#LyX 2.4 created this file. For more info see https://www.lyx.org/ \lyxformat 620 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \begin_preamble \input defs \end_preamble \use_default_options true \maintain_unincluded_children no \language english \language_package default \inputencoding utf8 \fontencoding auto \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_roman_osf false \font_sans_osf false \font_typewriter_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \float_placement class \float_alignment class \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_formatted_ref 0 \use_minted 0 \use_lineno 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style english \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tablestyle default \tracking_changes false \output_changes false \change_bars false \postpone_fragile_content false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \docbook_table_output 0 \docbook_mathml_prefix 1 \end_header \begin_body \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc4[M20] \end_layout \end_inset Let \begin_inset Formula $G'$ \end_inset be a finite free tree in which arrows have been drawn on its edges \begin_inset Formula $e_{1},\dots,e_{n-1}$ \end_inset ; let \begin_inset Formula $E_{1},\dots,E_{n-1}$ \end_inset be numbers satisfying Kirchhoff's law (1) in \begin_inset Formula $G'$ \end_inset . Show that \begin_inset Formula $E_{1}=\dots=E_{n-1}=0$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset We prove this by induction on \begin_inset Formula $n$ \end_inset . For \begin_inset Formula $n=1$ \end_inset it is trivial. For \begin_inset Formula $n>1$ \end_inset , there always exists a node of degree 1 (in an oriented tree, this would be a leaf). Let \begin_inset Formula $e_{r}$ \end_inset be the only edge connected to that node, clearly \begin_inset Formula $E_{r}=0$ \end_inset , so removing \begin_inset Formula $e_{r}$ \end_inset leaves us with an isolated node and a free tree of degree 0 which follows Kirchhoff's law and has \begin_inset Formula $n-1$ \end_inset nodes, but then by the induction hypothesis all the other \begin_inset Formula $E_{k}$ \end_inset are also 0. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc8[M25] \end_layout \end_inset When applying Kirchhoff's first law to program flow charts, we usually are interested only in the \emph on vertex flows \emph default (the number of times each box of the flow chart is performed), not the edge flows analyzed in the text. For example, in the graph of exercise 7, the vertex flows are \begin_inset Formula $A=E_{2}+E_{4}$ \end_inset , \begin_inset Formula $B=E_{5}$ \end_inset , \begin_inset Formula $C=E_{3}+E_{7}+E_{8}$ \end_inset , \begin_inset Formula $D=E_{6}+E_{9}$ \end_inset . \end_layout \begin_layout Standard If we group some vertices together, treating them as one \begin_inset Quotes eld \end_inset supervertex, \begin_inset Quotes erd \end_inset we can combine edge flows that correspond to the same vertex flow. For example, edges \begin_inset Formula $e_{2}$ \end_inset and \begin_inset Formula $e_{4}$ \end_inset can be combined in the flow chart above if we also put \begin_inset Formula $B$ \end_inset with \begin_inset Formula $D$ \end_inset : \begin_inset ERT status open \begin_layout Plain Layout \backslash begin{center} \end_layout \begin_layout Plain Layout \backslash begin{tikzpicture}[node distance=2cm] \end_layout \begin_layout Plain Layout \backslash node[circle,draw](Start){Start}; \end_layout \begin_layout Plain Layout \backslash node[rectangle,draw,right of=Start](A){$A$}; \end_layout \begin_layout Plain Layout \backslash node[rectangle,draw,right of=A](BD){$B,D$}; \end_layout \begin_layout Plain Layout \backslash node[rectangle,draw,right of=BD](C){$C$}; \end_layout \begin_layout Plain Layout \backslash node[circle,draw,right of=C](Stop){Stop}; \end_layout \begin_layout Plain Layout \backslash draw[->] (Start) -- node[above]{$e_1$} (A); \end_layout \begin_layout Plain Layout \backslash draw[->] (A) -- node[below]{$e_2+e_4$} (BD); \end_layout \begin_layout Plain Layout \backslash draw[->,transform canvas={yshift=2pt}] (BD)--node[above]{$e_5$}(C); \end_layout \begin_layout Plain Layout \backslash draw[->,transform canvas={yshift=-2pt}] (C)--node[below]{$e_7$}(BD); \end_layout \begin_layout Plain Layout \backslash draw[->] (C) -- node[above]{$e_8$} (Stop); \end_layout \begin_layout Plain Layout \backslash draw[->] (BD) to[bend right] node[below]{$e_9$} (Stop); \end_layout \begin_layout Plain Layout \backslash draw[->] (BD) to[loop below] node[left]{$e_6$} (BD); \end_layout \begin_layout Plain Layout \backslash draw[->] (C) to[bend right] node[above]{$e_3$} (A); \end_layout \begin_layout Plain Layout \backslash draw[->] (Stop) to[bend right] node[above]{$e_0$} (Start); \end_layout \begin_layout Plain Layout \backslash end{tikzpicture} \end_layout \begin_layout Plain Layout \backslash end{center} \end_layout \end_inset (Here \begin_inset Formula $e_{0}$ \end_inset has also been added from Stop to Start, as in the text.) Continuing this procedure, we can combine \begin_inset Formula $e_{3}+e_{7}$ \end_inset , then \begin_inset Formula $(e_{3}+e_{7})+e_{8}$ \end_inset , then \begin_inset Formula $e_{6}+e_{9}$ \end_inset , until we obtain the \emph on reduced flow chart \emph default having edges \begin_inset Formula $s=e_{1}$ \end_inset , \begin_inset Formula $a=e_{2}+e_{4}$ \end_inset , \begin_inset Formula $b=e_{5}$ \end_inset , \begin_inset Formula $c=e_{3}+e_{7}+e_{8}$ \end_inset , \begin_inset Formula $d=e_{6}+e_{9}$ \end_inset , \begin_inset Formula $t=e_{0}$ \end_inset , precisely one edge for each vertex in the original flow chart: \begin_inset Formula $\text{}$ \end_inset \begin_inset ERT status open \begin_layout Plain Layout \backslash begin{center} \end_layout \begin_layout Plain Layout \backslash begin{tikzpicture}[node distance=3cm] \end_layout \begin_layout Plain Layout \backslash node[circle,draw](S){Start}; \end_layout \begin_layout Plain Layout \backslash node[rectangle,draw,right of=S](M){$A,B,D, \backslash text{Stop}$}; \end_layout \begin_layout Plain Layout \backslash node[rectangle,draw,right of=M](C){$C$}; \end_layout \begin_layout Plain Layout \backslash draw[->,transform canvas={yshift=2pt}] (S) -- node[above]{$s$} (M); \end_layout \begin_layout Plain Layout \backslash draw[->,transform canvas={yshift=-2pt}] (M) -- node[below]{$t$} (S); \end_layout \begin_layout Plain Layout \backslash draw[->,transform canvas={yshift=2pt}] (M) -- node[above]{$b$} (C); \end_layout \begin_layout Plain Layout \backslash draw[->,transform canvas={yshift=-2pt}] (C) -- node[below]{$c$} (M); \end_layout \begin_layout Plain Layout \backslash draw[->] (M) to[out=120,in=60,looseness=4] node[left]{$a$ \backslash \backslash } (M); \end_layout \begin_layout Plain Layout \backslash draw[->] (M) to[out=300,in=240,looseness=4] node[right]{ \backslash $d$} (M); \end_layout \begin_layout Plain Layout \backslash end{tikzpicture} \end_layout \begin_layout Plain Layout \backslash end{center} \end_layout \end_inset \end_layout \begin_layout Standard By construction, Kirchhoff's law holds in this reduced flow chart. The new edge flows are the vertex flows of the original; hence the analysis in the text, applied to the reduced flow chart, shows how the original vertex flows depend on each other. \end_layout \begin_layout Standard Prove that this reduction process can be reversed, in the sense that any set of flows \begin_inset Formula $\{a,b,\dots\}$ \end_inset satisfying Kirchhoff's law in the reduced flow chart can be \begin_inset Quotes eld \end_inset split up \begin_inset Quotes erd \end_inset into a set of edge flows \begin_inset Formula $\{e_{0},e_{1},\dots\}$ \end_inset in the original flow chart. These flows \begin_inset Formula $e_{j}$ \end_inset satisfy Kirchhoff's law and combine to yield the given flows \begin_inset Formula $\{a,b,\dots\}$ \end_inset ; some of them might, however, be negative. (Although the reduction procedure has been illustrated for only one particular flow chart, your proof should be valid in general.) \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset \begin_inset Note Greyedout status open \begin_layout Plain Layout (I had to look up the solution, this one is difficult.) \end_layout \end_inset We only have to show that there exists an assignment in the original flowchart that produces any given set of flows in the reduced flowchart. \end_layout \begin_layout Standard Since we get from one to the other by reductions, we only have to prove that we can reverse reductions. In these reductions, there are two arrows \begin_inset Formula $e_{1}$ \end_inset from vertex or supervertex \begin_inset Formula $a$ \end_inset to \begin_inset Formula $b$ \end_inset and \begin_inset Formula $e_{2}$ \end_inset from \begin_inset Formula $a$ \end_inset to \begin_inset Formula $c$ \end_inset , to get an edge \begin_inset Formula $f=e_{1}+e_{2}$ \end_inset from \begin_inset Formula $a$ \end_inset to \begin_inset Formula $b,c$ \end_inset , and reverting means recovering \begin_inset Formula $e_{1}$ \end_inset and \begin_inset Formula $e_{2}$ \end_inset from \begin_inset Formula $f$ \end_inset and the other edges. \end_layout \begin_layout Standard If \begin_inset Formula $b=c$ \end_inset , we can just make up \begin_inset Formula $e_{1}$ \end_inset and set \begin_inset Formula $e_{2}$ \end_inset to \begin_inset Formula $f-e_{1}$ \end_inset . If \begin_inset Formula $a=b\neq c$ \end_inset , then \begin_inset Formula $e_{2}$ \end_inset must be such that Kirchhoff's law is preserved for \begin_inset Formula $c$ \end_inset , and we can just set \begin_inset Formula $e_{1}=f-e_{2}$ \end_inset . The situation \begin_inset Formula $a=c\neq b$ \end_inset is symmetrical. Finally, if the three nodes are distinct, setting \begin_inset Formula $e_{1}$ \end_inset and \begin_inset Formula $e_{2}$ \end_inset such that they follow Kirchhoff's law for \begin_inset Formula $b$ \end_inset and \begin_inset Formula $c$ \end_inset makes \begin_inset Formula $e_{1}+e_{2}$ \end_inset follow Kirchhoff's law in \begin_inset Formula $b,c$ \end_inset in the reduced flowchart. \end_layout \end_body \end_document