#LyX 2.4 created this file. For more info see https://www.lyx.org/ \lyxformat 620 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \begin_preamble \input defs \end_preamble \use_default_options true \maintain_unincluded_children no \language english \language_package default \inputencoding utf8 \fontencoding auto \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_roman_osf false \font_sans_osf false \font_typewriter_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \float_placement class \float_alignment class \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_formatted_ref 0 \use_minted 0 \use_lineno 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style english \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tablestyle default \tracking_changes false \output_changes false \change_bars false \postpone_fragile_content false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \docbook_table_output 0 \docbook_mathml_prefix 1 \end_header \begin_body \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc16[25] \end_layout \end_inset Prove that it takes only \begin_inset Formula $O(K\log K)$ \end_inset arithmetic operations to evaluate the discrete Fourier transform (35), even when \begin_inset Formula $K$ \end_inset is not a power of 2. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset Let \begin_inset Formula $n=\lceil\log K\rceil$ \end_inset , and assume \begin_inset Formula $n\geq5$ \end_inset . Since \begin_inset Formula $\log K>4$ \end_inset and \begin_inset Formula $n-\log K<1$ \end_inset , we have \begin_inset Formula $\frac{n}{\log K}<\frac{5}{4}$ \end_inset and \begin_inset Formula \[ 2^{n}\log2^{n}=2^{n}n\leq2K\cdot\frac{5}{4}\log K=\frac{5}{2}K\log K=O(K\log K). \] \end_inset \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc19[M23] \end_layout \end_inset Show how to compute \begin_inset Formula $uv\bmod m$ \end_inset with a bounded number of operations that meet the ground rules of exercise 3.2.1.1–11, if you are also allowed to test whether one operand is less than another. Both \begin_inset Formula $u$ \end_inset and \begin_inset Formula $v$ \end_inset are variable, but \begin_inset Formula $m$ \end_inset is constant. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset If \begin_inset Formula $m=1$ \end_inset , the result is 0, and if \begin_inset Formula $m=2$ \end_inset , the result is that of multiplying the least significant bit of \begin_inset Formula $u$ \end_inset and \begin_inset Formula $v$ \end_inset ; either way we are done. If \begin_inset Formula $m=3$ \end_inset , we may compute \begin_inset Formula $uv\bmod3$ \end_inset with \begin_inset Formula $0\leq u,v<3$ \end_inset with the help of a table and set \begin_inset Formula $s\coloneqq3$ \end_inset , and with \begin_inset Formula $m\geq4$ \end_inset , there exists an integer \begin_inset Formula $s\geq2$ \end_inset such that \begin_inset Formula $s^{2}\leq m$ \end_inset , and we take the greatest such \begin_inset Formula $s$ \end_inset . \end_layout \begin_layout Standard Let \begin_inset Formula $n$ \end_inset be such that \begin_inset Formula $2^{2^{n-1}}\leq u,v<2^{2^{n}}$ \end_inset , we compute powers \begin_inset Formula $2^{2^{m}}$ \end_inset for \begin_inset Formula $1\leq m\leq n$ \end_inset . Then, if \begin_inset Formula $u,v