#LyX 2.4 created this file. For more info see https://www.lyx.org/ \lyxformat 620 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \begin_preamble \input defs \end_preamble \use_default_options true \maintain_unincluded_children no \language english \language_package default \inputencoding utf8 \fontencoding auto \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_roman_osf false \font_sans_osf false \font_typewriter_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \float_placement class \float_alignment class \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_formatted_ref 0 \use_minted 0 \use_lineno 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style english \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tablestyle default \tracking_changes false \output_changes false \change_bars false \postpone_fragile_content false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \docbook_table_output 0 \docbook_mathml_prefix 1 \end_header \begin_body \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash exerc1[M10] \end_layout \end_inset To what does the spectral test reduce in \emph on one \emph default dimension? (In other words, what happens when \begin_inset Formula $t=1$ \end_inset ?) \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset In this case \begin_inset Formula $\nu_{1}^{-1}$ \end_inset is the maximum distance between points in \begin_inset Formula $\{x/m\}_{x=0}^{m-1}$ \end_inset , which is \begin_inset Formula $m^{-1}$ \end_inset , so \begin_inset Formula $\nu_{1}=m$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc4[M23] \end_layout \end_inset Let \begin_inset Formula $u_{11}$ \end_inset , \begin_inset Formula $u_{12}$ \end_inset , \begin_inset Formula $u_{21}$ \end_inset , \begin_inset Formula $u_{22}$ \end_inset be elements of a \begin_inset Formula $2\times2$ \end_inset integer matrix such that \begin_inset Formula $u_{11}+au_{12}\equiv u_{21}+au_{22}\equiv0\pmod m$ \end_inset and \begin_inset Formula $u_{11}u_{22}-u_{21}u_{12}=m$ \end_inset . \end_layout \begin_layout Enumerate Prove that all integer solutions \begin_inset Formula $(y_{1},y_{2})$ \end_inset to the congruence \begin_inset Formula $y_{1}+ay_{2}\equiv0\pmod m$ \end_inset have the form \begin_inset Formula $(y_{1},y_{2})=(x_{1}u_{11}+x_{2}u_{21},x_{1}u_{12}+x_{2}u_{22})$ \end_inset for integer \begin_inset Formula $x_{1}$ \end_inset , \begin_inset Formula $x_{2}$ \end_inset . \end_layout \begin_layout Enumerate If, in addition, \begin_inset Formula $2|u_{11}u_{21}+u_{12}u_{22}|\leq u_{11}^{2}+u_{12}^{2}\leq u_{21}^{2}+u_{22}^{2}$ \end_inset , prove that \begin_inset Formula $(y_{1},y_{2})=(u_{11},u_{12})$ \end_inset minimizes \begin_inset Formula $y_{1}^{2}+y_{2}^{2}$ \end_inset over all nonzero solutions to the congruence. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset Assume \begin_inset Formula $a\in\mathbb{Z}$ \end_inset and \begin_inset Formula $m\in\mathbb{N}^{*}$ \end_inset . \end_layout \begin_layout Enumerate Clearly all pairs of integers \begin_inset Formula $(p,q)$ \end_inset can be written as \begin_inset Formula $(p,q)=z_{1}(m,0)+z_{2}(-a,1)+z_{3}(1,0)$ \end_inset for some \begin_inset Formula $z_{1},z_{2},z_{3}\in\mathbb{Z}$ \end_inset with \begin_inset Formula $0\leq z_{3}V_{j}\cdot V_{j}$ \end_inset in some step, then \begin_inset Formula \[ (V_{i}-qV_{j})\cdot(V_{i}-qV_{j})=V_{i}\cdot V_{i}-2qV_{i}\cdot V_{j}+V_{j}\cdot V_{j}