#LyX 2.4 created this file. For more info see https://www.lyx.org/ \lyxformat 620 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \begin_preamble \input defs \end_preamble \use_default_options true \maintain_unincluded_children no \language english \language_package default \inputencoding utf8 \fontencoding auto \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_roman_osf false \font_sans_osf false \font_typewriter_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \float_placement class \float_alignment class \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_formatted_ref 0 \use_minted 0 \use_lineno 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style english \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tablestyle default \tracking_changes false \output_changes false \change_bars false \postpone_fragile_content false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \docbook_table_output 0 \docbook_mathml_prefix 1 \end_header \begin_body \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash exerc1[10] \end_layout \end_inset Why should the serial test described in part B be applied to \begin_inset Formula \[ (Y_{0},Y_{1}),(Y_{2},Y_{3}),\dots,(Y_{2n-2},Y_{2n-1}) \] \end_inset instead of to \begin_inset Formula $(Y_{0},Y_{1}),(Y_{1},Y_{2}),\dots,(Y_{n-1},Y_{n})$ \end_inset ? \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset Otherwise the points wouldn't be independent. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash exerc2[10] \end_layout \end_inset State an appropriate way to generalize the serial test to triples, quadruples, etc., instead of pairs. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset For \begin_inset Formula $k$ \end_inset -tuples, use points \begin_inset Formula $(Y_{0},\dots,Y_{k-1}),(Y_{k},\dots,Y_{2k-1}),\dots,(Y_{k(n-1)},\dots,Y_{kn-1})$ \end_inset . The chi-square method is applied to the \begin_inset Formula $d^{k}$ \end_inset possible categories and at least \begin_inset Formula $5d^{k}$ \end_inset values of \begin_inset Formula $U$ \end_inset should be taken. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc3[M20] \end_layout \end_inset How many \begin_inset Formula $U$ \end_inset 's need to be examined in the gap test (Algorithm G) before \begin_inset Formula $n$ \end_inset gaps have been found, on average, assuming that the sequence is random? What is the standard deviation of this quantity? \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset The probability of a given value being the end of a gap is \begin_inset Formula $p\coloneqq\frac{1}{\beta-\alpha}$ \end_inset , so the gap lengths have approximately exponential distribution and therefore we should take about \begin_inset Formula $np=\frac{n}{\beta-\alpha}$ \end_inset \begin_inset Formula $U$ \end_inset 's. More precisely, let \begin_inset Formula $q\coloneqq1-p$ \end_inset , the probability of a gap with length \begin_inset Formula $k$ \end_inset is \begin_inset Formula $q^{k-1}p$ \end_inset , so the average is \begin_inset Formula \[ \sum_{k=1}^{\infty}q^{k-1}pk=p\sum_{k=1}^{\infty}kq^{k-1}=p\sum_{j=1}^{\infty}\sum_{k=j}^{\infty}q^{k-1}=p\sum_{j=1}^{\infty}\frac{q^{j-1}}{1-q}=\sum_{j=0}^{\infty}q^{j}=\frac{1}{1-q}=\frac{1}{p}, \] \end_inset so the approximation above is actually the exact value of the mean gap length and the average is exactly \begin_inset Formula $\frac{n}{\beta-\alpha}$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash exerc7[08] \end_layout \end_inset Apply the coupon collector's test procedure (Algorithm C), with \begin_inset Formula $d=3$ \end_inset and \begin_inset Formula $n=7$ \end_inset , to the sequence 1101221022120202001212201010201121. What length do the seven subsequences have? \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset \begin_inset Formula $5,3,5,6,5,5,4$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc8[M22] \end_layout \end_inset How many \begin_inset Formula $U$ \end_inset 's need to be examined in the coupon collector's test, on the average, before \begin_inset Formula $n$ \end_inset complete sets have been found by Algorithm C, assuming that the sequence is random? What is the standard deviation? \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset Given that \begin_inset Formula $\stirlb rd=0$ \end_inset for \begin_inset Formula $r