#LyX 2.4 created this file. For more info see https://www.lyx.org/ \lyxformat 620 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass book \begin_preamble \input defs \end_preamble \use_default_options true \maintain_unincluded_children no \language english \language_package default \inputencoding utf8 \fontencoding auto \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_roman_osf false \font_sans_osf false \font_typewriter_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \float_placement class \float_alignment class \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry false \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification true \use_refstyle 1 \use_formatted_ref 0 \use_minted 0 \use_lineno 0 \index Index \shortcut idx \color #008000 \end_index \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style english \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tablestyle default \tracking_changes false \output_changes false \change_bars false \postpone_fragile_content false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \docbook_table_output 0 \docbook_mathml_prefix 1 \end_header \begin_body \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash exerc5[10] \end_layout \end_inset Compute \begin_inset Formula $(17/120)+(-27/70)$ \end_inset by the method recommended in the text. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset We have \begin_inset Formula $d_{1}=\gcd\{120,70\}=10$ \end_inset , \begin_inset Formula $t=17\cdot\frac{70}{10}-27\cdot\frac{120}{10}=119-324=-205$ \end_inset , \begin_inset Formula $d_{2}=\gcd\{-205,10\}=5$ \end_inset , and so the answer is \begin_inset Formula $-\frac{205}{5}\Big/\left(\frac{120}{10}\frac{70}{5}\right)=-\frac{41}{168}$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc6[M23] \end_layout \end_inset Show that \begin_inset Formula $u\bot u'$ \end_inset and \begin_inset Formula $v\bot v'$ \end_inset implies \begin_inset Formula $\gcd\{uv'+vu',u'v'\}=d_{1}d_{2}$ \end_inset , where \begin_inset Formula $d_{1}=\gcd\{u',v'\}$ \end_inset and \begin_inset Formula $d_{2}=\gcd\{d_{1},u(v'/d_{1})+v(u'/d_{1})\}$ \end_inset . (Hence if \begin_inset Formula $d_{1}=1$ \end_inset we have \begin_inset Formula $(uv'+vu')\bot u'v'$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset \begin_inset Note Greyedout status open \begin_layout Plain Layout (I had to look up the solution.) \end_layout \end_inset Let \begin_inset Formula $u''\coloneqq u'/d_{1}$ \end_inset and \begin_inset Formula $v''\coloneqq v'/d_{1}$ \end_inset , we just need to prove that \begin_inset Formula \[ \gcd\{uv''+vu'',u''v''d_{1}\}=d_{2}=\gcd\{uv''+vu'',d_{1}\}, \] \end_inset as multiplying the first equality by \begin_inset Formula $d_{1}$ \end_inset gives us the required answer. Obviously \begin_inset Formula $d_{2}\mid uv''+vu'',u''v''d_{1}$ \end_inset , and we have to see that any integer \begin_inset Formula $d$ \end_inset that divides both \begin_inset Formula $uv''+vu''$ \end_inset and \begin_inset Formula $u''v''d_{1}$ \end_inset also divides \begin_inset Formula $d_{1}$ \end_inset and therefore \begin_inset Formula $d_{2}$ \end_inset . Let \begin_inset Formula $p$ \end_inset be a prime factor of \begin_inset Formula $d$ \end_inset , because \begin_inset Formula $u\bot u'$ \end_inset and therefore \begin_inset Formula $u\bot d_{1},u''$ \end_inset , if \begin_inset Formula $p\mid u''$ \end_inset then \begin_inset Formula $p\mid uv''$ \end_inset but \begin_inset Formula $p\nmid u$ \end_inset , so \begin_inset Formula $p\mid v''$ \end_inset and \begin_inset Formula $u''$ \end_inset and \begin_inset Formula $v''$ \end_inset are not coprime, \begin_inset Formula $\#$ \end_inset and similarly \begin_inset Formula $p\nmid v''$ \end_inset . That means that \begin_inset Formula $d$ \end_inset doesn't have any common factors with either \begin_inset Formula $u''$ \end_inset and \begin_inset Formula $v''$ \end_inset , so \begin_inset Formula $d\mid d_{1}$ \end_inset . \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash rexerc8[22] \end_layout \end_inset Discuss using \begin_inset Formula $(1/0)$ \end_inset and \begin_inset Formula $(-1/0)$ \end_inset as representations for \begin_inset Formula $\infty$ \end_inset and \begin_inset Formula $-\infty$ \end_inset , and/or as representations of overflow. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash answer \end_layout \end_inset Mathematically they are not that different, since \begin_inset Formula $\infty$ \end_inset , when treated as a number, represents the concept of a number larger than any other, or an arbitrarily large number in an asymptotic way, while overflow represents a number larger than any \emph on representable \emph default number. Mediant rounding would round to \begin_inset Formula $\pm1/0$ \end_inset for numbers with \begin_inset Formula $|x|\geq2^{p}$ \end_inset , which makes sense. \end_layout \begin_layout Standard Using these representations, multiplying a number by \begin_inset Formula $\infty$ \end_inset gives \begin_inset Formula $\infty$ \end_inset if the number is positive or \begin_inset Formula $-\infty$ \end_inset if it's negative, or vice versa for \begin_inset Formula $-\infty$ \end_inset , and \begin_inset Formula $\pm\infty\cdot0=(0/0)$ \end_inset , an indeterminate value. Dividing \begin_inset Formula $\pm\infty$ \end_inset by some number yields a similar result, with \begin_inset Formula $\pm\infty/\pm\infty$ \end_inset being indeterminate and \begin_inset Formula $\pm\infty/0=\pm\infty$ \end_inset , which works well as a convention, and dividing by \begin_inset Formula $\pm\infty$ \end_inset is equivalent to multiplying by 0. \end_layout \begin_layout Standard Addition and subtraction require a bit more attention: if we do \begin_inset Formula $\pm\frac{1}{0}+\frac{a}{b}$ \end_inset , we would have \begin_inset Formula $d_{1}=b$ \end_inset (if \begin_inset Formula $b=1$ \end_inset then we shortcut to get \begin_inset Formula $\pm\frac{1}{0}$ \end_inset as the result) and then \begin_inset Formula $t=\pm1$ \end_inset , \begin_inset Formula $d_{2}=1$ \end_inset , and the result is \begin_inset Formula $\pm\frac{1}{0}$ \end_inset , as expected. The exception is if \begin_inset Formula $\frac{a}{b}=\pm\frac{1}{0}$ \end_inset ; then \begin_inset Formula $d_{1}=0$ \end_inset and calculating \begin_inset Formula $t$ \end_inset would result in a division by 0, and the obvious procedure gives us \begin_inset Formula $\frac{0}{0}$ \end_inset even if both infinities have the same sign, so we have to consider this a special case to get the correct result, namely \begin_inset Formula $\pm\infty\pm\infty=\pm\infty$ \end_inset and \begin_inset Formula $\pm\infty\mp\infty=0/0$ \end_inset . \end_layout \begin_layout Standard We also need a special case so that additions and subtractions involving \begin_inset Formula $0/0$ \end_inset return \begin_inset Formula $0/0$ \end_inset . \end_layout \begin_layout Standard Note, however, that having \begin_inset Formula $x/(\pm1/0)=0$ \end_inset for \begin_inset Formula $x\neq0$ \end_inset would be a hazard in the case that we are representing overflow, as we may inadvertently discard the overflow and get a potentially very inaccurate result, so sometimes it may be better to use \begin_inset Formula $0/0$ \end_inset for overflow. \end_layout \end_body \end_document