#LyX 2.4 created this file. For more info see https://www.lyx.org/ \lyxformat 620 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \begin_preamble \input defs \end_preamble \use_default_options true \maintain_unincluded_children no \language english \language_package default \inputencoding utf8 \fontencoding auto \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_roman_osf false \font_sans_osf false \font_typewriter_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \float_placement class \float_alignment class \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_formatted_ref 0 \use_minted 0 \use_lineno 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style english \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tablestyle default \tracking_changes false \output_changes false \change_bars false \postpone_fragile_content false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \docbook_table_output 0 \docbook_mathml_prefix 1 \end_header \begin_body \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash exerc1[10] \end_layout \end_inset What is the length of the period of the linear congruential sequence with \begin_inset Formula $X_{0}=5772156648$ \end_inset , \begin_inset Formula $a=3141592621$ \end_inset , \begin_inset Formula $c=2718281829$ \end_inset , and \begin_inset Formula $m=10000000000$ \end_inset ? \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset Obviously \begin_inset Formula $c$ \end_inset is relatively prime to \begin_inset Formula $m$ \end_inset . Furthermore, the prime divisors of \begin_inset Formula $m$ \end_inset are 2 and 5 and \begin_inset Formula $a-1$ \end_inset is a multiple of both 4 and 5. Therefore the length is \begin_inset Formula $m$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash exerc2[10] \end_layout \end_inset Are the following two conditions sufficient to guarantee the maximum length period, when \begin_inset Formula $m$ \end_inset is a power of 2? \end_layout \begin_layout Enumerate \begin_inset Formula $c$ \end_inset is odd; \end_layout \begin_layout Enumerate \begin_inset Formula $a\bmod4=1$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset Yes, by theorem A. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc6[20] \end_layout \end_inset Find all multipliers \begin_inset Formula $a$ \end_inset that satisfy the conditions of Theorem A when \begin_inset Formula $m=10^{6}-1$ \end_inset . (See Table 3.2.1.1–1.) \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset By the table, \begin_inset Formula $m=3^{3}\cdot7\cdot11\cdot13\cdot37$ \end_inset . Multipliers are numbers \begin_inset Formula $a$ \end_inset such that \begin_inset Formula \[ a\bmod3=a\bmod7=a\bmod11=a\bmod13=a\bmod37=1. \] \end_inset These identities tell us that \begin_inset Formula $a\equiv1\pmod{3\cdot7\cdot11\cdot13\cdot37=m/3^{2}=111111}$ \end_inset , so the possible values are \begin_inset Formula $1,111112,222223,333334,444445,555556,666667,777778,888889$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc7[M23] \end_layout \end_inset The period of a congruential sequence need not start with \begin_inset Formula $X_{0}$ \end_inset , but we can always find indices \begin_inset Formula $\mu\geq0$ \end_inset and \begin_inset Formula $\lambda>0$ \end_inset such that \begin_inset Formula $X_{n+\lambda}=X_{n}$ \end_inset whenever \begin_inset Formula $n\geq\mu$ \end_inset , and for which \begin_inset Formula $\mu$ \end_inset and \begin_inset Formula $\lambda$ \end_inset are the smallest possible values with this property. (See exercises 3.1–6 and 3.2.1–1.) If \begin_inset Formula $\mu_{j}$ \end_inset and \begin_inset Formula $\lambda_{j}$ \end_inset are the indices corresponding to the sequences \begin_inset Formula \[ (X_{0}\bmod p_{j}^{e_{j}},a\bmod p_{j}^{e_{j}},c\bmod p_{j}^{e_{j}},p_{j}^{e_{j}}), \] \end_inset and if \begin_inset Formula $\mu$ \end_inset and \begin_inset Formula $\lambda$ \end_inset correspond to the composite sequence \begin_inset Formula $(X_{0},a,c,p_{1}^{e_{1}}\cdots p_{t}^{e_{t}})$ \end_inset , Lemma Q states that \begin_inset Formula $\lambda$ \end_inset is the least common multiple of \begin_inset Formula $\lambda_{1},\dots,\lambda_{t}$ \end_inset . What is the value of \begin_inset Formula $\mu$ \end_inset in terms of the values of \begin_inset Formula $\mu_{1},\dots,\mu_{t}$ \end_inset ? What is the maximum possible value of \begin_inset Formula $\mu$ \end_inset obtainable by varying \begin_inset Formula $X_{0}$ \end_inset , \begin_inset Formula $a$ \end_inset , and \begin_inset Formula $c$ \end_inset , when \begin_inset Formula $m=p_{1}^{e_{1}}\cdots p_{t}^{e_{t}}$ \end_inset is fixed? \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset Since the \begin_inset Formula $j$ \end_inset th sequence has values \begin_inset Formula $X_{n}\bmod p_{j}^{e_{j}}$ \end_inset , and the \begin_inset Formula $X_{n}$ \end_inset are uniquely determined by such values for all \begin_inset Formula $j$ \end_inset , \begin_inset Formula $(X_{n})_{n}$ \end_inset enters into a loop whenever all the \begin_inset Formula $X_{n}\bmod p_{j}^{e_{j}}$ \end_inset have entered into a loop, that is, \begin_inset Formula $\mu=\max_{j}\mu_{j}$ \end_inset . We are left to see what is the maximum \begin_inset Formula $\mu$ \end_inset when \begin_inset Formula $m=p^{e}$ \end_inset for some prime number \begin_inset Formula $p$ \end_inset and positive integer \begin_inset Formula $e$ \end_inset (for \begin_inset Formula $m=1$ \end_inset , \begin_inset Formula $\mu=0$ \end_inset ). In this case, \begin_inset Formula $\mu$ \end_inset is the lowest number such that \begin_inset Formula \[ X_{\mu}=X_{\mu+\lambda}\equiv X_{\mu}a^{\lambda}+\frac{a^{\lambda}-1}{a-1}c\pmod{p^{e}}, \] \end_inset if and only if \begin_inset Formula $X_{\mu}(1-a^{\lambda})\equiv\frac{a^{\lambda}-1}{a-1}c\pmod{p^{e}}$ \end_inset , so for \begin_inset Formula $\mu>0$ \end_inset , \begin_inset Formula $\mu-1$ \end_inset must be a number such that \begin_inset Formula \begin{align*} X_{\mu-1}(1-a^{\lambda}) & \not\equiv\frac{a^{\lambda}-1}{a-1}c, & aX_{\mu-1}(1-a^{\lambda}) & \equiv a\frac{a^{\lambda}-1}{a-1}c & & \pmod{p^{e}}, \end{align*} \end_inset where the first equation comes from changing \begin_inset Formula $\mu$ \end_inset to \begin_inset Formula $\mu-1$ \end_inset above and the second one from changing \begin_inset Formula $X_{\mu}$ \end_inset to \begin_inset Formula $aX_{\mu-1}+c$ \end_inset and rearranging terms. This means that \begin_inset Formula $a$ \end_inset must be a multiple of \begin_inset Formula $p$ \end_inset . Then, \begin_inset Formula \begin{align*} X_{e} & \equiv X_{0}a^{e}+\frac{a^{e}-1}{a-1}c\equiv(a^{e-1}+a^{e-2}+\dots+a+1)c, & \pmod{p^{e}},\\ X_{e+\lambda} & \equiv X_{0}a^{e+\lambda}+\frac{a^{e+\lambda}-1}{a-1}c\equiv(a^{e-1}+a^{e-2}+\dots+a+1)c, & \pmod{p^{e}}, \end{align*} \end_inset since \begin_inset Formula $a^{e}\equiv0$ \end_inset , so \begin_inset Formula $\mu\leq e$ \end_inset . The value \begin_inset Formula $\mu=e$ \end_inset is reached when \begin_inset Formula $(X_{0},a,c)=(1,p,0)$ \end_inset . Summing up, the maximum for \begin_inset Formula $m=p_{1}^{e_{1}}\cdots p_{t}^{e_{t}}$ \end_inset is \begin_inset Formula $\max\{e_{1},\dots,e_{t}\}$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc9[M22] \end_layout \end_inset (W. E. Thompson.) When \begin_inset Formula $c=0$ \end_inset and \begin_inset Formula $m=2^{e}\geq16$ \end_inset , Theorems B and C say that the period has length \begin_inset Formula $2^{e-2}$ \end_inset if and only if the multiplier \begin_inset Formula $a$ \end_inset satisfies \begin_inset Formula $a\bmod8=3$ \end_inset or \begin_inset Formula $a\bmod8=5$ \end_inset . Show that every such sequence is essentially a linear congruential sequence with \begin_inset Formula $m=2^{e-2}$ \end_inset , having \emph on full \emph default period, in the following sense: \end_layout \begin_layout Enumerate If \begin_inset Formula $X_{n+1}=(4c+1)X_{n}\bmod2^{e}$ \end_inset , and \begin_inset Formula $X_{n}=4Y_{n}+1$ \end_inset , then \begin_inset Formula \[ Y_{n+1}=((4c+1)Y_{n}+c)\bmod2^{e-2}. \] \end_inset \end_layout \begin_layout Enumerate If \begin_inset Formula $X_{n+1}=(4c-1)X_{n}\bmod2^{e}$ \end_inset , and \begin_inset Formula $X_{n}=((-1)^{n}(4Y_{n}+1))\bmod2^{e}$ \end_inset , then \begin_inset Formula \[ Y_{n+1}=((1-4c)Y_{n}-c)\bmod2^{e-2}. \] \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset We start with \begin_inset Formula $(Y_{n})_{n}$ \end_inset as defined and see that \begin_inset Formula $(X_{n})_{n}$ \end_inset calculated from there matches the initial definition of \begin_inset Formula $(X_{n})_{n}$ \end_inset . \end_layout \begin_layout Enumerate We have \begin_inset Formula $Y_{n}=\left((4c+1)^{n}Y_{0}+\frac{(4c+1)^{n}-1}{4\cancel{c}}\cancel{c}\right)\bmod2^{e-2}$ \end_inset , so \begin_inset Formula \[ 4Y_{n}+1\equiv(4Y_{0}+1)(4c+1)^{n}\equiv(4c+1)^{n}X_{0}\equiv X_{n}\pmod{2^{e}}. \] \end_inset \end_layout \begin_layout Enumerate We have \begin_inset Formula $Y_{n}=\left((1-4c)^{n}Y_{0}-\frac{(1-4c)^{n}-1}{-4c}c\right)\bmod2^{e-2}$ \end_inset , so \begin_inset Formula \begin{multline*} (-1)^{n}(4Y_{n}+1)\equiv(-1)^{n}\left(4(1-4c)^{n}Y_{0}+(1-4c)^{n}\right)=(4Y_{0}+1)(4c-1)^{n}=\\ =(4c-1)^{n}X_{0}\equiv X_{n+1}\pmod{2^{e}}. \end{multline*} \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc16[M24] \end_layout \end_inset \emph on (Existence of primitive roots.) \emph default Let \begin_inset Formula $p$ \end_inset be a prime number. \end_layout \begin_layout Enumerate Consider the polynomial \begin_inset Formula $f(x)=x^{n}+c_{1}x^{n-1}+\dots+c_{n}$ \end_inset , where the \begin_inset Formula $c$ \end_inset 's are integers. Given that \begin_inset Formula $a$ \end_inset is an integer for which \begin_inset Formula $f(a)\equiv0\pmod p$ \end_inset , show that there exists a polynomial \begin_inset Formula \[ q(x)=x^{n-1}+q_{1}x^{n-2}+\dots+q_{n-1} \] \end_inset with integer coefficients such that \begin_inset Formula $f(x)\equiv(x-a)q(x)\pmod p$ \end_inset for all integers \begin_inset Formula $x$ \end_inset . \end_layout \begin_layout Enumerate Let \begin_inset Formula $f(x)$ \end_inset be a polynomial as in (1). Show that \begin_inset Formula $f(x)$ \end_inset has at most \begin_inset Formula $n$ \end_inset distinct \begin_inset Quotes eld \end_inset roots \begin_inset Quotes erd \end_inset modulo \begin_inset Formula $p$ \end_inset ; that is, there are at most \begin_inset Formula $n$ \end_inset integers \begin_inset Formula $a$ \end_inset , with \begin_inset Formula $0\leq a
0$ \end_inset , let \begin_inset Formula $g(x)\coloneqq f(x)-c_{0}(x-a)x^{n-1}$ \end_inset is a polynomial of degree \begin_inset Formula $n-1$ \end_inset such that \begin_inset Formula $g(a)=f(a)=0$ \end_inset , so by induction there exists \begin_inset Formula $r\in\mathbb{Z}_{p}(x)$ \end_inset with \begin_inset Formula $g(x)=(x-a)r(x)$ \end_inset . But then \begin_inset Formula $f(x)=g(x)+c_{0}(x-a)x^{n-1}=(x-a)(r(x)+c_{0}x^{n-1})$ \end_inset . Note that this proof is valid even when changing \begin_inset Formula $\mathbb{Z}_{p}$ \end_inset to any other domain. \end_layout \begin_layout Enumerate If \begin_inset Formula $a$ \end_inset and \begin_inset Formula $b$ \end_inset are different roots of \begin_inset Formula $f$ \end_inset , then \begin_inset Formula $f(x)=(x-a)q(x)$ \end_inset for some \begin_inset Formula $q\in\mathbb{Z}_{p}[X]$ \end_inset , and \begin_inset Formula $b$ \end_inset is still a root of \begin_inset Formula $q$ \end_inset as, if it wasn't, it wouldn't be a root of \begin_inset Formula $f$ \end_inset either. Therefore, by induction, a polynomial \begin_inset Formula $f\in\mathbb{Z}_{p}[X]\setminus0$ \end_inset with \begin_inset Formula $n$ \end_inset different roots has at least degree \begin_inset Formula $n$ \end_inset . \end_layout \begin_layout Enumerate Yes. Trivial. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc20[M24] \end_layout \end_inset (G. Marsaglia.) The purpose of this exercise is to study the period length of an \emph on arbitrary \emph default linear congruential sequence. Let \begin_inset Formula $Y_{n}=1+a+\dots+a^{n-1}$ \end_inset , so that \begin_inset Formula $X_{n}=(AY_{n}+X_{0})\bmod m$ \end_inset for some constant \begin_inset Formula $A$ \end_inset by Eq. 3.2.1–(8). \end_layout \begin_layout Enumerate Prove that the period length of \begin_inset Formula $\langle X_{n}\rangle$ \end_inset is the period length of \begin_inset Formula $\langle Y_{n}\bmod m'\rangle$ \end_inset , where \begin_inset Formula $m'=m/\gcd(A,m)$ \end_inset . \end_layout \begin_layout Enumerate Prove that the period length of \begin_inset Formula $\langle Y_{n}\bmod p^{e}\rangle$ \end_inset satisfies the following when \begin_inset Formula $p$ \end_inset is prime: \end_layout \begin_deeper \begin_layout Enumerate If \begin_inset Formula $a\bmod p=0$ \end_inset , it is 1. \end_layout \begin_layout Enumerate If \begin_inset Formula $a\bmod p=1$ \end_inset , it is \begin_inset Formula $p^{e}$ \end_inset , except when \begin_inset Formula $p=2$ \end_inset and \begin_inset Formula $e\geq2$ \end_inset and \begin_inset Formula $a\bmod4=3$ \end_inset . \end_layout \begin_layout Enumerate If \begin_inset Formula $p=2$ \end_inset , \begin_inset Formula $e\geq2$ \end_inset , and \begin_inset Formula $a\bmod4=3$ \end_inset , it is twice the order of \begin_inset Formula $a$ \end_inset modulo \begin_inset Formula $p^{e}$ \end_inset (see exercise 11), unless \begin_inset Formula $a\equiv-1\pmod{2^{e}}$ \end_inset when it is 2. \end_layout \begin_layout Enumerate If \begin_inset Formula $a\bmod p>1$ \end_inset , it is the order of \begin_inset Formula $a$ \end_inset modulo \begin_inset Formula $p^{e}$ \end_inset . \end_layout \end_deeper \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset \end_layout \begin_layout Enumerate \begin_inset Formula \[ X_{n}=X_{n+m}\iff AY_{n}\equiv AY_{n+m}\pmod m\iff Y_{n}\equiv Y_{n+m}\pmod{m'}. \] \end_inset Note that \begin_inset Formula $\langle Y_{n}\bmod t\rangle$ \end_inset , \begin_inset Formula $t\in\mathbb{Z}^{+}$ \end_inset , is the linear congruential sequence with \begin_inset Formula $Y_{0}=0$ \end_inset , \begin_inset Formula $c=1$ \end_inset , \begin_inset Formula $a=a$ \end_inset , and \begin_inset Formula $m=t$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Note Note status open \begin_layout Plain Layout \end_layout \end_inset \end_layout \begin_deeper \begin_layout Enumerate For \begin_inset Formula $n\geq e-1$ \end_inset , \begin_inset Formula $Y_{n}=(1+a+a^{2}+\dots+a^{e-1})\bmod p$ \end_inset . \end_layout \begin_layout Enumerate Then we're in the conditions of Theorem A. \end_layout \begin_layout Enumerate If \begin_inset Formula $e=2$ \end_inset , then \begin_inset Formula $a\equiv-1\pmod 4$ \end_inset and this part doesn't apply, so we assume \begin_inset Formula $e>2$ \end_inset . Let \begin_inset Formula $\lambda$ \end_inset be the order of \begin_inset Formula $a$ \end_inset modulo \begin_inset Formula $2^{e}$ \end_inset , obviously \begin_inset Formula $\lambda>1$ \end_inset , so \begin_inset Formula \begin{multline*} Y_{k}=1+a+\dots+a^{k-1}=\frac{a^{k}-1}{a-1}\equiv Y_{0}=0\pmod{2^{e}}\iff\\ \iff a^{k}-1\equiv0\pmod{2^{e}(a-1)}\iff2^{e}(a-1)\mid a^{k}-1. \end{multline*} \end_inset The order \begin_inset Formula $\lambda$ \end_inset of \begin_inset Formula $a$ \end_inset modulo \begin_inset Formula $2^{e}$ \end_inset is the smallest number such that \begin_inset Formula $2^{e}\mid a^{k}-1$ \end_inset , and in fact \begin_inset Formula \[ 2^{e}\mid a^{k}-1\iff a^{k}\equiv1\pmod{2^{e}}\iff\lambda\mid k. \] \end_inset Exercise 11 gives us an unique \begin_inset Formula $f>1$ \end_inset such that \begin_inset Formula $a\bmod2^{f+1}=2^{f}\pm1$ \end_inset , and then says that \begin_inset Formula $\lambda=2^{e-f}$ \end_inset . This can be used to prove that \begin_inset Formula $a^{\lambda}-1$ \end_inset is not a multiple of \begin_inset Formula $2^{e}(a-1)$ \end_inset , as if this were the case, then \begin_inset Formula $a^{\lambda-1}$ \end_inset would be a multiple of \begin_inset Formula $2^{e+1}$ \end_inset because \begin_inset Formula $a-1$ \end_inset is even, but by Exercise 11 the order of \begin_inset Formula $a$ \end_inset modulo \begin_inset Formula $e+1$ \end_inset is \begin_inset Formula $2^{e+1-f}>\lambda\#$ \end_inset . However, since \begin_inset Formula $a^{\lambda}-1$ \end_inset is a multiple of both \begin_inset Formula $2^{e}$ \end_inset and \begin_inset Formula $a^{\lambda}-1$ \end_inset , it is a multiple of \begin_inset Formula $\text{lcm}\{2^{e},a^{\lambda}-1\}=\frac{2^{e}(a^{\lambda}-1)}{2}$ \end_inset and therefore \begin_inset Formula $a^{2\lambda}-1=(a^{\lambda}-1)(a^{\lambda}+1)=(a^{\lambda}-1)^{2}+2(a^{\lambda}-1)$ \end_inset is a multiple of \begin_inset Formula $2^{e}(a^{\lambda}-1)$ \end_inset . \end_layout \begin_layout Enumerate Like before, \begin_inset Formula $Y_{k}\equiv0\pmod{2^{e}}\iff p^{e}(a-1)\mid a^{k}-1$ \end_inset . This time, however, \begin_inset Formula $\gcd\{a-1,p^{e}\}=1$ \end_inset , so \begin_inset Formula $p^{e}(a-1)\mid a^{k}-1\iff p^{e},a-1\mid a^{k}-1\iff p^{e}\mid a^{k}-1$ \end_inset , and the lowest \begin_inset Formula $k$ \end_inset for which this happens is precisely the order of \begin_inset Formula $a$ \end_inset modulo \begin_inset Formula $p^{e}$ \end_inset . \end_layout \end_deeper \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc22[M25] \end_layout \end_inset Discuss the problem of finding moduli \begin_inset Formula $m=b^{k}\pm b^{l}\pm1$ \end_inset so that the subtract-with-borrow and add-with-carry generators of exercise 3.2.1.1–14 will have very long periods. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset First we would need the prime factorization of \begin_inset Formula $m$ \end_inset , which is not easily characterized from \begin_inset Formula $b$ \end_inset , \begin_inset Formula $k$ \end_inset , and \begin_inset Formula $l$ \end_inset . Once we have that we may apply Theorems A–C. The solution in the book suggests looking for \begin_inset Formula $m$ \end_inset to be prime. \end_layout \end_body \end_document