#LyX 2.4 created this file. For more info see https://www.lyx.org/ \lyxformat 620 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \begin_preamble \input defs \end_preamble \use_default_options true \maintain_unincluded_children no \language english \language_package default \inputencoding utf8 \fontencoding auto \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_roman_osf false \font_sans_osf false \font_typewriter_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \float_placement class \float_alignment class \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_formatted_ref 0 \use_minted 0 \use_lineno 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style english \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tablestyle default \tracking_changes false \output_changes false \change_bars false \postpone_fragile_content false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \docbook_table_output 0 \docbook_mathml_prefix 1 \end_header \begin_body \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash exerc1[10] \end_layout \end_inset How would Avogadro's number and Planck's constant (3) be represented in base 100, excess 50, four-digit floating point notation? (This would be the representatioon used by \family typewriter MIX \family default , as in (4), when the byte size is 100.) \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash hfil \end_layout \end_inset Avogadro's number \begin_inset ERT status open \begin_layout Plain Layout \backslash quad \backslash hfil \end_layout \end_inset Planck's constant \begin_inset ERT status open \begin_layout Plain Layout \backslash quad \backslash hfil \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash hfil \backslash mixbox{ \backslash byte{+} \backslash byte{62} \backslash byte{60} \backslash byte{22} \backslash byte{14} \backslash byte{0}} \end_layout \begin_layout Plain Layout \backslash hfil \backslash mixbox{ \backslash byte{+} \backslash byte{37} \backslash byte{66} \backslash byte{26} \backslash byte{10} \backslash byte{0}} \end_layout \begin_layout Plain Layout \backslash hfil \end_layout \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc4[16] \end_layout \end_inset Assume that \begin_inset Formula $b=10$ \end_inset , \begin_inset Formula $p=8$ \end_inset . What result does Algorithm A give for \begin_inset Formula $(50,+.98765432)\oplus(49,+.33333333)$ \end_inset ? For \begin_inset Formula $(53,-.99987654)\oplus(54,+.10000000)$ \end_inset ? For \begin_inset Formula $(45,-.50000001)\oplus(54,+.10000000)$ \end_inset ? \end_layout \begin_layout Standard \begin_inset Formula \begin{align*} (50,+.98765432)\oplus(49,+.33333333) & \to(50,+1.020987653)\to(51,+.10209877)\\ (53,-.99987654)\oplus(54,+.10000000) & \to(54,.000012346)\to(50,+.12346000)\\ (45,-.50000001)\oplus(54,+.10000000) & \to(54,+.09999999949999999)\to(53,+.99999999) \end{align*} \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc5[24] \end_layout \end_inset Let us day that \begin_inset Formula $x\sim y$ \end_inset (with respect to a given radix \begin_inset Formula $b$ \end_inset ) if \begin_inset Formula $x$ \end_inset and \begin_inset Formula $y$ \end_inset are real numbers satisfying the following conditions: \begin_inset Formula \begin{gather*} \lfloor x/b\rfloor=\lfloor y/b\rfloor;\\ x\bmod b=0\iff y\bmod b=0;\\ 0.09$ \end_inset and \begin_inset Formula $e_{u}-e_{v}\leq1$ \end_inset , so \begin_inset Formula $f_{w}$ \end_inset would have at most \begin_inset Formula $p+1$ \end_inset digits and \begin_inset Formula $2b^{p+1}f_{w}\in\mathbb{Z}\#$ \end_inset . Therefore N2 produces the same results for \begin_inset Formula $f$ \end_inset and \begin_inset Formula $f'$ \end_inset every time it runs and, when we reach step N5, \begin_inset Formula $b^{p+1}f\sim b^{p+1}f'$ \end_inset and \begin_inset Formula $2b^{p}f,2b^{p}f'\notin\mathbb{Z}$ \end_inset , so step N5 produces the same result in both cases and the rest of the algorithm runs over the same state and produces the same result. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc11[M20] \end_layout \end_inset Give an example of normalized, excess 50, eight-digit floating decimal numbers \begin_inset Formula $u$ \end_inset and \begin_inset Formula $v$ \end_inset for which rounding overflow occurs in multiplication. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset An illustrative example would be \begin_inset Formula \[ (50,.99999990)\otimes(50,.10000001). \] \end_inset The result would be \begin_inset Formula $(50,.0999999999999990)$ \end_inset , which becomes \begin_inset Formula $(50,.10000000)$ \end_inset after shifting left in N3 and then right in N4 after N5 rounds up to \begin_inset Formula $(49,1.)$ \end_inset . \end_layout \end_body \end_document