aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJuan Marín Noguera <juan.marinn@um.es>2021-04-11 18:18:20 +0200
committerJuan Marín Noguera <juan.marinn@um.es>2021-04-11 18:18:20 +0200
commit049bcf5a0f3a7d8c299a3265d98c497ec01c7440 (patch)
treec104b54137be9f69b2d2aa3a12a3c13c52bff7b0
parente8973e3e26f3bbcfd878b788bd9cf9e518da19c3 (diff)
parent0aabe861f89648215c41858f98e21f96a2e26f30 (diff)
Merge branch 'ggs'
-rw-r--r--ggs/n3.lyx2388
1 files changed, 2388 insertions, 0 deletions
diff --git a/ggs/n3.lyx b/ggs/n3.lyx
new file mode 100644
index 0000000..7210f7f
--- /dev/null
+++ b/ggs/n3.lyx
@@ -0,0 +1,2388 @@
+#LyX 2.3 created this file. For more info see http://www.lyx.org/
+\lyxformat 544
+\begin_document
+\begin_header
+\save_transient_properties true
+\origin unavailable
+\textclass book
+\begin_preamble
+\input{../defs}
+\end_preamble
+\use_default_options true
+\maintain_unincluded_children false
+\language spanish
+\language_package default
+\inputencoding auto
+\fontencoding global
+\font_roman "default" "default"
+\font_sans "default" "default"
+\font_typewriter "default" "default"
+\font_math "auto" "auto"
+\font_default_family default
+\use_non_tex_fonts false
+\font_sc false
+\font_osf false
+\font_sf_scale 100 100
+\font_tt_scale 100 100
+\use_microtype false
+\use_dash_ligatures true
+\graphics default
+\default_output_format default
+\output_sync 0
+\bibtex_command default
+\index_command default
+\paperfontsize default
+\spacing single
+\use_hyperref false
+\papersize default
+\use_geometry false
+\use_package amsmath 1
+\use_package amssymb 1
+\use_package cancel 1
+\use_package esint 1
+\use_package mathdots 1
+\use_package mathtools 1
+\use_package mhchem 1
+\use_package stackrel 1
+\use_package stmaryrd 1
+\use_package undertilde 1
+\cite_engine basic
+\cite_engine_type default
+\biblio_style plain
+\use_bibtopic false
+\use_indices false
+\paperorientation portrait
+\suppress_date false
+\justification true
+\use_refstyle 1
+\use_minted 0
+\index Index
+\shortcut idx
+\color #008000
+\end_index
+\secnumdepth 3
+\tocdepth 3
+\paragraph_separation indent
+\paragraph_indentation default
+\is_math_indent 0
+\math_numbering_side default
+\quotes_style french
+\dynamic_quotes 0
+\papercolumns 1
+\papersides 1
+\paperpagestyle default
+\tracking_changes false
+\output_changes false
+\html_math_output 0
+\html_css_as_file 0
+\html_be_strict false
+\end_header
+
+\begin_body
+
+\begin_layout Standard
+Sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular y
+\begin_inset Formula $p\in S$
+\end_inset
+
+, la
+\series bold
+aplicación exponencial
+\series default
+ en
+\begin_inset Formula $p$
+\end_inset
+
+ es
+\begin_inset Formula $\exp_{p}:{\cal D}_{p}\to S$
+\end_inset
+
+ dada por
+\begin_inset Formula
+\[
+\exp_{p}(v)=\gamma_{v}(1),
+\]
+
+\end_inset
+
+donde
+\begin_inset Formula ${\cal D}_{p}:=\{v\in T_{p}S:1\in I_{v}\}$
+\end_inset
+
+.
+ Propiedades:
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $0\in{\cal D}_{p}$
+\end_inset
+
+ y
+\begin_inset Formula $\exp_{p}(0)=p$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $\forall v\in T_{p}S,t\in I_{v},(tv\in{\cal D}_{p}\land\exp_{p}(tv)=\gamma_{v}(t))$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Si
+\begin_inset Formula $t=0$
+\end_inset
+
+,
+\begin_inset Formula $\exp_{p}(0)=\gamma_{v}(0)=p$
+\end_inset
+
+, y si
+\begin_inset Formula $v=0$
+\end_inset
+
+,
+\begin_inset Formula $\exp_{p}(0)=\gamma_{0}(t)=p$
+\end_inset
+
+.
+ Si
+\begin_inset Formula $t,v\neq0$
+\end_inset
+
+,
+\begin_inset Formula $1=\frac{1}{t}t\in\frac{1}{t}I_{v}=I_{tv}$
+\end_inset
+
+, luego
+\begin_inset Formula $tv\in{\cal D}_{p}$
+\end_inset
+
+ y
+\begin_inset Formula $\exp_{p}(tv)=\gamma_{tv}(1)=\gamma_{v}(t)$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+\begin_inset Formula ${\cal D}_{p}$
+\end_inset
+
+ es estrellado respecto a 0.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Sean
+\begin_inset Formula $v\in{\cal D}_{p}$
+\end_inset
+
+ y
+\begin_inset Formula $t\in[0,1]$
+\end_inset
+
+, como
+\begin_inset Formula $1\in I_{v}$
+\end_inset
+
+,
+\begin_inset Formula $t\in[0,1]\subseteq I_{v}$
+\end_inset
+
+ y por tanto
+\begin_inset Formula $tv\in{\cal D}_{p}$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+\begin_inset Formula $\forall v\in T_{p}S,\exists\lambda>0:\lambda v\in{\cal D}_{p}$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Existe
+\begin_inset Formula $\varepsilon>0$
+\end_inset
+
+ con
+\begin_inset Formula $(-\varepsilon,\varepsilon)\subseteq I_{v}$
+\end_inset
+
+, y tomando
+\begin_inset Formula $|\lambda|<\varepsilon$
+\end_inset
+
+ es
+\begin_inset Formula $\lambda\in I_{v}$
+\end_inset
+
+ y
+\begin_inset Formula $\lambda v\in{\cal D}_{p}$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+\begin_inset Formula ${\cal D}_{p}$
+\end_inset
+
+ es abierto y
+\begin_inset Formula $\exp_{p}$
+\end_inset
+
+ es diferenciable.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $d(\exp_{p})_{0}=1_{T_{p}S}$
+\end_inset
+
+, y en particular
+\begin_inset Formula $\exp_{p}$
+\end_inset
+
+ es un difeomorfismo local en 0.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Como
+\begin_inset Formula ${\cal D}_{p}\subseteq T_{p}S$
+\end_inset
+
+ y el plano tangente a un plano es él mismo,
+\begin_inset Formula $T_{0}{\cal D}_{p}=T_{0}(T_{p}S)=T_{p}S$
+\end_inset
+
+.
+ Entonces, para
+\begin_inset Formula $w\in T_{p}S$
+\end_inset
+
+, sea
+\begin_inset Formula $\alpha(t):=tw$
+\end_inset
+
+, existe
+\begin_inset Formula $\varepsilon>0$
+\end_inset
+
+ tal que
+\begin_inset Formula $\alpha((-\varepsilon,\varepsilon))\subseteq{\cal D}_{p}$
+\end_inset
+
+, de modo que
+\begin_inset Formula $d(\exp_{p})_{0}:(T_{0}{\cal D}_{p}=T_{p}S)\to(T_{\exp_{p(0)}}S=T_{p}S)$
+\end_inset
+
+ viene dada por
+\begin_inset Formula
+\[
+d(\exp_{p})_{0}(w)=\frac{d}{dt}(\exp_{p}(\alpha(t)))(0)=\frac{d}{dt}(\exp_{p}(tw))(0)=\frac{d}{dt}(\gamma_{w}(t))(0)=\gamma'_{w}(0)=w.
+\]
+
+\end_inset
+
+
+\end_layout
+
+\end_deeper
+\begin_layout Standard
+Un entorno
+\begin_inset Formula $V$
+\end_inset
+
+ de
+\begin_inset Formula $p_{0}\in S$
+\end_inset
+
+ es
+\series bold
+estrellado
+\series default
+ respecto a
+\begin_inset Formula $p_{0}$
+\end_inset
+
+ si para
+\begin_inset Formula $p\in V$
+\end_inset
+
+ existe un segmento de geodésica que une
+\begin_inset Formula $p_{0}$
+\end_inset
+
+ con
+\begin_inset Formula $p$
+\end_inset
+
+.
+
+\end_layout
+
+\begin_layout Standard
+Un
+\series bold
+entorno normal
+\series default
+ de
+\begin_inset Formula $p_{0}\in S$
+\end_inset
+
+ es un entorno
+\begin_inset Formula $V$
+\end_inset
+
+ de
+\begin_inset Formula $p_{0}$
+\end_inset
+
+ en
+\begin_inset Formula $S$
+\end_inset
+
+ para el que existe un entorno
+\begin_inset Formula ${\cal U}$
+\end_inset
+
+ del 0 en
+\begin_inset Formula $T_{p_{0}}S$
+\end_inset
+
+ estrellado respecto al 0 tal que
+\begin_inset Formula $\exp_{p_{0}}|_{{\cal U}}:{\cal U}\to V$
+\end_inset
+
+ es un difeomorfismo.
+ En estas condiciones, para
+\begin_inset Formula $p\in V$
+\end_inset
+
+, sean
+\begin_inset Formula $v_{p}:=\exp_{p_{0}}^{-1}(p)\in{\cal U}$
+\end_inset
+
+ y el segmento de geodésica
+\begin_inset Formula $\gamma_{p}:=\gamma_{v_{p}}|_{[0,1]}:[0,1]\to V$
+\end_inset
+
+, entonces
+\begin_inset Formula $\gamma_{p}(t)=\exp_{p_{0}}(tv_{p})$
+\end_inset
+
+ para
+\begin_inset Formula $t\in[0,1]$
+\end_inset
+
+,
+\begin_inset Formula $\gamma_{p}(0)=p_{0}$
+\end_inset
+
+ y
+\begin_inset Formula $\gamma_{p}(1)=p$
+\end_inset
+
+, por lo que
+\begin_inset Formula $\gamma_{p}$
+\end_inset
+
+ es el
+\series bold
+segmento de geodésica radial
+\series default
+ que une
+\begin_inset Formula $p_{0}$
+\end_inset
+
+ con
+\begin_inset Formula $p$
+\end_inset
+
+.
+ Así, todo entorno normal de
+\begin_inset Formula $p_{0}$
+\end_inset
+
+ es estrellado respecto a
+\begin_inset Formula $p_{0}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Section
+Lema de Gauss
+\end_layout
+
+\begin_layout Standard
+Sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular,
+\begin_inset Formula $p\in S$
+\end_inset
+
+,
+\begin_inset Formula $v\in{\cal D}_{p}\setminus0$
+\end_inset
+
+ y
+\begin_inset Formula $w\in T_{p}S$
+\end_inset
+
+, entonces
+\begin_inset Formula
+\[
+\langle d(\exp_{p})_{v}(v),d(\exp_{p})_{v}(w)\rangle=\langle v,w\rangle.
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+
+\series bold
+Demostración:
+\series default
+ Supongamos que
+\begin_inset Formula $v$
+\end_inset
+
+ y
+\begin_inset Formula $w$
+\end_inset
+
+ son colineales y sea
+\begin_inset Formula $\lambda\in\mathbb{R}$
+\end_inset
+
+ tal que
+\begin_inset Formula $w=\lambda v$
+\end_inset
+
+.
+ Sea
+\begin_inset Formula $\alpha:(-\varepsilon,\varepsilon)\to{\cal D}_{p}$
+\end_inset
+
+ dada por
+\begin_inset Formula $\alpha(t):=v+tw=(1+\lambda t)v$
+\end_inset
+
+, entonces
+\begin_inset Formula
+\[
+d(\exp_{p})_{v}(w)=\frac{d}{dt}(\exp_{p}(\alpha(t)))(0)=\frac{d}{dt}(\exp_{p}((1+\lambda t)v))(0)=\frac{d}{dt}(\gamma_{v}(1+\lambda t))=\lambda\gamma'_{v}(1+\lambda t),
+\]
+
+\end_inset
+
+luego
+\begin_inset Formula $\Vert d(\exp_{p})_{v}(w)\Vert=\Vert\lambda\gamma'_{v}(1)\Vert=|\lambda|\Vert\gamma'_{v}(1)\Vert=|\lambda|\Vert v\Vert=\Vert w\Vert$
+\end_inset
+
+.
+
+\end_layout
+
+\begin_layout Standard
+Para el caso general, sea
+\begin_inset Formula $\tau:\mathbb{R}\times\mathbb{R}\to T_{p}S$
+\end_inset
+
+ dada por
+\begin_inset Formula $\tau(s,t):=s\alpha(t):=s(v+tw)$
+\end_inset
+
+, para todo
+\begin_inset Formula $t$
+\end_inset
+
+ es
+\begin_inset Formula $\tau(0,t)=0$
+\end_inset
+
+ y
+\begin_inset Formula $\tau(1,t)=v+tw$
+\end_inset
+
+, y como
+\begin_inset Formula $\tau$
+\end_inset
+
+ es lineal sobre la primera variable, si
+\begin_inset Formula $\tau(1,t)\in{\cal D}_{p}$
+\end_inset
+
+,
+\begin_inset Formula $\tau([0,1]\times\{t\})=[\tau(0,t),\tau(1,t)]=[0,v+tw]\in{\cal D}_{p}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Como
+\begin_inset Formula $\tau(1,0)=v\in{\cal D}_{p}$
+\end_inset
+
+, se tiene
+\begin_inset Formula $\tau([0,1]\times\{0\})\subseteq{\cal D}_{p}$
+\end_inset
+
+.
+ Para cada
+\begin_inset Formula $s\in[0,1]$
+\end_inset
+
+ existe un entorno de
+\begin_inset Formula $\tau(s,0)$
+\end_inset
+
+ contenido en
+\begin_inset Formula ${\cal D}_{p}$
+\end_inset
+
+ y, por ser
+\begin_inset Formula $\tau$
+\end_inset
+
+ continua, existe un
+\begin_inset Formula $\varepsilon_{s}>0$
+\end_inset
+
+ con
+\begin_inset Formula $\tau(B_{\infty}((s,0),\varepsilon_{s}))\subseteq{\cal D}_{p}$
+\end_inset
+
+.
+ Ahora bien,
+\begin_inset Formula $\{B_{\infty}((s,0),\varepsilon_{s})\}_{s\in[0,1]}$
+\end_inset
+
+ es un cubrimiento por abiertos de
+\begin_inset Formula $[0,1]\times\{0\}$
+\end_inset
+
+ que admite pues un subrecubrimiento finito
+\begin_inset Formula $\{B_{\infty}((s_{i},0),\varepsilon_{s_{i}})\}_{i=1}^{k}$
+\end_inset
+
+.
+ Proyectando el subrecubrimiento
+\begin_inset Formula $A:=\bigcup_{i=1}^{k}B_{\infty}((s_{i},0),\varepsilon_{s_{i}})$
+\end_inset
+
+ en
+\begin_inset Formula $\mathbb{R}\times0$
+\end_inset
+
+ queda un abierto que contiene a
+\begin_inset Formula $[0,1]$
+\end_inset
+
+ y por tanto contiene un intervalo
+\begin_inset Formula $(-\varepsilon',1+\varepsilon')$
+\end_inset
+
+.
+ Sea
+\begin_inset Formula $\varepsilon:=\min\{\varepsilon_{s_{1}},\dots,\varepsilon_{s_{k}},\varepsilon'\}$
+\end_inset
+
+, para
+\begin_inset Formula $s\in(-\varepsilon',1+\varepsilon')$
+\end_inset
+
+ se tiene
+\begin_inset Formula
+\[
+(\max\{s-\varepsilon,-\varepsilon'\},\min\{s+\varepsilon,1+\varepsilon'\})\times(-\varepsilon,\varepsilon)\subseteq A,
+\]
+
+\end_inset
+
+luego
+\begin_inset Formula $\tau((-\varepsilon,1+\varepsilon)\times(-\varepsilon,\varepsilon))\subseteq{\cal D}_{p}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Sea ahora
+\begin_inset Formula $\varphi:=\exp_{p}\circ\tau:(-\varepsilon,1+\varepsilon)\times(-\varepsilon,\varepsilon)\to S$
+\end_inset
+
+.
+ Se tiene
+\begin_inset Formula
+\begin{align*}
+\frac{\partial\varphi}{\partial s}(s,t) & =\frac{\partial}{\partial s}(\exp_{p}(s\alpha(t)))(s,t)=\frac{\partial}{\partial s}(\gamma_{\alpha(t)}(s))(s,t)=\gamma'_{\alpha(t)}(s)\\
+ & =\frac{d}{ds}(\exp_{p}(s\alpha(t)))(s,t)=d(\exp_{p})_{s\alpha(t)}(\alpha(t)),
+\end{align*}
+
+\end_inset
+
+donde la última igualdad es por la regla de la cadena, luego
+\begin_inset Formula
+\[
+\left\Vert \frac{\partial\varphi}{\partial s}(s,t)\right\Vert ^{2}=\Vert\gamma'_{\alpha(t)}(s)\Vert^{2}=\Vert\gamma'_{\alpha(t)}(0)\Vert^{2}=\Vert\alpha(t)\Vert^{2}=\Vert v\Vert^{2}+2t\langle v,w\rangle+t^{2}\Vert w\Vert^{2},
+\]
+
+\end_inset
+
+y por otro lado
+\begin_inset Formula
+\begin{align*}
+\frac{\partial\varphi}{\partial s}(s,0) & =d(\exp_{p})_{sv}(v), & \frac{\partial\varphi}{\partial s}(0,0) & =d(\exp_{p})_{0}(v)=v, & \frac{\partial\varphi}{\partial s}(1,0) & =d(\exp_{p})_{v}(v).
+\end{align*}
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Por otra parte,
+\begin_inset Formula
+\begin{align*}
+\frac{\partial\varphi}{\partial t}(0,t) & =\frac{\partial}{\partial t}(\exp_{p}(0))=0, & \frac{\partial}{\partial t}(1,t) & =\frac{\partial}{\partial t}(\exp_{p}(v+tw))=d(\exp_{p})_{v+tw}(w),
+\end{align*}
+
+\end_inset
+
+de modo que
+\begin_inset Formula $\frac{\partial\varphi}{\partial t}(1,0)=d(\exp_{p})_{v}(w)$
+\end_inset
+
+.
+ Sea
+\begin_inset Formula $f:(-\varepsilon,1+\varepsilon)\to\mathbb{R}$
+\end_inset
+
+ dada por
+\begin_inset Formula
+\[
+f(s):=\left\langle \frac{\partial\varphi}{\partial s}(s,0),\frac{\partial\varphi}{\partial t}(s,0)\right\rangle ,
+\]
+
+\end_inset
+
+de modo que en particular
+\begin_inset Formula $f(0)=\langle v,0\rangle=0$
+\end_inset
+
+,
+\begin_inset Formula $f(1)=\langle d(\exp_{p})_{v}(v),d(\exp_{p})_{v}(w)\rangle$
+\end_inset
+
+ y queremos ver que
+\begin_inset Formula $f(1)=\langle v,w\rangle$
+\end_inset
+
+.
+ Como
+\begin_inset Formula $\frac{\partial\varphi}{\partial s}(s,t)=\gamma'_{\alpha(t)}(s)$
+\end_inset
+
+,
+\begin_inset Formula
+\begin{align*}
+\frac{\partial^{2}\varphi}{\partial s^{2}}(s,t) & =\gamma''_{\alpha(t)}(s), & \frac{\partial^{2}\varphi}{\partial s^{2}}(s,0) & =\gamma''_{\alpha(0)}(s)=\gamma''_{v}(s)\in T_{\gamma_{v}(s)}S^{\bot},
+\end{align*}
+
+\end_inset
+
+pues
+\begin_inset Formula $\gamma_{v}$
+\end_inset
+
+ es una geodésica y
+\begin_inset Formula $\frac{D\gamma'_{v}}{ds}=0$
+\end_inset
+
+.
+ Por otro lado, para
+\begin_inset Formula $s\in(-\varepsilon,1+\varepsilon)$
+\end_inset
+
+, sea
+\begin_inset Formula $\beta_{s}(t):(-\varepsilon,\varepsilon)\to S$
+\end_inset
+
+ dada por
+\begin_inset Formula $\beta_{s}(t):=\exp_{p}(s\alpha(t))$
+\end_inset
+
+,
+\begin_inset Formula $\beta_{s}$
+\end_inset
+
+ es una curva porque
+\begin_inset Formula $\exp_{p}$
+\end_inset
+
+ es un difeomorfismo y
+\begin_inset Formula $\alpha(t)=v+tw\neq0$
+\end_inset
+
+ para ningún
+\begin_inset Formula $t$
+\end_inset
+
+ (si lo fuera,
+\begin_inset Formula $v$
+\end_inset
+
+ y
+\begin_inset Formula $w$
+\end_inset
+
+ serían colineales), de modo que, como
+\begin_inset Formula $\beta_{s}(0)=\exp_{p}(sv)=\gamma_{v}(s)$
+\end_inset
+
+,
+\begin_inset Formula
+\[
+\frac{\partial\varphi}{\partial t}(s,0)=\frac{\partial}{\partial t}(\exp_{p}(s\alpha(t)))(s,0)=\beta'_{s}(0)\in T_{\beta_{s}(0)}S=T_{\gamma_{v}(s)}S,
+\]
+
+\end_inset
+
+y entonces
+\begin_inset Formula
+\begin{align*}
+f'(s) & =\left\langle \frac{\partial^{2}\varphi}{\partial s^{2}}(s,0),\frac{\partial\varphi}{\partial t}(s,0)\right\rangle +\left\langle \frac{\partial\varphi}{\partial s}(s,0),\frac{\partial^{2}\varphi}{\partial t\partial s}(s,0)\right\rangle =\left\langle \frac{\partial\varphi}{\partial s}(s,0),\frac{\partial^{2}\varphi}{\partial s\partial t}(s,0)\right\rangle \\
+ & =\frac{1}{2}\frac{\partial}{\partial t}\left(\left\langle \frac{\partial\varphi}{\partial s}(s,0),\frac{\partial\varphi}{\partial s}(s,0)\right\rangle \right)(0)=\frac{1}{2}\frac{\partial}{\partial t}\left(\left\Vert \frac{\partial\varphi}{\partial s}(s,0)\right\Vert ^{2}\right)(0)\\
+ & =\frac{1}{2}\frac{\partial}{\partial t}(\Vert v\Vert^{2}+2t\langle v,w\rangle+t^{2}\Vert w\Vert^{2})(0)=\frac{1}{2}(t\mapsto2\langle v,w\rangle+2t\Vert w\Vert^{2})(0)=\frac{1}{2}2\langle v,w\rangle=\langle v,w\rangle.
+\end{align*}
+
+\end_inset
+
+Por tanto,
+\begin_inset Formula
+\[
+f(1)=f(0)+\int_{0}^{1}f'(s)ds=\left[s\langle v,w\rangle\right]_{s=0}^{1}=\langle v,w\rangle.
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Section
+Propiedad minimizante de las geodésicas
+\end_layout
+
+\begin_layout Standard
+Sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular,
+\begin_inset Formula $p\in S$
+\end_inset
+
+,
+\begin_inset Formula $v\in{\cal D}_{p}\setminus0$
+\end_inset
+
+ y
+\begin_inset Formula $w\in T_{p}S$
+\end_inset
+
+:
+\end_layout
+
+\begin_layout Enumerate
+Si
+\begin_inset Formula $v$
+\end_inset
+
+ y
+\begin_inset Formula $w$
+\end_inset
+
+ son colineales,
+\begin_inset Formula $\Vert d(\exp_{p})_{v}(w)\Vert=\Vert w\Vert$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Si
+\begin_inset Formula $w=0$
+\end_inset
+
+ esto es obvio.
+ Sea
+\begin_inset Formula $\lambda\neq0$
+\end_inset
+
+ con
+\begin_inset Formula $w=\lambda v$
+\end_inset
+
+, se tiene
+\begin_inset Formula $v=\frac{1}{\lambda}w$
+\end_inset
+
+ y, por el lema de Gauss,
+\begin_inset Formula
+\begin{align*}
+\langle d(\exp_{p})_{v}(v),d(\exp_{p})_{v}(w)\rangle & =\langle\tfrac{1}{\lambda}d(\exp_{p})_{v}(w),d(\exp_{p})_{v}(w)\rangle=\tfrac{1}{\lambda}\Vert d(\exp_{p})_{v}(w)\Vert^{2}\\
+ & =\langle v,w\rangle=\langle\tfrac{1}{\lambda}w,w\rangle=\tfrac{1}{\lambda}\Vert w\Vert^{2},
+\end{align*}
+
+\end_inset
+
+y despejando se obtiene el resultado.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Si
+\begin_inset Formula $v$
+\end_inset
+
+ y
+\begin_inset Formula $w$
+\end_inset
+
+ son ortogonales, entonces
+\begin_inset Formula $d(\exp_{p})_{v}(v)$
+\end_inset
+
+ y
+\begin_inset Formula $d(\exp_{p})_{v}(w)$
+\end_inset
+
+ también.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Por el lema de Gauss,
+\begin_inset Formula $\langle d(\exp_{p})_{v}(v),d(\exp_{p})_{v}(w)\rangle=\langle v,w\rangle=0$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Standard
+Sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular,
+\begin_inset Formula $p\in S$
+\end_inset
+
+ y
+\begin_inset Formula $r>0$
+\end_inset
+
+ tal que
+\begin_inset Formula ${\cal D}(0,r):=\{v\in T_{p}S:\Vert v\Vert<r\}\subseteq{\cal D}_{p}$
+\end_inset
+
+, llamamos
+\series bold
+disco geodésico
+\series default
+ de centro
+\begin_inset Formula $p$
+\end_inset
+
+ y radio
+\begin_inset Formula $r$
+\end_inset
+
+ a
+\begin_inset Formula $D(p,r):=\exp_{p}({\cal D}(0,r))$
+\end_inset
+
+, y si
+\begin_inset Formula $r$
+\end_inset
+
+ cumple que
+\begin_inset Formula ${\cal S}(0,r):=\{v\in T_{p}S:\Vert v\Vert=r\}\subseteq{\cal D}_{p}$
+\end_inset
+
+, llamamos
+\series bold
+circunferencia geodésica
+\series default
+ de centro
+\begin_inset Formula $p$
+\end_inset
+
+ y radio
+\begin_inset Formula $r$
+\end_inset
+
+ a
+\begin_inset Formula $S(p,r):=\exp_{p}({\cal S}(0,r))$
+\end_inset
+
+.
+ Llamamos
+\series bold
+radio geodésico
+\series default
+ que sale de
+\begin_inset Formula $p$
+\end_inset
+
+ con dirección
+\begin_inset Formula $v\in T_{p}S$
+\end_inset
+
+ a
+\begin_inset Formula $\exp_{p}(\{\lambda v\}_{v\geq0}\cap{\cal D}_{p})$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Como
+\series bold
+teorema
+\series default
+, si
+\begin_inset Formula $V$
+\end_inset
+
+ es un entorno normal de
+\begin_inset Formula $p_{0}\in S$
+\end_inset
+
+ y
+\begin_inset Formula $p\in V\setminus\{p_{0}\}$
+\end_inset
+
+, el segmento de geodésica
+\begin_inset Formula $\gamma_{p}:[0,1]\to V$
+\end_inset
+
+ que une
+\begin_inset Formula $p_{0}$
+\end_inset
+
+ a
+\begin_inset Formula $p$
+\end_inset
+
+ es la única curva en
+\begin_inset Formula $V$
+\end_inset
+
+ de menor longitud que une
+\begin_inset Formula $p_{0}$
+\end_inset
+
+ a
+\begin_inset Formula $p$
+\end_inset
+
+, salvo reparametrización, y si existe
+\begin_inset Formula $r>0$
+\end_inset
+
+ con
+\begin_inset Formula $p\in D(p_{0},r)\subseteq V$
+\end_inset
+
+, entonces
+\begin_inset Formula $\gamma_{p}$
+\end_inset
+
+ es una curva de menor longitud que une
+\begin_inset Formula $p_{0}$
+\end_inset
+
+ a
+\begin_inset Formula $p$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+
+\series bold
+Demostración:
+\series default
+ Sea
+\begin_inset Formula $v_{p}:=\exp_{p_{0}}^{-1}(p)$
+\end_inset
+
+, entonces
+\begin_inset Formula
+\[
+L(\gamma_{p})=\int_{0}^{1}\Vert\gamma_{p}'(t)\Vert dt=\int_{0}^{1}\Vert\gamma_{p}'(0)\Vert dt=\Vert\gamma_{p}'(0)\Vert=\Vert v_{p}\Vert.
+\]
+
+\end_inset
+
+Sea
+\begin_inset Formula $\alpha:[a,b]\to V$
+\end_inset
+
+ otra curva que une
+\begin_inset Formula $p_{0}$
+\end_inset
+
+ a
+\begin_inset Formula $p$
+\end_inset
+
+, y queremos ver que
+\begin_inset Formula $L(\alpha)\geq L(\gamma_{p})$
+\end_inset
+
+ y que la igualdad solo la alcanzan las reparametrizaciones.
+
+\end_layout
+
+\begin_layout Standard
+Sean
+\begin_inset Formula $A:=\alpha^{-1}(\{p_{0}\})$
+\end_inset
+
+ y
+\begin_inset Formula $t_{0}:=\sup A$
+\end_inset
+
+, existe una sucesión
+\begin_inset Formula $\{t_{n}\}_{n}\subseteq A$
+\end_inset
+
+ que converge a
+\begin_inset Formula $t_{0}$
+\end_inset
+
+ y por tanto
+\begin_inset Formula $\alpha(t_{0})=\alpha(\lim_{n}t_{n})=\lim_{n}\alpha(t_{n})=p_{0}$
+\end_inset
+
+ y
+\begin_inset Formula $t_{0}\in A$
+\end_inset
+
+, luego
+\begin_inset Formula $t_{0}=\max\{t\in[a,b]:\alpha(t)=p_{0}\}<b$
+\end_inset
+
+ (pues
+\begin_inset Formula $\alpha(b)=p\neq p_{0}$
+\end_inset
+
+), de modo que podemos restringir
+\begin_inset Formula $\alpha$
+\end_inset
+
+ a
+\begin_inset Formula $[t_{0},b]$
+\end_inset
+
+ y reparametrizar para obtener una curva
+\begin_inset Formula $\alpha':[0,1]\to\alpha$
+\end_inset
+
+ que une
+\begin_inset Formula $p_{0}$
+\end_inset
+
+ a
+\begin_inset Formula $p$
+\end_inset
+
+.
+ Como
+\begin_inset Formula $L(\alpha')=L_{t_{0}}^{b}(\alpha)\geq L(\alpha)$
+\end_inset
+
+, basta demostrar la propiedad para
+\begin_inset Formula $\alpha:=\alpha'$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Sean
+\begin_inset Formula ${\cal U}\subseteq{\cal D}_{p}$
+\end_inset
+
+ un abierto estrellado en 0 con
+\begin_inset Formula $V=\exp_{p_{0}}({\cal U})$
+\end_inset
+
+ y
+\begin_inset Formula $\tilde{\alpha}:=\exp_{p_{0}}^{-1}\circ\alpha:[0,1]\to{\cal U}$
+\end_inset
+
+, que cumple
+\begin_inset Formula $\tilde{\alpha}(0)=0$
+\end_inset
+
+,
+\begin_inset Formula $\tilde{\alpha}(1)=v_{p}$
+\end_inset
+
+ y
+\begin_inset Formula $\forall t>0,\tilde{\alpha}(t)\neq0$
+\end_inset
+
+.
+ Sean entonces
+\begin_inset Formula $r(t):=\Vert\tilde{\alpha}(t)\Vert$
+\end_inset
+
+ y, para
+\begin_inset Formula $t>0$
+\end_inset
+
+,
+\begin_inset Formula $V(t):=\frac{\tilde{\alpha}(t)}{\Vert\tilde{\alpha}(t)\Vert}$
+\end_inset
+
+, de modo que
+\begin_inset Formula $\alpha(T)=\exp_{p_{0}}(r(t)V(t))$
+\end_inset
+
+ para
+\begin_inset Formula $t>0$
+\end_inset
+
+ y
+\begin_inset Formula
+\begin{align*}
+\alpha'(t) & =\frac{d}{dt}\left(\exp_{p_{0}}(\tilde{\alpha}(t))\right)(0)=d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(\tilde{\alpha}'(t))=d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(r'(t)V(t)+r(t)V'(t))\\
+ & =r'(t)d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V(t))+r(t)d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t)).
+\end{align*}
+
+\end_inset
+
+Entonces
+\begin_inset Formula $\Vert\alpha'(t)\Vert^{2}=r'(t)^{2}\Vert d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V(t))\Vert^{2}+2r(t)r'(t)\langle d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V(t)),d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t))\rangle+r(t)^{2}\Vert d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t))\Vert^{2}$
+\end_inset
+
+.
+ Como
+\begin_inset Formula $V(t)$
+\end_inset
+
+ es colineal con
+\begin_inset Formula $\tilde{\alpha}(t)=r(t)V(t)$
+\end_inset
+
+,
+\begin_inset Formula $\Vert d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V(t))\Vert=\Vert V(t)\Vert=1$
+\end_inset
+
+, luego
+\begin_inset Formula $\langle r(t)V(t),V'(t)\rangle=r(t)\langle V(t),V'(t)\rangle=0$
+\end_inset
+
+ y
+\begin_inset Formula
+\begin{multline*}
+\langle d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V(t)),d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t))\rangle=\\
+=\frac{1}{r(t)}\langle d(\exp_{p_{0}})_{r(t)V(t)}(r(t)V(t)),d(\exp_{p_{0}})_{r(t)V(t)}(V'(t))\rangle=0.
+\end{multline*}
+
+\end_inset
+
+Así,
+\begin_inset Formula $\Vert\alpha'(t)\Vert^{2}=r'(t)^{2}+r(t)^{2}\Vert d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t))\Vert^{2}\geq r'(t)^{2}$
+\end_inset
+
+, luego
+\begin_inset Formula $\Vert\alpha'(t)\Vert\geq|r'(t)|$
+\end_inset
+
+ para todo
+\begin_inset Formula $t\in(0,1]$
+\end_inset
+
+ y, para
+\begin_inset Formula $\varepsilon\in(0,1]$
+\end_inset
+
+,
+\begin_inset Formula
+\[
+\int_{\varepsilon}^{1}\Vert\alpha'(t)\Vert dt\geq\int_{\varepsilon}^{1}r'(t)dt=r(1)-r(\varepsilon)=\Vert v_{p}\Vert-r(\varepsilon)=\Vert L(\gamma_{p})\Vert-r(\varepsilon),
+\]
+
+\end_inset
+
+y por continuidad de
+\begin_inset Formula $r$
+\end_inset
+
+,
+\begin_inset Formula
+\[
+L(\alpha)=\int_{0}^{1}\Vert\alpha'(t)\Vert dt\geq\lim_{\varepsilon\to0}(\Vert L(\gamma_{p})\Vert-r(\varepsilon))=\Vert L(\gamma_{p})\Vert.
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Si
+\begin_inset Formula $L(\alpha)=L(\gamma_{p})$
+\end_inset
+
+, como
+\begin_inset Formula
+\[
+L(\alpha)=\int_{0}^{1}\Vert\alpha'(t)\Vert dt=\int_{0}^{1}r'(t)dt=\Vert v_{p}\Vert
+\]
+
+\end_inset
+
+y
+\begin_inset Formula $\Vert\alpha'(t)\Vert\geq r'(t)$
+\end_inset
+
+ para todo
+\begin_inset Formula $t\in(0,1]$
+\end_inset
+
+, por monotonía de la integral es
+\begin_inset Formula $\Vert\alpha'(t)\Vert=r'(t)$
+\end_inset
+
+ para todo
+\begin_inset Formula $t\in(0,1]$
+\end_inset
+
+, pero entonces
+\begin_inset Formula $r(t)^{2}\Vert d(\exp_{p_{0}})_{\tilde{\alpha}}(V'(t))\Vert^{2}=0$
+\end_inset
+
+ y, por tanto,
+\begin_inset Formula $d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t))=0$
+\end_inset
+
+, pero
+\begin_inset Formula $\exp_{p_{0}}|_{{\cal U}}$
+\end_inset
+
+ es un difeomorfismo, luego
+\begin_inset Formula $d(\exp_{p_{0}})_{\tilde{\alpha}(t)}$
+\end_inset
+
+ es inyectiva y
+\begin_inset Formula $V'(t)=0$
+\end_inset
+
+.
+ Así, para
+\begin_inset Formula $t>0$
+\end_inset
+
+,
+\begin_inset Formula $V(t)=V(1)=\frac{v_{p}}{\Vert v_{p}\Vert}$
+\end_inset
+
+, luego
+\begin_inset Formula
+\[
+\alpha(t)=\exp_{p_{0}}\left(r(t)\frac{v_{p}}{\Vert v_{p}\Vert}\right)=\gamma_{v_{p}}\left(\frac{r(t)}{\Vert v_{p}\Vert}\right)=\gamma_{p}\left(\frac{r(t)}{\Vert v_{p}\Vert}\right),
+\]
+
+\end_inset
+
+y además
+\begin_inset Formula $\alpha(0)=p_{0}=\gamma_{p}(0)=\gamma_{p}(\frac{r(t)}{\Vert v_{p}\Vert})$
+\end_inset
+
+, luego
+\begin_inset Formula $\alpha$
+\end_inset
+
+ es una reparametrización de
+\begin_inset Formula $\gamma_{p}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Finalmente, sea
+\begin_inset Formula $r$
+\end_inset
+
+ tal que
+\begin_inset Formula $p\in D(p_{0},r)\subseteq V$
+\end_inset
+
+, de modo que
+\begin_inset Formula $\exp_{p_{0}}:{\cal D}(0,r)\subseteq{\cal U}\to D(p_{0},r)\subseteq V$
+\end_inset
+
+ es un difeomorfismo y
+\begin_inset Formula $\Vert v_{p}\Vert<r$
+\end_inset
+
+.
+ Sea ahora
+\begin_inset Formula $\alpha:[a,b]\to S$
+\end_inset
+
+ con
+\begin_inset Formula $\alpha(a)=p_{0}$
+\end_inset
+
+ y
+\begin_inset Formula $\alpha(b)=p$
+\end_inset
+
+.
+ Si
+\begin_inset Formula $\alpha([a,b])\subseteq V$
+\end_inset
+
+, ya sabemos que
+\begin_inset Formula $L(\gamma_{p})\leq L(\alpha)$
+\end_inset
+
+.
+ En otro caso, sea
+\begin_inset Formula $r^{*}:=\frac{r+\Vert v_{p}\Vert}{2}$
+\end_inset
+
+, de modo que
+\begin_inset Formula $v_{p}\in\overline{D(p_{0},r^{*})}\subseteq D(p_{0},r)$
+\end_inset
+
+, y si
+\begin_inset Formula $\tilde{\alpha}:=\exp_{p_{0}}^{-1}\circ\alpha$
+\end_inset
+
+, como
+\begin_inset Formula $\Vert\tilde{\alpha}(a)\Vert=0$
+\end_inset
+
+ y existe un
+\begin_inset Formula $t\in(a,b)$
+\end_inset
+
+ con
+\begin_inset Formula $\Vert\tilde{\alpha}(a)\Vert\geq r>r^{*}$
+\end_inset
+
+, por continuidad de
+\begin_inset Formula $\Vert\tilde{\alpha}\Vert$
+\end_inset
+
+ es
+\begin_inset Formula
+\[
+A:=\{t\in(a,b):\Vert\tilde{\alpha}(t)\Vert=r^{*}\}=\{t\in[a,b]:\alpha(t)\in S(p_{0},r^{*})\}\neq\emptyset.
+\]
+
+\end_inset
+
+Entonces, como
+\begin_inset Formula $\{r^{*}\}$
+\end_inset
+
+ es compacto,
+\begin_inset Formula $A$
+\end_inset
+
+ también lo es y existe
+\begin_inset Formula $t^{*}:=\min A$
+\end_inset
+
+, y llamando
+\begin_inset Formula $p^{*}:=\alpha(t^{*})\in S(p_{0},r^{*})$
+\end_inset
+
+,
+\begin_inset Formula
+\[
+L(\gamma_{p})=\Vert v_{p}\Vert<r^{*}=\Vert v_{p^{*}}\Vert=L(\gamma_{p^{*}})\leq L_{a}^{t^{*}}(\alpha)\leq L(\alpha).
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Section
+Coordenadas normales
+\end_layout
+
+\begin_layout Standard
+Sean
+\begin_inset Formula $V$
+\end_inset
+
+ un entorno normal de
+\begin_inset Formula $p_{0}\in S$
+\end_inset
+
+ dado por un entorno
+\begin_inset Formula ${\cal U}\subseteq{\cal D}_{p_{0}}$
+\end_inset
+
+,
+\begin_inset Formula $(e_{1},e_{2})$
+\end_inset
+
+ una base ortonormal de
+\begin_inset Formula $T_{p_{0}}S$
+\end_inset
+
+ y
+\begin_inset Formula $\phi:\mathbb{R}^{2}\to T_{p_{0}}S$
+\end_inset
+
+ dado por
+\begin_inset Formula $\phi(u,v)=ue_{1}+ve_{2}$
+\end_inset
+
+, entonces
+\begin_inset Formula $\phi(0,0)=0$
+\end_inset
+
+ y
+\begin_inset Formula $U:=\phi^{-1}({\cal U})$
+\end_inset
+
+ es abierto en
+\begin_inset Formula $\mathbb{R}^{2}$
+\end_inset
+
+, luego
+\begin_inset Formula $X:U\subseteq\mathbb{R}^{2}\to V\subseteq S$
+\end_inset
+
+ dada por
+\begin_inset Formula $X(u,v):=\exp_{p_{0}}(\phi(u,v))$
+\end_inset
+
+ es una parametrización llamada
+\series bold
+sistema de coordenadas normales
+\series default
+ en
+\begin_inset Formula $p_{0}$
+\end_inset
+
+.
+ Propiedades:
+\begin_inset Formula $\forall(u,0),(0,v)\in U$
+\end_inset
+
+:
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $X(0,0)=p_{0}$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+\begin_inset Formula $X(0,0)=\exp_{p_{0}}(0)=p_{0}$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+\begin_inset Formula $X_{u}(u,0)=\gamma'_{e_{1}}(u)$
+\end_inset
+
+ y
+\begin_inset Formula $X_{v}(0,v)=\gamma'_{e_{2}}(v)$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+\begin_inset Formula $X_{u}(u,0)=\frac{d}{du}(\exp_{p_{0}}(ue_{1}))(u)=\frac{d}{du}(\gamma_{e_{1}}(u))(u)=\gamma'_{e_{1}}(u)$
+\end_inset
+
+, y para
+\begin_inset Formula $X_{v}$
+\end_inset
+
+ es análogo.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+\begin_inset Formula $X_{u}(0,0)=e_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $X_{v}(0,0)=e_{2}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $E(u,0)=G(0,v)=1$
+\end_inset
+
+,
+\begin_inset Formula $F(0,0)=0$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+\begin_inset Formula
+\begin{align*}
+E(u,0) & =\langle X_{u},X_{u}\rangle(u,0)=\Vert\gamma'_{e_{1}}(u)\Vert^{2}=\Vert e_{1}\Vert^{2}=1,\\
+F(0,0) & =\langle X_{u},X_{v}\rangle(0,0)=\langle e_{1},e_{2}\rangle=0,\\
+G(0,v) & =\langle X_{v},X_{v}\rangle(0,v)=\Vert\gamma'_{e_{2}}(v)\Vert^{2}=\Vert e_{2}\Vert^{2}=1.
+\end{align*}
+
+\end_inset
+
+
+\end_layout
+
+\end_deeper
+\begin_layout Section
+Coordenadas polares
+\end_layout
+
+\begin_layout Standard
+Sean
+\begin_inset Formula $V$
+\end_inset
+
+ un entorno normal de
+\begin_inset Formula $p_{0}\in S$
+\end_inset
+
+ dado por un entorno
+\begin_inset Formula ${\cal U}\subseteq{\cal D}_{p_{0}}$
+\end_inset
+
+,
+\begin_inset Formula $(e_{1},e_{2})$
+\end_inset
+
+ una base ortonormal de
+\begin_inset Formula $T_{p_{0}}S$
+\end_inset
+
+,
+\begin_inset Formula $\ell:=\{\lambda e_{1}\}_{\lambda\geq0}$
+\end_inset
+
+,
+\begin_inset Formula $\phi:(0,+\infty)\times(0,2\pi)\to T_{p_{0}}S\setminus\ell$
+\end_inset
+
+ el difeomorfismo dado por
+\begin_inset Formula
+\[
+\phi(r,\theta):=r\cos\theta e_{1}+r\sin\theta e_{2},
+\]
+
+\end_inset
+
+
+\begin_inset Formula $V_{0}:=\exp_{p_{0}}({\cal U}\setminus\ell)$
+\end_inset
+
+ y
+\begin_inset Formula $U_{0}:=\phi^{-1}({\cal U}\setminus\ell)$
+\end_inset
+
+, entonces
+\begin_inset Formula $X:U_{0}\to V_{0}$
+\end_inset
+
+ dado por
+\begin_inset Formula $X(r,\theta):=\exp_{p_{0}}(\phi(r,\theta))$
+\end_inset
+
+ es una parametrización llamada
+\series bold
+sistema de coordenadas
+\series default
+ (
+\series bold
+geodésicas
+\series default
+)
+\series bold
+polares centrado en
+\begin_inset Formula $p_{0}$
+\end_inset
+
+
+\series default
+, aunque
+\begin_inset Formula $p_{0}\notin V_{0}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Como
+\series bold
+teorema
+\series default
+, sea
+\begin_inset Formula $X:U_{0}\to V_{0}$
+\end_inset
+
+ el sistema de coordenadas polares centrado en
+\begin_inset Formula $p_{0}$
+\end_inset
+
+, entonces, para
+\begin_inset Formula $(r,\theta)\in U_{0}$
+\end_inset
+
+:
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $E(r,\theta)=1$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Sea
+\begin_inset Formula $v_{\theta}:=(\cos\theta e_{1}+\sin\theta e_{2})$
+\end_inset
+
+, de modo que
+\begin_inset Formula $X(r,\theta)=\exp_{p_{0}}(rv_{\theta})=\gamma_{v_{\theta}}(r)$
+\end_inset
+
+.
+ Entonces
+\begin_inset Formula $X_{r}(r,\theta)=\gamma'_{v_{\theta}}(r)$
+\end_inset
+
+ y
+\begin_inset Formula $E(r,\theta)=\Vert X_{r}(r,\theta)\Vert^{2}=\Vert\gamma'_{v_{\theta}}(r)\Vert=\Vert v_{\theta}\Vert^{2}=1$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+\begin_inset Formula $F(r,\theta)=0$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+\begin_inset Formula
+\begin{align*}
+X_{r}(r,\theta) & =\frac{d}{dr}(\exp_{p_{0}}(rv_{\theta}))(r)=d(\exp_{p_{0}})_{rv_{\theta}}(v_{\theta}),\\
+X_{\theta}(r,\theta) & =\frac{d}{d\theta}(\exp_{p_{0}}(rv_{\theta}))(\theta)=d(\exp_{p_{0}})_{rv_{\theta}}(rv'_{\theta}),
+\end{align*}
+
+\end_inset
+
+y por el lema de Gauss,
+\begin_inset Formula
+\[
+F(r,\theta)=\left\langle X_{r}(r,\theta),X_{\theta}(r,\theta)\right\rangle =\left\langle \frac{1}{r}d(\exp_{p_{0}})_{rv_{\theta}}(rv_{\theta}),d(\exp_{p_{0}})_{rv_{\theta}}(rv'_{\theta})\right\rangle =\frac{1}{r}\langle rv_{\theta},rv'_{\theta}\rangle=0.
+\]
+
+\end_inset
+
+
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+\begin_inset Formula $G(r,\theta)>0$
+\end_inset
+
+
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+\begin_inset Formula $G(r,\theta)=\Vert X_{\theta}(r,\theta)\Vert^{2}=\Vert rd(\exp_{p_{0}})_{rv_{\theta}}(v'_{\theta})\Vert^{2}=r^{2}\Vert d(\exp_{p_{0}})_{rv_{\theta}}(v'_{\theta})\Vert^{2}$
+\end_inset
+
+, que es positivo porque
+\begin_inset Formula $r>0$
+\end_inset
+
+,
+\begin_inset Formula $v'_{\theta}\neq0$
+\end_inset
+
+ y
+\begin_inset Formula $d(\exp_{p_{0}})_{rv_{\theta}}$
+\end_inset
+
+ es un isomorfismo al ser
+\begin_inset Formula $\exp_{p_{0}}$
+\end_inset
+
+ un difeomorfismo en
+\begin_inset Formula ${\cal U}$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+\begin_inset Formula $\lim_{r\to0}G(r,\theta)=0$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Para un
+\begin_inset Formula $\theta$
+\end_inset
+
+ fijo,
+\begin_inset Formula
+\[
+\lim_{r\to0}G(r,\theta)=\lim_{r\to0}r^{2}\Vert d(\exp_{p_{0}})_{rv_{\theta}}(v'_{\theta})\Vert^{2}=0^{2}\cdot\Vert d(\exp_{p_{0}})_{0}(v'_{\theta})\Vert^{2}=0.
+\]
+
+\end_inset
+
+
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+\begin_inset Formula $\lim_{r\to0}\frac{\partial}{\partial r}(\sqrt{G(r)})(r,\theta)=1$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Sean
+\begin_inset Formula $\overline{X}(u,v):=\exp_{p_{0}}(ue_{1}+ve_{2})$
+\end_inset
+
+ la parametrización normal centrada en
+\begin_inset Formula $p_{0}$
+\end_inset
+
+ a partir de
+\begin_inset Formula $V$
+\end_inset
+
+ y
+\begin_inset Formula $\overline{E},\overline{F},\overline{G}$
+\end_inset
+
+ los parámetros de su primera forma fundamental, como
+\begin_inset Formula $X(r,\theta)=\overline{X}(r_{\theta}):=\overline{X}(r\cos\theta,r\sin\theta)$
+\end_inset
+
+, se tiene
+\begin_inset Formula
+\begin{align*}
+X_{r}(r,\theta) & =\overline{X}_{u}(r_{\theta})\cos\theta+\overline{X}_{v}(r_{\theta})\sin\theta, & X_{\theta}(r,\theta) & =-\overline{X}_{u}(r_{\theta})r\sin\theta+\overline{X}_{v}(r_{\theta})r\cos\theta,
+\end{align*}
+
+\end_inset
+
+pero
+\begin_inset Formula $\Vert X_{r}\wedge X_{\theta}\Vert=\sqrt{EG-F^{2}}\stackrel[F=0]{E=1}{=}\sqrt{G}$
+\end_inset
+
+ y
+\begin_inset Formula $\Vert\overline{X}_{u}\wedge\overline{X}_{v}\Vert=\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}$
+\end_inset
+
+, y como
+\begin_inset Formula
+\[
+X_{r}\wedge X_{\theta}=r\cos^{2}\theta\overline{X}_{u}\wedge\overline{X}_{v}-r\sin^{2}\theta\overline{X}_{v}\wedge\overline{X}_{u}=r\overline{X}_{u}\wedge\overline{X}_{v},
+\]
+
+\end_inset
+
+queda
+\begin_inset Formula $\sqrt{G}(r,\theta)=\Vert X_{r}\wedge X_{\theta}\Vert=r\Vert\overline{X}_{u}\wedge\overline{X}_{v}\Vert=r\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r\cos\theta,r\sin\theta)$
+\end_inset
+
+.
+ Entonces
+\begin_inset Formula
+\[
+\frac{\partial}{\partial r}\sqrt{G}=\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})+r\frac{\partial}{\partial r}\left(\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})\right),
+\]
+
+\end_inset
+
+pero
+\begin_inset Formula
+\begin{multline*}
+\lim_{r\to0}\frac{\partial}{\partial r}\left(\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})\right)=\lim_{r\to0}\frac{\frac{\partial}{\partial r}(\overline{E}(r_{\theta}))\overline{G}(r_{\theta})+\overline{E}(r_{\theta})\frac{\partial}{\partial r}(\overline{G}(r_{\theta}))-2\overline{F}(r_{\theta})\frac{\partial}{\partial r}(\overline{F}(r_{\theta}))}{2\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})}\in\mathbb{R},
+\end{multline*}
+
+\end_inset
+
+pues
+\begin_inset Formula $\lim_{r\to0}\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})=\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(0,0)=1$
+\end_inset
+
+ y la parte superior del cociente es continua y está definida para
+\begin_inset Formula $r=0$
+\end_inset
+
+.
+ Así,
+\begin_inset Formula
+\[
+\lim_{r\to0}\frac{\partial}{\partial r}\sqrt{G}=\lim_{r\to0}\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})+\lim_{r\to0}r\frac{\partial}{\partial r}\left(\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})\right)=1+0=0.
+\]
+
+\end_inset
+
+
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+La curvatura de Gauss,
+\begin_inset Formula $K$
+\end_inset
+
+, satisface
+\begin_inset Formula
+\[
+\sqrt{G(r,\theta)}K(X(r,\theta))+\frac{\partial^{2}}{\partial r^{2}}(\sqrt{G(r,\theta)})=0.
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Como
+\begin_inset Formula $F=0$
+\end_inset
+
+,
+\begin_inset Formula
+\[
+K=\frac{-1}{2\sqrt{EG}}\left[\left(\frac{E_{\theta}}{\sqrt{EG}}\right)_{\theta}+\left(\frac{G_{r}}{\sqrt{EG}}\right)_{r}\right]\overset{E_{\theta}\equiv0}{=}-\frac{1}{2\sqrt{G}}\left(\frac{G_{r}}{\sqrt{G}}\right)_{r}=-\frac{1}{\sqrt{G}}(\sqrt{G})_{rr},
+\]
+
+\end_inset
+
+pues
+\begin_inset Formula $(\sqrt{G})_{r}=\frac{1}{2}\frac{G_{r}}{\sqrt{G}}$
+\end_inset
+
+, y multiplicando por
+\begin_inset Formula $\sqrt{G}$
+\end_inset
+
+ y despejando,
+\begin_inset Formula $\sqrt{G}K+(\sqrt{G})_{rr}=0$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Si
+\begin_inset Formula $K$
+\end_inset
+
+ es constante,
+\begin_inset Formula
+\[
+G(r,\theta)=\begin{cases}
+r^{2}, & K=0;\\
+\frac{1}{K}\sin^{2}(\sqrt{K}r), & K>0;\\
+-\frac{1}{K}\sinh^{2}(\sqrt{-K}r), & K<0.
+\end{cases}
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Fijado
+\begin_inset Formula $\theta$
+\end_inset
+
+, sea
+\begin_inset Formula $u(r):=\sqrt{G(r,\theta)}$
+\end_inset
+
+, de modo que
+\begin_inset Formula $G(r,\theta)=u(r)^{2}$
+\end_inset
+
+.
+ Se tiene
+\begin_inset Formula
+\[
+\left\{ \begin{aligned}u(r)K+\ddot{u} & =0,\\
+\lim_{r\to0}u(r) & =0,\\
+\lim_{r\to0}\dot{u}(r) & =1,
+\end{aligned}
+\right.
+\]
+
+\end_inset
+
+lo que podemos tratar como un problema de Cauchy con una e.d.o.
+ homogénea.
+ Así:
+\end_layout
+
+\begin_layout Enumerate
+Si
+\begin_inset Formula $K=0$
+\end_inset
+
+, queda
+\begin_inset Formula $\ddot{u}=0$
+\end_inset
+
+ y
+\begin_inset Formula $u(r)=ar+b$
+\end_inset
+
+ para ciertos
+\begin_inset Formula $a,b\in\mathbb{R}$
+\end_inset
+
+, con
+\begin_inset Formula $0=u(0)=b$
+\end_inset
+
+ y
+\begin_inset Formula $1=u'(0)=a$
+\end_inset
+
+.
+ Por tanto
+\begin_inset Formula $u(r)=r$
+\end_inset
+
+ y
+\begin_inset Formula $G(r,\theta)=r^{2}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+Si
+\begin_inset Formula $K>0$
+\end_inset
+
+, el polinomio asociado es
+\begin_inset Formula $p(\lambda)=\lambda^{2}+K$
+\end_inset
+
+ y
+\begin_inset Formula $\lambda=\pm\sqrt{K}i$
+\end_inset
+
+, luego una base de soluciones es
+\begin_inset Formula $\{\cos(\sqrt{K}r),\sin(\sqrt{K}r)\}$
+\end_inset
+
+ y existen
+\begin_inset Formula $a,b\in\mathbb{R}$
+\end_inset
+
+ con
+\begin_inset Formula $u(r)=a\cos(\sqrt{K}r)+b\sin(\sqrt{K}r)$
+\end_inset
+
+, pero
+\begin_inset Formula $0=u(0)=a$
+\end_inset
+
+ y
+\begin_inset Formula $1=u'(0)=b\sqrt{K}$
+\end_inset
+
+, luego
+\begin_inset Formula $u(r)=\frac{1}{\sqrt{K}}\sin(\sqrt{K}r)$
+\end_inset
+
+ y
+\begin_inset Formula $G(r,\theta)=\frac{1}{K}\sin^{2}(\sqrt{K}r)$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+Si
+\begin_inset Formula $K<0$
+\end_inset
+
+, el polinomio asociado es
+\begin_inset Formula $p(\lambda)=\lambda^{2}-K$
+\end_inset
+
+ y
+\begin_inset Formula $\lambda=\pm\sqrt{K}$
+\end_inset
+
+, luego una base de soluciones es
+\begin_inset Formula $\{e^{\sqrt{K}t},e^{-\sqrt{K}t}\}$
+\end_inset
+
+ y existen
+\begin_inset Formula $a,b\in\mathbb{R}$
+\end_inset
+
+ con
+\begin_inset Formula $u(r)=ae^{\sqrt{K}t}+be^{-\sqrt{K}t}$
+\end_inset
+
+.
+ Ahora bien,
+\begin_inset Formula $0=u(0)=a+b$
+\end_inset
+
+ y
+\begin_inset Formula $1=u'(0)=\sqrt{K}(a-b)$
+\end_inset
+
+, luego
+\begin_inset Formula $2a=\frac{1}{\sqrt{K}}$
+\end_inset
+
+,
+\begin_inset Formula $2b=-\frac{1}{\sqrt{K}}$
+\end_inset
+
+ y, por tanto,
+\begin_inset Formula $u(r)=\frac{1}{2\sqrt{K}}(e^{\sqrt{K}t}-e^{-\sqrt{K}t})=\frac{1}{\sqrt{K}}\sinh(\sqrt{K}t)$
+\end_inset
+
+, y
+\begin_inset Formula $G(r,\theta)=\frac{1}{K}\sinh^{2}(\sqrt{K}t)$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Standard
+
+\series bold
+Teorema de Minding:
+\series default
+ Dos superficies regulares con igual curvatura de Gauss constante son localmente
+ isométricas.
+\end_layout
+
+\begin_layout Standard
+
+\series bold
+Demostración:
+\series default
+ Sean
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $S_{2}$
+\end_inset
+
+ dos superficies regulares con curvatura de Gauss constante
+\begin_inset Formula $K\in\mathbb{R}$
+\end_inset
+
+,
+\begin_inset Formula $p_{1}\in S_{1}$
+\end_inset
+
+,
+\begin_inset Formula $p_{2}\in S_{2}$
+\end_inset
+
+,
+\begin_inset Formula ${\cal U}_{1}$
+\end_inset
+
+ y
+\begin_inset Formula ${\cal U}_{2}$
+\end_inset
+
+ entornos estrellados del 0 para los que existen difeomorfismos
+\begin_inset Formula $\exp_{p_{1}}:{\cal U}_{1}\to U_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $\exp_{p_{2}}:{\cal U}_{2}\to U_{2}$
+\end_inset
+
+,
+\begin_inset Formula $\varepsilon>0$
+\end_inset
+
+ con
+\begin_inset Formula ${\cal D}(0_{p_{1}},\varepsilon)\subseteq{\cal U}_{1}$
+\end_inset
+
+ y
+\begin_inset Formula ${\cal D}(0_{p_{2}},\varepsilon)\subseteq{\cal U}_{2}$
+\end_inset
+
+,
+\begin_inset Formula $V_{1}:=D(p_{1},\varepsilon)$
+\end_inset
+
+ y
+\begin_inset Formula $V_{2}:=D(p_{2},\varepsilon)$
+\end_inset
+
+, entonces
+\begin_inset Formula $\exp_{p_{1}}:{\cal D}(0_{p_{1}},\varepsilon)\to V_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $\exp_{p_{2}}:{\cal D}(0_{p_{2}},\varepsilon)\to V_{2}$
+\end_inset
+
+ son difeomorfismos.
+\end_layout
+
+\begin_layout Standard
+Sean ahora
+\begin_inset Formula $(e_{1},e_{2})$
+\end_inset
+
+ una base ortonormal de
+\begin_inset Formula $T_{p_{1}}S_{1}$
+\end_inset
+
+,
+\begin_inset Formula $(f_{1},f_{2})$
+\end_inset
+
+ una de
+\begin_inset Formula $T_{p_{2}}S_{2}$
+\end_inset
+
+ y
+\begin_inset Formula $\tilde{\varphi}:T_{p_{1}}S_{1}\to T_{p_{2}}S_{2}$
+\end_inset
+
+ una isometría lineal dada por
+\begin_inset Formula $\tilde{\varphi}(e_{1}):=f_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $\tilde{\varphi}(e_{2}):=f_{2}$
+\end_inset
+
+, entonces
+\begin_inset Formula $\tilde{\varphi}({\cal D}(0_{p_{1}},\varepsilon))={\cal D}(0_{p_{2}},\varepsilon)$
+\end_inset
+
+ y
+\begin_inset Formula
+\[
+\varphi:=\exp_{p_{2}}\circ\tilde{\varphi}|_{{\cal D}(0_{p_{1}},\varepsilon)}\circ\exp_{p_{1}}^{-1}:D(p_{1},\varepsilon)\to D(p_{2},\varepsilon)
+\]
+
+\end_inset
+
+es un difeomorfismo, y queremos ver que también es una isometría.
+\end_layout
+
+\begin_layout Standard
+Para ello, tomando coordenadas geodésicas polares
+\begin_inset Formula $X(r,\theta)$
+\end_inset
+
+ en
+\begin_inset Formula $D(p_{1},\varepsilon)$
+\end_inset
+
+ con base
+\begin_inset Formula $(e_{1},e_{2})$
+\end_inset
+
+ y
+\begin_inset Formula $\overline{X}(r,\theta)$
+\end_inset
+
+ en
+\begin_inset Formula $D(p_{2},\varepsilon)$
+\end_inset
+
+ con base
+\begin_inset Formula $(f_{1},f_{2})$
+\end_inset
+
+, sean
+\begin_inset Formula $E,F,G$
+\end_inset
+
+ y
+\begin_inset Formula $\overline{E},\overline{F},\overline{G}$
+\end_inset
+
+ los coeficientes de la primera forma fundamental de
+\begin_inset Formula $X$
+\end_inset
+
+ y
+\begin_inset Formula $\overline{X}$
+\end_inset
+
+,
+\begin_inset Formula $E=\overline{E}=1$
+\end_inset
+
+,
+\begin_inset Formula $F=\overline{F}=0$
+\end_inset
+
+ y, como
+\begin_inset Formula $G$
+\end_inset
+
+ y
+\begin_inset Formula $\overline{G}$
+\end_inset
+
+ vienen dados por
+\begin_inset Formula $K$
+\end_inset
+
+,
+\begin_inset Formula $G=\overline{G}$
+\end_inset
+
+.
+ Además,
+\begin_inset Formula
+\begin{align*}
+\varphi(X(r,\theta)) & =\varphi(\exp_{p_{1}}(r\cos\theta e_{1}+r\sin\theta e_{2}))=\exp_{p_{2}}(\tilde{\varphi}(r\cos\theta e_{1}+r\sin\theta e_{2}))=\\
+ & =\exp_{p_{2}}(r\cos\theta f_{1}+r\sin\theta f_{2})=\overline{X}(r,\theta),
+\end{align*}
+
+\end_inset
+
+luego
+\begin_inset Formula $d\varphi_{X(r,\theta)}:T_{X(r,\theta)}S_{1}\to T_{\varphi(X(r,\theta))}S_{2}$
+\end_inset
+
+ cumple
+\begin_inset Formula
+\begin{align*}
+d\varphi_{X(r,\theta)}(X_{r}(r,\theta)) & =\frac{d}{dr}(\varphi(X(r,\theta)))=\overline{X}_{r}(r,\theta), & d\varphi_{X(r,\theta)}(X_{\theta}(r,\theta)) & =\overline{X}_{\theta}(r,\theta),
+\end{align*}
+
+\end_inset
+
+de modo que
+\begin_inset Formula
+\[
+{\textstyle \left\langle d\varphi_{X}(X_{r}),d\varphi_{X}(X_{r})\right\rangle =\left\langle \overline{X}_{r},\overline{X}_{r}\right\rangle =\overline{E}=E=\left\langle X_{r},X_{r}\right\rangle }
+\]
+
+\end_inset
+
+y, análogamente,
+\begin_inset Formula $\langle d\varphi_{X}(X_{r}),d\varphi_{X}(X_{\theta})\rangle=\langle X_{r},X_{\theta}\rangle$
+\end_inset
+
+ y
+\begin_inset Formula $\langle d\varphi_{X}(X_{\theta}),d\varphi_{X}(X_{\theta})\rangle=\langle X_{\theta},X_{\theta}\rangle$
+\end_inset
+
+.
+ Como
+\begin_inset Formula $(X_{r},X_{\theta})$
+\end_inset
+
+ es una base de
+\begin_inset Formula $T_{X}S_{1}$
+\end_inset
+
+,
+\begin_inset Formula $\varphi$
+\end_inset
+
+ es una isometría.
+\end_layout
+
+\end_body
+\end_document