formula $F_{n}=n$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
\begin_inset Formula $F_{0}=0$
\end_inset
,
\begin_inset Formula $F_{1}=1$
\end_inset
.
Then
\begin_inset Formula $F_{2}=1$
\end_inset
,
\begin_inset Formula $F_{3}=2$
\end_inset
,
\begin_inset Formula $F_{4}=3$
\end_inset
,
\begin_inset Formula $F_{5}=5$
\end_inset
,
and from here
\begin_inset Formula $F_{n}$
\end_inset
grows strictly faster than
\begin_inset Formula $n$
\end_inset
so there are no more such numbers.
Thus only 0,
1,
and 5 meet this condition.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc7[15]
\end_layout
\end_inset
If
\begin_inset Formula $n$
\end_inset
is not a prime number,
\begin_inset Formula $F_{n}$
\end_inset
is not a prime number (with one exception).
Prove this and find the exception.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
The exception is
\begin_inset Formula $F_{4}=3$
\end_inset
.
For the general rule,
let
\begin_inset Formula $r,s\in\mathbb{Z}$
\end_inset
with
\begin_inset Formula $r\geq3$
\end_inset
and
\begin_inset Formula $s\geq2$
\end_inset
,
by Eq.
(6),
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align*}
F_{rs} & =F_{r+r(s-1)}=F_{r(s-1)}F_{r+1}+F_{r(s-1)-1}F_{r}=F_{r}(F_{r(s-1)}+F_{r(s-1)-1})+F_{r-1}F_{r(s-1)}\\
& =F_{r}\left(F_{r(s-1)+1}+F_{r-1}{\textstyle \frac{F_{r(s-1)}}{F_{r}}}\right),
\end{align*}
\end_inset
where the fraction in the last part is an integer.
If
\begin_inset Formula $r>2$
\end_inset
,
then
\begin_inset Formula $F_{r}>1$
\end_inset
and,
since
\begin_inset Formula $F_{r(s-1)+1}>1$
\end_inset
,
we have a decomposition of
\begin_inset Formula $F_{rs}$
\end_inset
as a compound number.
Every compound number other than 4 can be expressed as a product of integers
\begin_inset Formula $rs$
\end_inset
with
\begin_inset Formula $r\geq3$
\end_inset
and
\begin_inset Formula $s\geq2$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc13[M22]
\end_layout
\end_inset
Express the following sequences in terms of the Fibonacci numbers,
when
\begin_inset Formula $r$
\end_inset
,
\begin_inset Formula $s$
\end_inset
,
and
\begin_inset Formula $c$
\end_inset
are given constants:
\end_layout
\begin_layout Enumerate
\begin_inset Formula $a_{0}=r$
\end_inset
,
\begin_inset Formula $a_{1}=s$
\end_inset
;
\begin_inset Formula $a_{n+2}=a_{n+1}+a_{n}$
\end_inset
,
for
\begin_inset Formula $n\geq0$
\end_inset
.
\end_layout
\begin_layout Enumerate
\begin_inset Formula $b_{0}=0$
\end_inset
,
\begin_inset Formula $b_{1}=1$
\end_inset
;
\begin_inset Formula $b_{n+2}=b_{n+1}+b_{n}+c$
\end_inset
,
for
\begin_inset Formula $n\geq0$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
We have
\begin_inset Formula
\[
\binom{a_{n+1}}{a_{n}}=\begin{pmatrix}1 & 1\\
1 & 0
\end{pmatrix}\begin{pmatrix}a_{n}\\
a_{n-1}
\end{pmatrix}=\dots=\begin{pmatrix}1 & 1\\
1 & 0
\end{pmatrix}^{n}\begin{pmatrix}s\\
r
\end{pmatrix}=\begin{pmatrix}F_{n+1}s+F_{n}r\\
F_{n}s+F_{n-1}r
\end{pmatrix},
\]
\end_inset
so in general
\begin_inset Formula $a_{n}=F_{n-1}r+F_{n}s$
\end_inset
,
using the convention that
\begin_inset Formula $F_{-1}=1$
\end_inset
.
\end_layout
\begin_layout Enumerate
We have
\begin_inset Formula
\[
\begin{pmatrix}b_{n+1}\\
b_{n}\\
1
\end{pmatrix}=\begin{pmatrix}1 & 1 & c\\
1 & 0 & 0\\
0 & 0 & 1
\end{pmatrix}\begin{pmatrix}b_{n}\\
b_{n-1}\\
1
\end{pmatrix}=\dots=\begin{pmatrix}1 & 1 & c\\
1 & 0 & 0\\
0 & 0 & 1
\end{pmatrix}^{n}\begin{pmatrix}1\\
0\\
1
\end{pmatrix}.
\]
\end_inset
By playing a bit with this matrix,
we come to the conclusion that
\begin_inset Formula
\[
\begin{pmatrix}1 & 1 & c\\
1\\
& & 1
\end{pmatrix}^{n}=\begin{pmatrix}F_{n+1} & F_{n} & (F_{n+2}-1)c\\
F_{n} & F_{n-1} & (F_{n+1}-1)c\\
& & 1
\end{pmatrix}
\]
\end_inset
and therefore
\begin_inset Formula
\[
b_{n}=F_{n}+(F_{n+1}-1)c.
\]
\end_inset
For
\begin_inset Formula $n=0$
\end_inset
and
\begin_inset Formula $n=1$
\end_inset
,
this is easy to check.
For
\begin_inset Formula $n\geq2$
\end_inset
,
\begin_inset Formula
\[
b_{n}=b_{n-1}+b_{n-2}+c=F_{n-1}+(F_{n}-1)c+F_{n-2}+(F_{n-1}-1)c+c=F_{n}+(F_{n+1}-1)c.
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc16[M20]
\end_layout
\end_inset
Fibonacci numbers appear implicitly in Pascal's triangle if it is viewed from the right angle.
Show that the following sum of binomial coefficients is a Fibonacci number:
\begin_inset Formula
\[
\sum_{k=0}^{n}\binom{n-k}{k}.
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
We prove by induction that this sum is precisely
\begin_inset Formula $F_{n+1}$
\end_inset
.
For
\begin_inset Formula $n=0$
\end_inset
and
\begin_inset Formula $n=1$
\end_inset
,
this is a simple check.
For
\begin_inset Formula $n>1$
\end_inset
,
\begin_inset Formula
\begin{align*}
\sum_{k=0}^{n}\binom{n-k}{k} & =\sum_{k=0}^{n}\binom{n-k-1}{k}+\sum_{k=0}^{n}\binom{n-k-1}{k-1}\\
& =\sum_{k=0}^{n}\binom{n-k-1}{k}+\sum_{k=-1}^{n-1}\binom{n-k-2}{k}\\
& =\sum_{k=0}^{n-1}\binom{(n-1)-k}{k}+\sum_{k=0}^{n-2}\binom{(n-2)-k}{k}=F_{n}+F_{n-1}=F_{n+1}.
\end{align*}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc22[M20]
\end_layout
\end_inset
Show that
\begin_inset Formula $\sum_{k}\binom{n}{k}F_{m+k}$
\end_inset
is a Fibonacci number.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
We prove by induction on
\begin_inset Formula $n$
\end_inset
that this sum is
\begin_inset Formula $F_{m+2n}$
\end_inset
.
For
\begin_inset Formula $n=0$
\end_inset
and
\begin_inset Formula $n=1$
\end_inset
,
this is a simple check.
For
\begin_inset Formula $n>1$
\end_inset
,
\begin_inset Formula
\begin{align*}
\sum_{k}\binom{n}{k}F_{m+k} & =\sum_{k}\binom{n-1}{k}F_{m+k}+\sum_{k}\binom{n-1}{k-1}F_{m+k}\\
& =F_{m+2(n-1)}+\sum_{k}\binom{n-1}{k}F_{m+1+k}\\
& =F_{m+2(n-1)}+F_{m+1+2(n-1)}=F_{m+2+2(n-1)}=F_{m+2n}.
\end{align*}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc26[M20]
\end_layout
\end_inset
Using the previous exercise,
show that
\begin_inset Formula $F_{p}=5^{(p-1)/2}\pmod p$
\end_inset
if
\begin_inset Formula $p$
\end_inset
is an odd prime.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
The previous exercise tells us that
\begin_inset Formula
\[
2^{n}F_{n}=2\sum_{k\text{ odd}}\binom{n}{k}5^{(k-1)/2}.
\]
\end_inset
Now,
if
\begin_inset Formula $n=p$
\end_inset
is prime,
\begin_inset Formula $\binom{p}{k}=\frac{p(p-1)\cdots(p-k+1)}{1\cdots k}$
\end_inset
is a multiple of
\begin_inset Formula $p$
\end_inset
for
\begin_inset Formula $k\in\{1,\dots,p-1\}$
\end_inset
,
and
\begin_inset Formula $k=0$
\end_inset
is not odd,
so
\begin_inset Formula
\[
2^{p-1}F_{p}=\sum_{k\text{ odd}}\binom{p}{k}5^{(k-1)/2}\equiv\binom{p}{p}5^{(p-1)/2}=5^{(p-1)/2}\pmod p,
\]
\end_inset
but by Fermat's theorem,
\begin_inset Formula $2^{p-1}\equiv1\pmod p$
\end_inset
,
so this simplifies to the desired result.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc29[M23]
\end_layout
\end_inset
(
\emph on
Fibonomial coefficients.
\emph default
) Édouard Lucas defined the quantities
\begin_inset Formula
\[
\binom{n}{k}_{{\cal F}}=\frac{F_{n}F_{n-1}\cdots F_{n-k+1}}{F_{k}F_{k-1}\cdots F_{1}}=\prod_{j=1}^{k}\left(\frac{F_{n-k+j}}{F_{j}}\right)
\]
\end_inset
in a manner analogous to binomial coefficients.
\end_layout
\begin_layout Enumerate
Make a table of
\begin_inset Formula $\binom{n}{k}_{{\cal F}}$
\end_inset
for
\begin_inset Formula $0\leq k\leq n\leq6$
\end_inset
.
\end_layout
\begin_layout Enumerate
Show that
\begin_inset Formula $\binom{n}{k}_{{\cal F}}$
\end_inset
is always an integer because we have
\begin_inset Formula
\[
\binom{n}{k}_{{\cal F}}=F_{k-1}\binom{n-1}{k}_{{\cal F}}+F_{n-k+1}\binom{n-1}{k-1}_{{\cal F}}.
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
\begin_inset Note Note
status open
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
\align center
\begin_inset Tabular
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $n$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\binom{n}{0}$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\binom{n}{1}$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\binom{n}{2}$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\binom{n}{3}$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\binom{n}{4}$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\binom{n}{5}$
\end_inset
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\binom{n}{6}$
\end_inset
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
0
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
2
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
3
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
2
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
2
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
4
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
3
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
6
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
3
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
5
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
5
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
15
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
15
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
5
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
\end_layout
\end_inset
|
|
\begin_inset Text
\begin_layout Plain Layout
6
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
8
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
40
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
60
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
40
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
8
\end_layout
\end_inset
|
\begin_inset Text
\begin_layout Plain Layout
1
\end_layout
\end_inset
|
\end_inset
\end_layout
\end_deeper
\begin_layout Enumerate
We have
\begin_inset Formula
\begin{multline*}
F_{k-1}\binom{n-1}{k}_{{\cal F}}+F_{n-k+1}\binom{n-1}{k-1}_{{\cal F}}=\\
=F_{k-1}\prod_{j=1}^{k}\frac{F_{n-k+j-1}}{F_{j}}+F_{n-k+1}\prod_{j=1}^{k-1}\frac{F_{n-k+j}}{F_{j}}=\\
=\frac{1}{F_{k}}\left(\prod_{j=1}^{k-1}\frac{F_{n-k+j}}{F_{j}}\right)(F_{k-1}F_{n-k}+F_{n-k+1}F_{k}),
\end{multline*}
\end_inset
where the last identity is better read backwards,
and by Eq.
(6),
\begin_inset Formula
\[
F_{n}=F_{(n-k)+k}=F_{k}F_{n-k+1}+F_{k-1}F_{n-k},
\]
\end_inset
so the above simplifies precisely to
\begin_inset Formula $\binom{n}{k}_{{\cal F}}$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc34[M24]
\end_layout
\end_inset
(
\emph on
The Fibonacci number system.
\emph default
) Let the notation
\begin_inset Formula $k\gg m$
\end_inset
mean that
\begin_inset Formula $k\geq m+2$
\end_inset
.
Show that every positive integer
\begin_inset Formula $n$
\end_inset
has a
\emph on
unique
\emph default
representation
\begin_inset Formula $n=F_{k_{1}}+F_{k_{2}}+\dots+F_{k_{r}}$
\end_inset
,
where
\begin_inset Formula $k_{1}\gg k_{2}\gg\cdots\gg k_{r}\gg0$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
If
\begin_inset Formula $n\leq3$
\end_inset
,
this is easy to check.
Otherwise,
let
\begin_inset Formula $k$
\end_inset
be the greatest number such that
\begin_inset Formula $n\geq F_{k}$
\end_inset
.
If
\begin_inset Formula $n=F_{k}$
\end_inset
,
we're done.
Otherwise
\begin_inset Formula $n>3$
\end_inset
and
\begin_inset Formula $k\geq4$
\end_inset
,
and
\begin_inset Formula $n-F_{k}F_{j_{1}}\geq2$
\end_inset
,
and we want to prove that
\begin_inset Formula
\[
F_{j_{2}}+\dots+F_{j_{s}}\leq F_{j_{1}-2}+\dots+F_{\lfloor j_{1}\bmod2\rfloor+2}\leq F_{j_{1}-1}\leq F_{k_{1}}-F_{j_{1}}.
\]
\end_inset
The first inequality comes from the highest value that
\begin_inset Formula $F_{j_{2}}+\dots+F_{j_{s}}$
\end_inset
could possibly have,
and the last one from the highest value that
\begin_inset Formula $F_{j_{1}}+F_{j_{1}-1}$
\end_inset
could.
For the middle one we use induction.
For
\begin_inset Formula $j_{1}\in\{2,3\}$
\end_inset
,
the left hand side is 0.
Otherwise
\begin_inset Formula
\[
F_{j_{1}-2}+F_{j_{1}-4}+\dots+F_{\lfloor j_{1}\bmod2\rfloor+2}\leq F_{j_{1}-2}+F_{j_{1}-3}=F_{j_{1}-1}.
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc41[M25]
\end_layout
\end_inset
(Yuri Matiyasevich,
1990.) Let
\begin_inset Formula $f(x)=\lfloor x+\phi^{-1}\rfloor$
\end_inset
.
Prove that if
\begin_inset Formula $n=F_{k_{1}}+\dots+F_{k_{r}}$
\end_inset
is the representation of
\begin_inset Formula $n$
\end_inset
in the Fibonacci number system of exercise 34,
then
\begin_inset Formula $F_{k_{1}+1}+\dots+F_{k_{r}+1}=f(\phi n)$
\end_inset
.
Find a similar formula for
\begin_inset Formula $F_{k_{1}-1}+\dots+F_{k_{r}-1}$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
Using that each
\begin_inset Formula $F_{k_{i}}=\frac{1}{\sqrt{5}}(\phi^{k_{i}}+\hat{\phi}^{k_{i}})$
\end_inset
,
let
\begin_inset Formula $m\coloneqq F_{k_{1}+1}+\dots+F_{k_{r}+1}$
\end_inset
,
since
\begin_inset Formula $m\in\mathbb{Z}$
\end_inset
,
\begin_inset Formula
\begin{align*}
f(\phi n)-m & =\left\lfloor \frac{1}{\sqrt{5}}\left(\sum_{i}\phi^{k_{i}+1}+\sum_{i}\hat{\phi}^{k_{i}-1}\right)-\hat{\phi}\right\rfloor -\frac{1}{\sqrt{5}}\left(\sum_{i}\phi^{k_{i}+1}-\sum_{i}\hat{\phi}^{k_{i}+1}\right)\\
& =\left\lfloor \frac{1}{\sqrt{5}}\sum_{i}(\hat{\phi}^{k_{i}-1}+\hat{\phi}^{k_{i}+1})-\hat{\phi}\right\rfloor =\left\lfloor \frac{1+\hat{\phi}^{2}}{\sqrt{5}}\sum_{i}\hat{\phi}^{k_{i}-1}-\hat{\phi}\right\rfloor .
\end{align*}
\end_inset
Here,
when
\begin_inset Formula $k_{i}$
\end_inset
is even,
\begin_inset Formula $\hat{\phi}^{k_{i}-1}$
\end_inset
is negative,
and when it's odd,
\begin_inset Formula $\hat{\phi}^{k_{i}-1}$
\end_inset
is positive,
so the value of this sum is strictly lower than
\begin_inset Formula $\sum_{k\geq1}\hat{\phi}^{2k}=\frac{\hat{\phi}^{2}}{1-\hat{\phi}^{2}}$
\end_inset
,
and strictly greater than
\begin_inset Formula $\sum_{k\geq1}\hat{\phi}^{2k-1}=\frac{\hat{\phi}}{1-\hat{\phi}^{2}}$
\end_inset
.
Now,
\begin_inset Formula $\hat{\phi}^{2}=\frac{1}{4}(1-\sqrt{5})^{2}=\frac{1}{4}(6-2\sqrt{5})=\frac{1}{2}(3-\sqrt{5})$
\end_inset
,
so
\begin_inset Formula $1-\hat{\phi}^{2}=\frac{1}{2}(2-3+\sqrt{5})=-\frac{1}{2}(1-\sqrt{5})=-\hat{\phi}$
\end_inset
and therefore the lower bound of what is inside the brackets above is
\begin_inset Formula
\[
\frac{1+\hat{\phi}^{2}}{\sqrt{5}}\frac{\hat{\phi}}{1-\hat{\phi}^{2}}-\hat{\phi}=-\frac{1+\hat{\phi}^{2}}{\sqrt{5}}-\hat{\phi}=-\frac{5-\sqrt{5}}{2\sqrt{5}}-\frac{1-\sqrt{5}}{2}=-\frac{5-\sqrt{5}+\sqrt{5}-5}{2\sqrt{5}}=0,
\]
\end_inset
and the upper bound is
\begin_inset Formula
\[
-\hat{\phi}\frac{1+\hat{\phi}^{2}}{\sqrt{5}}-\hat{\phi}=-\hat{\phi}\left(\frac{5-\sqrt{5}}{2\sqrt{5}}+1\right)=-\hat{\phi}\left(\frac{5+\sqrt{5}}{2\sqrt{5}}\right)=-\hat{\phi}\phi=1,
\]
\end_inset
and since these bounds are never reached,
the property has been proven.
A similar argument can be made to prove that
\begin_inset Formula $F_{k_{1}-1}+\dots+F_{k_{r}-1}=f(n/\phi)$
\end_inset
.
\end_layout
\end_body
\end_document