#LyX 2.4 created this file. For more info see https://www.lyx.org/ \lyxformat 620 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \begin_preamble \input defs \end_preamble \use_default_options true \maintain_unincluded_children no \language english \language_package default \inputencoding utf8 \fontencoding auto \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_roman_osf false \font_sans_osf false \font_typewriter_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \float_placement class \float_alignment class \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_formatted_ref 0 \use_minted 0 \use_lineno 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style english \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tablestyle default \tracking_changes false \output_changes false \change_bars false \postpone_fragile_content false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \docbook_table_output 0 \docbook_mathml_prefix 1 \end_header \begin_body \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc5[M25] \end_layout \end_inset (A. Cayley.) Let \begin_inset Formula $c_{n}$ \end_inset be the number of (unlabeled) oriented trees having \begin_inset Formula $n$ \end_inset leaves (namely, vertices with in-degree zero) and having at least two subtrees at every other vertex. Thus \begin_inset Formula $c_{3}=2$ \end_inset , by virtue of the two trees \begin_inset ERT status open \begin_layout Plain Layout \backslash begin{center} \end_layout \begin_layout Plain Layout \backslash def \backslash dot#1{node(#1){ \backslash textbullet}} \end_layout \begin_layout Plain Layout \backslash begin{tikzpicture} \end_layout \begin_layout Plain Layout \backslash draw (0,1) \backslash dot R (-.5,0) \backslash dot A (0,0) \backslash dot B (.5,0) \backslash dot C \end_layout \begin_layout Plain Layout (0,-1) node{}; \end_layout \begin_layout Plain Layout \backslash draw[->] (A) -> (R); \end_layout \begin_layout Plain Layout \backslash draw[->] (B) -> (R); \end_layout \begin_layout Plain Layout \backslash draw[->] (C) -> (R); \end_layout \begin_layout Plain Layout \backslash end{tikzpicture} \end_layout \begin_layout Plain Layout \backslash hfil \end_layout \begin_layout Plain Layout \backslash begin{tikzpicture} \end_layout \begin_layout Plain Layout \backslash draw (0,1) \backslash dot R (-.5,0) \backslash dot A (.5,0) \backslash dot B \end_layout \begin_layout Plain Layout (-1,-1) \backslash dot C (0,-1) \backslash dot D; \end_layout \begin_layout Plain Layout \backslash draw[->] (C) -> (A); \end_layout \begin_layout Plain Layout \backslash draw[->] (D) -> (A); \end_layout \begin_layout Plain Layout \backslash draw[->] (B) -> (R); \end_layout \begin_layout Plain Layout \backslash draw[->] (A) -> (R); \end_layout \begin_layout Plain Layout \backslash end{tikzpicture} \end_layout \begin_layout Plain Layout \backslash end{center} \end_layout \end_inset Find a formula analogous to (3) for the generating function \begin_inset Formula \[ C(z)=\sum_{n}c_{n}z^{n}. \] \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset Every tree has at least one leaf, so \begin_inset Formula $c_{0}=0$ \end_inset . This includes subtrees, so \begin_inset Formula $c_{1}=1$ \end_inset as, if the root weren't also a leaf, it would have at least two children and therefore two trees. For \begin_inset Formula $n>1$ \end_inset , the root has a tree and various subtrees. Let \begin_inset Formula $j_{k}$ \end_inset be the number of subtrees with \begin_inset Formula $k$ \end_inset leaves, \begin_inset Formula $1\leq k