#LyX 2.4 created this file. For more info see https://www.lyx.org/ \lyxformat 620 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \begin_preamble \input defs \end_preamble \use_default_options true \maintain_unincluded_children no \language english \language_package default \inputencoding utf8 \fontencoding auto \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_roman_osf false \font_sans_osf false \font_typewriter_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \float_placement class \float_alignment class \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_formatted_ref 0 \use_minted 0 \use_lineno 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style english \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tablestyle default \tracking_changes false \output_changes false \change_bars false \postpone_fragile_content false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \docbook_table_output 0 \docbook_mathml_prefix 1 \end_header \begin_body \begin_layout Subsubsection First Set \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash exerc1[M10] \end_layout \end_inset Express \begin_inset Formula $x\bmod y$ \end_inset in terms of the sawtooth and \begin_inset Formula $\delta$ \end_inset functions. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset We have \begin_inset Formula $((x))-\frac{1}{2}\delta(x)=x-\lfloor x\rfloor-\frac{1}{2}$ \end_inset , so \begin_inset Formula $\lfloor x\rfloor=x-((x))+\tfrac{1}{2}(\delta(x)-1)$ \end_inset . Therefore \begin_inset Formula \begin{multline*} x\bmod y=x-y\left\lfloor \frac{x}{y}\right\rfloor =x-y\left(\frac{x}{y}-\left(\left(\frac{x}{y}\right)\right)+\frac{1}{2}\left(\delta(\tfrac{x}{y})-1\right)\right)=\\ =\left(\left(\left(\frac{x}{y}\right)\right)+\frac{1-\delta(\frac{x}{y})}{2}\right)y. \end{multline*} \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc4[M19] \end_layout \end_inset If \begin_inset Formula $m=10^{10}$ \end_inset , what is the highest possible value of \begin_inset Formula $d$ \end_inset (in the notation of Theorem P), given that the potency of the generator is 10? \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset It's \begin_inset Formula $d=2\cdot5^{10}$ \end_inset . First, we note that \begin_inset Formula \[ (2\cdot5^{10})^{9}\bmod10^{10}=2^{9}5^{90}\bmod2^{10}5^{10}=2^{9}5^{10}(5^{80}\bmod2)=m/2\neq0, \] \end_inset and that \begin_inset Formula $(2\cdot5^{10})^{10}\bmod10^{10}=2^{10}5^{100}\bmod2^{10}5^{10}=0$ \end_inset , so if \begin_inset Formula $b=d$ \end_inset we have potency 10. Second, we note that, since \begin_inset Formula $d\mid m$ \end_inset , and any divisor of \begin_inset Formula $m$ \end_inset greater that \begin_inset Formula $2\cdot5^{10}$ \end_inset has to be a multiple at least of \begin_inset Formula $2^{2}$ \end_inset and of \begin_inset Formula $5^{2}$ \end_inset , and therefore of 100, then \begin_inset Formula $b$ \end_inset would have to be a multiple of 100 and the potency would be at most 5. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc7[M24] \end_layout \end_inset Give a proof of the reciprocity law (19), when \begin_inset Formula $c=0$ \end_inset , by using the general reciprocity law of exercise 1.2.4–45. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset \begin_inset Note Greyedout status open \begin_layout Plain Layout (I had to look up the solution, obviously.) \end_layout \end_inset In this case, the law reduces to \begin_inset Formula \begin{multline*} \sigma(h,k,0)+\sigma(k,h,0)=\\ =12\sum_{0\leq jk$ \end_inset , \begin_inset Formula \[ \sum_{0\leq jk$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc19[M23] \end_layout \end_inset Show that the \emph on serial test \emph default can be analyzed over the full period, in terms of generalized Dedekind sums, by finding a formula for the probability that \begin_inset Formula $\alpha\leq X_{n}<\beta$ \end_inset and \begin_inset Formula $\alpha'\leq X_{n+1}<\beta'$ \end_inset , when \begin_inset Formula $\alpha$ \end_inset , \begin_inset Formula $\beta$ \end_inset , \begin_inset Formula $\alpha'$ \end_inset , and \begin_inset Formula $\beta'$ \end_inset are given integers with \begin_inset Formula $0\leq\alpha<\beta\leq m$ \end_inset and \begin_inset Formula $0\leq\alpha'<\beta'\leq m$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset \begin_inset Formula $P(x)\coloneqq\left\lfloor \frac{x-\alpha}{m}\right\rfloor -\left\lfloor \frac{x-\beta}{m}\right\rfloor $ \end_inset is 1 precisely when \begin_inset Formula $x\in[\alpha,\beta)$ \end_inset and 0 for any other \begin_inset Formula $x\in[0,1)$ \end_inset . \begin_inset Formula $Q(x)\coloneqq\left\lfloor \frac{x-\alpha'}{m}\right\rfloor -\left\lfloor \frac{x-\beta'}{m}\right\rfloor $ \end_inset works in an analogous manner. For a linear congruential sequence given by \begin_inset Formula $S(x)\coloneqq(ax+c)\bmod m$ \end_inset that has maximum period, the probability that \begin_inset Formula $x_{n}\in[\alpha,\beta)\land x_{n+1}\in[\alpha',\beta')$ \end_inset is \begin_inset Formula \begin{multline*} \frac{1}{m}\sum_{0\leq x0$ \end_inset . Then the graph for \begin_inset Formula $\{ax+\theta\}$ \end_inset is a sequence of lines. The first goes from \begin_inset Formula $(0,\theta)$ \end_inset to \begin_inset Formula $(\frac{1-\theta}{a},1)$ \end_inset , the next one from \begin_inset Formula $(\frac{1-\theta}{a},0)$ \end_inset to \begin_inset Formula $(\frac{2-\theta}{a},1)$ \end_inset , etc., and the last one goes from \begin_inset Formula $(1-\tfrac{\theta}{a},0)$ \end_inset to \begin_inset Formula $(1,\theta)$ \end_inset (we used that \begin_inset Formula $a$ \end_inset is an integer to calculate this). Thus \begin_inset Formula \[ \int_{0}^{1}x\{ax+\theta\}\text{d}x=\sum_{k=1}^{a-1}\int_{\frac{k-\theta}{a}}^{\frac{k+1-\theta}{a}}x(ax+\theta-k)\text{d}x+\int_{0}^{\frac{1-\theta}{a}}x(ax+\theta)\text{d}x+\int_{1-\frac{\theta}{a}}^{1}x(ax+\theta-a)\text{d}x. \] \end_inset Now, \begin_inset Formula \[ \int x(ax+\theta-k)\text{d}x=\frac{a}{3}x^{3}+\frac{\theta-k}{2}x^{2}+C, \] \end_inset so if we call \begin_inset Formula $x_{k}\coloneqq\frac{k-\theta}{a}$ \end_inset except that \begin_inset Formula $x_{0}\coloneqq0$ \end_inset and \begin_inset Formula $x_{a+1}\coloneqq1$ \end_inset , we have \begin_inset Formula \begin{multline*} \int_{0}^{1}x\{ax+\theta\}\text{d}x=\sum_{0\leq k\leq a}\int_{x_{k}}^{x_{k+1}}x(ax+\theta-k)\text{d}x=\\ =\sum_{0\leq k\leq a}\left(\frac{a}{3}x_{k+1}^{3}+\frac{\theta-k}{2}x_{k+1}^{2}-\frac{a}{3}x_{k}^{3}-\frac{\theta-k}{2}x_{k}^{2}\right)=\frac{a}{3}+\frac{\theta-a}{2}+\sum_{0