diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2021-04-11 18:18:20 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2021-04-11 18:18:20 +0200 |
| commit | 049bcf5a0f3a7d8c299a3265d98c497ec01c7440 (patch) | |
| tree | c104b54137be9f69b2d2aa3a12a3c13c52bff7b0 | |
| parent | e8973e3e26f3bbcfd878b788bd9cf9e518da19c3 (diff) | |
| parent | 0aabe861f89648215c41858f98e21f96a2e26f30 (diff) | |
Merge branch 'ggs'
| -rw-r--r-- | ggs/n3.lyx | 2388 |
1 files changed, 2388 insertions, 0 deletions
diff --git a/ggs/n3.lyx b/ggs/n3.lyx new file mode 100644 index 0000000..7210f7f --- /dev/null +++ b/ggs/n3.lyx @@ -0,0 +1,2388 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Sean +\begin_inset Formula $S$ +\end_inset + + una superficie regular y +\begin_inset Formula $p\in S$ +\end_inset + +, la +\series bold +aplicación exponencial +\series default + en +\begin_inset Formula $p$ +\end_inset + + es +\begin_inset Formula $\exp_{p}:{\cal D}_{p}\to S$ +\end_inset + + dada por +\begin_inset Formula +\[ +\exp_{p}(v)=\gamma_{v}(1), +\] + +\end_inset + +donde +\begin_inset Formula ${\cal D}_{p}:=\{v\in T_{p}S:1\in I_{v}\}$ +\end_inset + +. + Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $0\in{\cal D}_{p}$ +\end_inset + + y +\begin_inset Formula $\exp_{p}(0)=p$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall v\in T_{p}S,t\in I_{v},(tv\in{\cal D}_{p}\land\exp_{p}(tv)=\gamma_{v}(t))$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula $t=0$ +\end_inset + +, +\begin_inset Formula $\exp_{p}(0)=\gamma_{v}(0)=p$ +\end_inset + +, y si +\begin_inset Formula $v=0$ +\end_inset + +, +\begin_inset Formula $\exp_{p}(0)=\gamma_{0}(t)=p$ +\end_inset + +. + Si +\begin_inset Formula $t,v\neq0$ +\end_inset + +, +\begin_inset Formula $1=\frac{1}{t}t\in\frac{1}{t}I_{v}=I_{tv}$ +\end_inset + +, luego +\begin_inset Formula $tv\in{\cal D}_{p}$ +\end_inset + + y +\begin_inset Formula $\exp_{p}(tv)=\gamma_{tv}(1)=\gamma_{v}(t)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula ${\cal D}_{p}$ +\end_inset + + es estrellado respecto a 0. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $v\in{\cal D}_{p}$ +\end_inset + + y +\begin_inset Formula $t\in[0,1]$ +\end_inset + +, como +\begin_inset Formula $1\in I_{v}$ +\end_inset + +, +\begin_inset Formula $t\in[0,1]\subseteq I_{v}$ +\end_inset + + y por tanto +\begin_inset Formula $tv\in{\cal D}_{p}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\forall v\in T_{p}S,\exists\lambda>0:\lambda v\in{\cal D}_{p}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Existe +\begin_inset Formula $\varepsilon>0$ +\end_inset + + con +\begin_inset Formula $(-\varepsilon,\varepsilon)\subseteq I_{v}$ +\end_inset + +, y tomando +\begin_inset Formula $|\lambda|<\varepsilon$ +\end_inset + + es +\begin_inset Formula $\lambda\in I_{v}$ +\end_inset + + y +\begin_inset Formula $\lambda v\in{\cal D}_{p}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula ${\cal D}_{p}$ +\end_inset + + es abierto y +\begin_inset Formula $\exp_{p}$ +\end_inset + + es diferenciable. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $d(\exp_{p})_{0}=1_{T_{p}S}$ +\end_inset + +, y en particular +\begin_inset Formula $\exp_{p}$ +\end_inset + + es un difeomorfismo local en 0. +\end_layout + +\begin_deeper +\begin_layout Standard +Como +\begin_inset Formula ${\cal D}_{p}\subseteq T_{p}S$ +\end_inset + + y el plano tangente a un plano es él mismo, +\begin_inset Formula $T_{0}{\cal D}_{p}=T_{0}(T_{p}S)=T_{p}S$ +\end_inset + +. + Entonces, para +\begin_inset Formula $w\in T_{p}S$ +\end_inset + +, sea +\begin_inset Formula $\alpha(t):=tw$ +\end_inset + +, existe +\begin_inset Formula $\varepsilon>0$ +\end_inset + + tal que +\begin_inset Formula $\alpha((-\varepsilon,\varepsilon))\subseteq{\cal D}_{p}$ +\end_inset + +, de modo que +\begin_inset Formula $d(\exp_{p})_{0}:(T_{0}{\cal D}_{p}=T_{p}S)\to(T_{\exp_{p(0)}}S=T_{p}S)$ +\end_inset + + viene dada por +\begin_inset Formula +\[ +d(\exp_{p})_{0}(w)=\frac{d}{dt}(\exp_{p}(\alpha(t)))(0)=\frac{d}{dt}(\exp_{p}(tw))(0)=\frac{d}{dt}(\gamma_{w}(t))(0)=\gamma'_{w}(0)=w. +\] + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Standard +Un entorno +\begin_inset Formula $V$ +\end_inset + + de +\begin_inset Formula $p_{0}\in S$ +\end_inset + + es +\series bold +estrellado +\series default + respecto a +\begin_inset Formula $p_{0}$ +\end_inset + + si para +\begin_inset Formula $p\in V$ +\end_inset + + existe un segmento de geodésica que une +\begin_inset Formula $p_{0}$ +\end_inset + + con +\begin_inset Formula $p$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Un +\series bold +entorno normal +\series default + de +\begin_inset Formula $p_{0}\in S$ +\end_inset + + es un entorno +\begin_inset Formula $V$ +\end_inset + + de +\begin_inset Formula $p_{0}$ +\end_inset + + en +\begin_inset Formula $S$ +\end_inset + + para el que existe un entorno +\begin_inset Formula ${\cal U}$ +\end_inset + + del 0 en +\begin_inset Formula $T_{p_{0}}S$ +\end_inset + + estrellado respecto al 0 tal que +\begin_inset Formula $\exp_{p_{0}}|_{{\cal U}}:{\cal U}\to V$ +\end_inset + + es un difeomorfismo. + En estas condiciones, para +\begin_inset Formula $p\in V$ +\end_inset + +, sean +\begin_inset Formula $v_{p}:=\exp_{p_{0}}^{-1}(p)\in{\cal U}$ +\end_inset + + y el segmento de geodésica +\begin_inset Formula $\gamma_{p}:=\gamma_{v_{p}}|_{[0,1]}:[0,1]\to V$ +\end_inset + +, entonces +\begin_inset Formula $\gamma_{p}(t)=\exp_{p_{0}}(tv_{p})$ +\end_inset + + para +\begin_inset Formula $t\in[0,1]$ +\end_inset + +, +\begin_inset Formula $\gamma_{p}(0)=p_{0}$ +\end_inset + + y +\begin_inset Formula $\gamma_{p}(1)=p$ +\end_inset + +, por lo que +\begin_inset Formula $\gamma_{p}$ +\end_inset + + es el +\series bold +segmento de geodésica radial +\series default + que une +\begin_inset Formula $p_{0}$ +\end_inset + + con +\begin_inset Formula $p$ +\end_inset + +. + Así, todo entorno normal de +\begin_inset Formula $p_{0}$ +\end_inset + + es estrellado respecto a +\begin_inset Formula $p_{0}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Lema de Gauss +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $S$ +\end_inset + + una superficie regular, +\begin_inset Formula $p\in S$ +\end_inset + +, +\begin_inset Formula $v\in{\cal D}_{p}\setminus0$ +\end_inset + + y +\begin_inset Formula $w\in T_{p}S$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\langle d(\exp_{p})_{v}(v),d(\exp_{p})_{v}(w)\rangle=\langle v,w\rangle. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Supongamos que +\begin_inset Formula $v$ +\end_inset + + y +\begin_inset Formula $w$ +\end_inset + + son colineales y sea +\begin_inset Formula $\lambda\in\mathbb{R}$ +\end_inset + + tal que +\begin_inset Formula $w=\lambda v$ +\end_inset + +. + Sea +\begin_inset Formula $\alpha:(-\varepsilon,\varepsilon)\to{\cal D}_{p}$ +\end_inset + + dada por +\begin_inset Formula $\alpha(t):=v+tw=(1+\lambda t)v$ +\end_inset + +, entonces +\begin_inset Formula +\[ +d(\exp_{p})_{v}(w)=\frac{d}{dt}(\exp_{p}(\alpha(t)))(0)=\frac{d}{dt}(\exp_{p}((1+\lambda t)v))(0)=\frac{d}{dt}(\gamma_{v}(1+\lambda t))=\lambda\gamma'_{v}(1+\lambda t), +\] + +\end_inset + +luego +\begin_inset Formula $\Vert d(\exp_{p})_{v}(w)\Vert=\Vert\lambda\gamma'_{v}(1)\Vert=|\lambda|\Vert\gamma'_{v}(1)\Vert=|\lambda|\Vert v\Vert=\Vert w\Vert$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Para el caso general, sea +\begin_inset Formula $\tau:\mathbb{R}\times\mathbb{R}\to T_{p}S$ +\end_inset + + dada por +\begin_inset Formula $\tau(s,t):=s\alpha(t):=s(v+tw)$ +\end_inset + +, para todo +\begin_inset Formula $t$ +\end_inset + + es +\begin_inset Formula $\tau(0,t)=0$ +\end_inset + + y +\begin_inset Formula $\tau(1,t)=v+tw$ +\end_inset + +, y como +\begin_inset Formula $\tau$ +\end_inset + + es lineal sobre la primera variable, si +\begin_inset Formula $\tau(1,t)\in{\cal D}_{p}$ +\end_inset + +, +\begin_inset Formula $\tau([0,1]\times\{t\})=[\tau(0,t),\tau(1,t)]=[0,v+tw]\in{\cal D}_{p}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como +\begin_inset Formula $\tau(1,0)=v\in{\cal D}_{p}$ +\end_inset + +, se tiene +\begin_inset Formula $\tau([0,1]\times\{0\})\subseteq{\cal D}_{p}$ +\end_inset + +. + Para cada +\begin_inset Formula $s\in[0,1]$ +\end_inset + + existe un entorno de +\begin_inset Formula $\tau(s,0)$ +\end_inset + + contenido en +\begin_inset Formula ${\cal D}_{p}$ +\end_inset + + y, por ser +\begin_inset Formula $\tau$ +\end_inset + + continua, existe un +\begin_inset Formula $\varepsilon_{s}>0$ +\end_inset + + con +\begin_inset Formula $\tau(B_{\infty}((s,0),\varepsilon_{s}))\subseteq{\cal D}_{p}$ +\end_inset + +. + Ahora bien, +\begin_inset Formula $\{B_{\infty}((s,0),\varepsilon_{s})\}_{s\in[0,1]}$ +\end_inset + + es un cubrimiento por abiertos de +\begin_inset Formula $[0,1]\times\{0\}$ +\end_inset + + que admite pues un subrecubrimiento finito +\begin_inset Formula $\{B_{\infty}((s_{i},0),\varepsilon_{s_{i}})\}_{i=1}^{k}$ +\end_inset + +. + Proyectando el subrecubrimiento +\begin_inset Formula $A:=\bigcup_{i=1}^{k}B_{\infty}((s_{i},0),\varepsilon_{s_{i}})$ +\end_inset + + en +\begin_inset Formula $\mathbb{R}\times0$ +\end_inset + + queda un abierto que contiene a +\begin_inset Formula $[0,1]$ +\end_inset + + y por tanto contiene un intervalo +\begin_inset Formula $(-\varepsilon',1+\varepsilon')$ +\end_inset + +. + Sea +\begin_inset Formula $\varepsilon:=\min\{\varepsilon_{s_{1}},\dots,\varepsilon_{s_{k}},\varepsilon'\}$ +\end_inset + +, para +\begin_inset Formula $s\in(-\varepsilon',1+\varepsilon')$ +\end_inset + + se tiene +\begin_inset Formula +\[ +(\max\{s-\varepsilon,-\varepsilon'\},\min\{s+\varepsilon,1+\varepsilon'\})\times(-\varepsilon,\varepsilon)\subseteq A, +\] + +\end_inset + +luego +\begin_inset Formula $\tau((-\varepsilon,1+\varepsilon)\times(-\varepsilon,\varepsilon))\subseteq{\cal D}_{p}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sea ahora +\begin_inset Formula $\varphi:=\exp_{p}\circ\tau:(-\varepsilon,1+\varepsilon)\times(-\varepsilon,\varepsilon)\to S$ +\end_inset + +. + Se tiene +\begin_inset Formula +\begin{align*} +\frac{\partial\varphi}{\partial s}(s,t) & =\frac{\partial}{\partial s}(\exp_{p}(s\alpha(t)))(s,t)=\frac{\partial}{\partial s}(\gamma_{\alpha(t)}(s))(s,t)=\gamma'_{\alpha(t)}(s)\\ + & =\frac{d}{ds}(\exp_{p}(s\alpha(t)))(s,t)=d(\exp_{p})_{s\alpha(t)}(\alpha(t)), +\end{align*} + +\end_inset + +donde la última igualdad es por la regla de la cadena, luego +\begin_inset Formula +\[ +\left\Vert \frac{\partial\varphi}{\partial s}(s,t)\right\Vert ^{2}=\Vert\gamma'_{\alpha(t)}(s)\Vert^{2}=\Vert\gamma'_{\alpha(t)}(0)\Vert^{2}=\Vert\alpha(t)\Vert^{2}=\Vert v\Vert^{2}+2t\langle v,w\rangle+t^{2}\Vert w\Vert^{2}, +\] + +\end_inset + +y por otro lado +\begin_inset Formula +\begin{align*} +\frac{\partial\varphi}{\partial s}(s,0) & =d(\exp_{p})_{sv}(v), & \frac{\partial\varphi}{\partial s}(0,0) & =d(\exp_{p})_{0}(v)=v, & \frac{\partial\varphi}{\partial s}(1,0) & =d(\exp_{p})_{v}(v). +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Por otra parte, +\begin_inset Formula +\begin{align*} +\frac{\partial\varphi}{\partial t}(0,t) & =\frac{\partial}{\partial t}(\exp_{p}(0))=0, & \frac{\partial}{\partial t}(1,t) & =\frac{\partial}{\partial t}(\exp_{p}(v+tw))=d(\exp_{p})_{v+tw}(w), +\end{align*} + +\end_inset + +de modo que +\begin_inset Formula $\frac{\partial\varphi}{\partial t}(1,0)=d(\exp_{p})_{v}(w)$ +\end_inset + +. + Sea +\begin_inset Formula $f:(-\varepsilon,1+\varepsilon)\to\mathbb{R}$ +\end_inset + + dada por +\begin_inset Formula +\[ +f(s):=\left\langle \frac{\partial\varphi}{\partial s}(s,0),\frac{\partial\varphi}{\partial t}(s,0)\right\rangle , +\] + +\end_inset + +de modo que en particular +\begin_inset Formula $f(0)=\langle v,0\rangle=0$ +\end_inset + +, +\begin_inset Formula $f(1)=\langle d(\exp_{p})_{v}(v),d(\exp_{p})_{v}(w)\rangle$ +\end_inset + + y queremos ver que +\begin_inset Formula $f(1)=\langle v,w\rangle$ +\end_inset + +. + Como +\begin_inset Formula $\frac{\partial\varphi}{\partial s}(s,t)=\gamma'_{\alpha(t)}(s)$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +\frac{\partial^{2}\varphi}{\partial s^{2}}(s,t) & =\gamma''_{\alpha(t)}(s), & \frac{\partial^{2}\varphi}{\partial s^{2}}(s,0) & =\gamma''_{\alpha(0)}(s)=\gamma''_{v}(s)\in T_{\gamma_{v}(s)}S^{\bot}, +\end{align*} + +\end_inset + +pues +\begin_inset Formula $\gamma_{v}$ +\end_inset + + es una geodésica y +\begin_inset Formula $\frac{D\gamma'_{v}}{ds}=0$ +\end_inset + +. + Por otro lado, para +\begin_inset Formula $s\in(-\varepsilon,1+\varepsilon)$ +\end_inset + +, sea +\begin_inset Formula $\beta_{s}(t):(-\varepsilon,\varepsilon)\to S$ +\end_inset + + dada por +\begin_inset Formula $\beta_{s}(t):=\exp_{p}(s\alpha(t))$ +\end_inset + +, +\begin_inset Formula $\beta_{s}$ +\end_inset + + es una curva porque +\begin_inset Formula $\exp_{p}$ +\end_inset + + es un difeomorfismo y +\begin_inset Formula $\alpha(t)=v+tw\neq0$ +\end_inset + + para ningún +\begin_inset Formula $t$ +\end_inset + + (si lo fuera, +\begin_inset Formula $v$ +\end_inset + + y +\begin_inset Formula $w$ +\end_inset + + serían colineales), de modo que, como +\begin_inset Formula $\beta_{s}(0)=\exp_{p}(sv)=\gamma_{v}(s)$ +\end_inset + +, +\begin_inset Formula +\[ +\frac{\partial\varphi}{\partial t}(s,0)=\frac{\partial}{\partial t}(\exp_{p}(s\alpha(t)))(s,0)=\beta'_{s}(0)\in T_{\beta_{s}(0)}S=T_{\gamma_{v}(s)}S, +\] + +\end_inset + +y entonces +\begin_inset Formula +\begin{align*} +f'(s) & =\left\langle \frac{\partial^{2}\varphi}{\partial s^{2}}(s,0),\frac{\partial\varphi}{\partial t}(s,0)\right\rangle +\left\langle \frac{\partial\varphi}{\partial s}(s,0),\frac{\partial^{2}\varphi}{\partial t\partial s}(s,0)\right\rangle =\left\langle \frac{\partial\varphi}{\partial s}(s,0),\frac{\partial^{2}\varphi}{\partial s\partial t}(s,0)\right\rangle \\ + & =\frac{1}{2}\frac{\partial}{\partial t}\left(\left\langle \frac{\partial\varphi}{\partial s}(s,0),\frac{\partial\varphi}{\partial s}(s,0)\right\rangle \right)(0)=\frac{1}{2}\frac{\partial}{\partial t}\left(\left\Vert \frac{\partial\varphi}{\partial s}(s,0)\right\Vert ^{2}\right)(0)\\ + & =\frac{1}{2}\frac{\partial}{\partial t}(\Vert v\Vert^{2}+2t\langle v,w\rangle+t^{2}\Vert w\Vert^{2})(0)=\frac{1}{2}(t\mapsto2\langle v,w\rangle+2t\Vert w\Vert^{2})(0)=\frac{1}{2}2\langle v,w\rangle=\langle v,w\rangle. +\end{align*} + +\end_inset + +Por tanto, +\begin_inset Formula +\[ +f(1)=f(0)+\int_{0}^{1}f'(s)ds=\left[s\langle v,w\rangle\right]_{s=0}^{1}=\langle v,w\rangle. +\] + +\end_inset + + +\end_layout + +\begin_layout Section +Propiedad minimizante de las geodésicas +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $S$ +\end_inset + + una superficie regular, +\begin_inset Formula $p\in S$ +\end_inset + +, +\begin_inset Formula $v\in{\cal D}_{p}\setminus0$ +\end_inset + + y +\begin_inset Formula $w\in T_{p}S$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $v$ +\end_inset + + y +\begin_inset Formula $w$ +\end_inset + + son colineales, +\begin_inset Formula $\Vert d(\exp_{p})_{v}(w)\Vert=\Vert w\Vert$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula $w=0$ +\end_inset + + esto es obvio. + Sea +\begin_inset Formula $\lambda\neq0$ +\end_inset + + con +\begin_inset Formula $w=\lambda v$ +\end_inset + +, se tiene +\begin_inset Formula $v=\frac{1}{\lambda}w$ +\end_inset + + y, por el lema de Gauss, +\begin_inset Formula +\begin{align*} +\langle d(\exp_{p})_{v}(v),d(\exp_{p})_{v}(w)\rangle & =\langle\tfrac{1}{\lambda}d(\exp_{p})_{v}(w),d(\exp_{p})_{v}(w)\rangle=\tfrac{1}{\lambda}\Vert d(\exp_{p})_{v}(w)\Vert^{2}\\ + & =\langle v,w\rangle=\langle\tfrac{1}{\lambda}w,w\rangle=\tfrac{1}{\lambda}\Vert w\Vert^{2}, +\end{align*} + +\end_inset + +y despejando se obtiene el resultado. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $v$ +\end_inset + + y +\begin_inset Formula $w$ +\end_inset + + son ortogonales, entonces +\begin_inset Formula $d(\exp_{p})_{v}(v)$ +\end_inset + + y +\begin_inset Formula $d(\exp_{p})_{v}(w)$ +\end_inset + + también. +\end_layout + +\begin_deeper +\begin_layout Standard +Por el lema de Gauss, +\begin_inset Formula $\langle d(\exp_{p})_{v}(v),d(\exp_{p})_{v}(w)\rangle=\langle v,w\rangle=0$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Sean +\begin_inset Formula $S$ +\end_inset + + una superficie regular, +\begin_inset Formula $p\in S$ +\end_inset + + y +\begin_inset Formula $r>0$ +\end_inset + + tal que +\begin_inset Formula ${\cal D}(0,r):=\{v\in T_{p}S:\Vert v\Vert<r\}\subseteq{\cal D}_{p}$ +\end_inset + +, llamamos +\series bold +disco geodésico +\series default + de centro +\begin_inset Formula $p$ +\end_inset + + y radio +\begin_inset Formula $r$ +\end_inset + + a +\begin_inset Formula $D(p,r):=\exp_{p}({\cal D}(0,r))$ +\end_inset + +, y si +\begin_inset Formula $r$ +\end_inset + + cumple que +\begin_inset Formula ${\cal S}(0,r):=\{v\in T_{p}S:\Vert v\Vert=r\}\subseteq{\cal D}_{p}$ +\end_inset + +, llamamos +\series bold +circunferencia geodésica +\series default + de centro +\begin_inset Formula $p$ +\end_inset + + y radio +\begin_inset Formula $r$ +\end_inset + + a +\begin_inset Formula $S(p,r):=\exp_{p}({\cal S}(0,r))$ +\end_inset + +. + Llamamos +\series bold +radio geodésico +\series default + que sale de +\begin_inset Formula $p$ +\end_inset + + con dirección +\begin_inset Formula $v\in T_{p}S$ +\end_inset + + a +\begin_inset Formula $\exp_{p}(\{\lambda v\}_{v\geq0}\cap{\cal D}_{p})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $V$ +\end_inset + + es un entorno normal de +\begin_inset Formula $p_{0}\in S$ +\end_inset + + y +\begin_inset Formula $p\in V\setminus\{p_{0}\}$ +\end_inset + +, el segmento de geodésica +\begin_inset Formula $\gamma_{p}:[0,1]\to V$ +\end_inset + + que une +\begin_inset Formula $p_{0}$ +\end_inset + + a +\begin_inset Formula $p$ +\end_inset + + es la única curva en +\begin_inset Formula $V$ +\end_inset + + de menor longitud que une +\begin_inset Formula $p_{0}$ +\end_inset + + a +\begin_inset Formula $p$ +\end_inset + +, salvo reparametrización, y si existe +\begin_inset Formula $r>0$ +\end_inset + + con +\begin_inset Formula $p\in D(p_{0},r)\subseteq V$ +\end_inset + +, entonces +\begin_inset Formula $\gamma_{p}$ +\end_inset + + es una curva de menor longitud que une +\begin_inset Formula $p_{0}$ +\end_inset + + a +\begin_inset Formula $p$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $v_{p}:=\exp_{p_{0}}^{-1}(p)$ +\end_inset + +, entonces +\begin_inset Formula +\[ +L(\gamma_{p})=\int_{0}^{1}\Vert\gamma_{p}'(t)\Vert dt=\int_{0}^{1}\Vert\gamma_{p}'(0)\Vert dt=\Vert\gamma_{p}'(0)\Vert=\Vert v_{p}\Vert. +\] + +\end_inset + +Sea +\begin_inset Formula $\alpha:[a,b]\to V$ +\end_inset + + otra curva que une +\begin_inset Formula $p_{0}$ +\end_inset + + a +\begin_inset Formula $p$ +\end_inset + +, y queremos ver que +\begin_inset Formula $L(\alpha)\geq L(\gamma_{p})$ +\end_inset + + y que la igualdad solo la alcanzan las reparametrizaciones. + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $A:=\alpha^{-1}(\{p_{0}\})$ +\end_inset + + y +\begin_inset Formula $t_{0}:=\sup A$ +\end_inset + +, existe una sucesión +\begin_inset Formula $\{t_{n}\}_{n}\subseteq A$ +\end_inset + + que converge a +\begin_inset Formula $t_{0}$ +\end_inset + + y por tanto +\begin_inset Formula $\alpha(t_{0})=\alpha(\lim_{n}t_{n})=\lim_{n}\alpha(t_{n})=p_{0}$ +\end_inset + + y +\begin_inset Formula $t_{0}\in A$ +\end_inset + +, luego +\begin_inset Formula $t_{0}=\max\{t\in[a,b]:\alpha(t)=p_{0}\}<b$ +\end_inset + + (pues +\begin_inset Formula $\alpha(b)=p\neq p_{0}$ +\end_inset + +), de modo que podemos restringir +\begin_inset Formula $\alpha$ +\end_inset + + a +\begin_inset Formula $[t_{0},b]$ +\end_inset + + y reparametrizar para obtener una curva +\begin_inset Formula $\alpha':[0,1]\to\alpha$ +\end_inset + + que une +\begin_inset Formula $p_{0}$ +\end_inset + + a +\begin_inset Formula $p$ +\end_inset + +. + Como +\begin_inset Formula $L(\alpha')=L_{t_{0}}^{b}(\alpha)\geq L(\alpha)$ +\end_inset + +, basta demostrar la propiedad para +\begin_inset Formula $\alpha:=\alpha'$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula ${\cal U}\subseteq{\cal D}_{p}$ +\end_inset + + un abierto estrellado en 0 con +\begin_inset Formula $V=\exp_{p_{0}}({\cal U})$ +\end_inset + + y +\begin_inset Formula $\tilde{\alpha}:=\exp_{p_{0}}^{-1}\circ\alpha:[0,1]\to{\cal U}$ +\end_inset + +, que cumple +\begin_inset Formula $\tilde{\alpha}(0)=0$ +\end_inset + +, +\begin_inset Formula $\tilde{\alpha}(1)=v_{p}$ +\end_inset + + y +\begin_inset Formula $\forall t>0,\tilde{\alpha}(t)\neq0$ +\end_inset + +. + Sean entonces +\begin_inset Formula $r(t):=\Vert\tilde{\alpha}(t)\Vert$ +\end_inset + + y, para +\begin_inset Formula $t>0$ +\end_inset + +, +\begin_inset Formula $V(t):=\frac{\tilde{\alpha}(t)}{\Vert\tilde{\alpha}(t)\Vert}$ +\end_inset + +, de modo que +\begin_inset Formula $\alpha(T)=\exp_{p_{0}}(r(t)V(t))$ +\end_inset + + para +\begin_inset Formula $t>0$ +\end_inset + + y +\begin_inset Formula +\begin{align*} +\alpha'(t) & =\frac{d}{dt}\left(\exp_{p_{0}}(\tilde{\alpha}(t))\right)(0)=d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(\tilde{\alpha}'(t))=d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(r'(t)V(t)+r(t)V'(t))\\ + & =r'(t)d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V(t))+r(t)d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t)). +\end{align*} + +\end_inset + +Entonces +\begin_inset Formula $\Vert\alpha'(t)\Vert^{2}=r'(t)^{2}\Vert d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V(t))\Vert^{2}+2r(t)r'(t)\langle d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V(t)),d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t))\rangle+r(t)^{2}\Vert d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t))\Vert^{2}$ +\end_inset + +. + Como +\begin_inset Formula $V(t)$ +\end_inset + + es colineal con +\begin_inset Formula $\tilde{\alpha}(t)=r(t)V(t)$ +\end_inset + +, +\begin_inset Formula $\Vert d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V(t))\Vert=\Vert V(t)\Vert=1$ +\end_inset + +, luego +\begin_inset Formula $\langle r(t)V(t),V'(t)\rangle=r(t)\langle V(t),V'(t)\rangle=0$ +\end_inset + + y +\begin_inset Formula +\begin{multline*} +\langle d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V(t)),d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t))\rangle=\\ +=\frac{1}{r(t)}\langle d(\exp_{p_{0}})_{r(t)V(t)}(r(t)V(t)),d(\exp_{p_{0}})_{r(t)V(t)}(V'(t))\rangle=0. +\end{multline*} + +\end_inset + +Así, +\begin_inset Formula $\Vert\alpha'(t)\Vert^{2}=r'(t)^{2}+r(t)^{2}\Vert d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t))\Vert^{2}\geq r'(t)^{2}$ +\end_inset + +, luego +\begin_inset Formula $\Vert\alpha'(t)\Vert\geq|r'(t)|$ +\end_inset + + para todo +\begin_inset Formula $t\in(0,1]$ +\end_inset + + y, para +\begin_inset Formula $\varepsilon\in(0,1]$ +\end_inset + +, +\begin_inset Formula +\[ +\int_{\varepsilon}^{1}\Vert\alpha'(t)\Vert dt\geq\int_{\varepsilon}^{1}r'(t)dt=r(1)-r(\varepsilon)=\Vert v_{p}\Vert-r(\varepsilon)=\Vert L(\gamma_{p})\Vert-r(\varepsilon), +\] + +\end_inset + +y por continuidad de +\begin_inset Formula $r$ +\end_inset + +, +\begin_inset Formula +\[ +L(\alpha)=\int_{0}^{1}\Vert\alpha'(t)\Vert dt\geq\lim_{\varepsilon\to0}(\Vert L(\gamma_{p})\Vert-r(\varepsilon))=\Vert L(\gamma_{p})\Vert. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $L(\alpha)=L(\gamma_{p})$ +\end_inset + +, como +\begin_inset Formula +\[ +L(\alpha)=\int_{0}^{1}\Vert\alpha'(t)\Vert dt=\int_{0}^{1}r'(t)dt=\Vert v_{p}\Vert +\] + +\end_inset + +y +\begin_inset Formula $\Vert\alpha'(t)\Vert\geq r'(t)$ +\end_inset + + para todo +\begin_inset Formula $t\in(0,1]$ +\end_inset + +, por monotonía de la integral es +\begin_inset Formula $\Vert\alpha'(t)\Vert=r'(t)$ +\end_inset + + para todo +\begin_inset Formula $t\in(0,1]$ +\end_inset + +, pero entonces +\begin_inset Formula $r(t)^{2}\Vert d(\exp_{p_{0}})_{\tilde{\alpha}}(V'(t))\Vert^{2}=0$ +\end_inset + + y, por tanto, +\begin_inset Formula $d(\exp_{p_{0}})_{\tilde{\alpha}(t)}(V'(t))=0$ +\end_inset + +, pero +\begin_inset Formula $\exp_{p_{0}}|_{{\cal U}}$ +\end_inset + + es un difeomorfismo, luego +\begin_inset Formula $d(\exp_{p_{0}})_{\tilde{\alpha}(t)}$ +\end_inset + + es inyectiva y +\begin_inset Formula $V'(t)=0$ +\end_inset + +. + Así, para +\begin_inset Formula $t>0$ +\end_inset + +, +\begin_inset Formula $V(t)=V(1)=\frac{v_{p}}{\Vert v_{p}\Vert}$ +\end_inset + +, luego +\begin_inset Formula +\[ +\alpha(t)=\exp_{p_{0}}\left(r(t)\frac{v_{p}}{\Vert v_{p}\Vert}\right)=\gamma_{v_{p}}\left(\frac{r(t)}{\Vert v_{p}\Vert}\right)=\gamma_{p}\left(\frac{r(t)}{\Vert v_{p}\Vert}\right), +\] + +\end_inset + +y además +\begin_inset Formula $\alpha(0)=p_{0}=\gamma_{p}(0)=\gamma_{p}(\frac{r(t)}{\Vert v_{p}\Vert})$ +\end_inset + +, luego +\begin_inset Formula $\alpha$ +\end_inset + + es una reparametrización de +\begin_inset Formula $\gamma_{p}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Finalmente, sea +\begin_inset Formula $r$ +\end_inset + + tal que +\begin_inset Formula $p\in D(p_{0},r)\subseteq V$ +\end_inset + +, de modo que +\begin_inset Formula $\exp_{p_{0}}:{\cal D}(0,r)\subseteq{\cal U}\to D(p_{0},r)\subseteq V$ +\end_inset + + es un difeomorfismo y +\begin_inset Formula $\Vert v_{p}\Vert<r$ +\end_inset + +. + Sea ahora +\begin_inset Formula $\alpha:[a,b]\to S$ +\end_inset + + con +\begin_inset Formula $\alpha(a)=p_{0}$ +\end_inset + + y +\begin_inset Formula $\alpha(b)=p$ +\end_inset + +. + Si +\begin_inset Formula $\alpha([a,b])\subseteq V$ +\end_inset + +, ya sabemos que +\begin_inset Formula $L(\gamma_{p})\leq L(\alpha)$ +\end_inset + +. + En otro caso, sea +\begin_inset Formula $r^{*}:=\frac{r+\Vert v_{p}\Vert}{2}$ +\end_inset + +, de modo que +\begin_inset Formula $v_{p}\in\overline{D(p_{0},r^{*})}\subseteq D(p_{0},r)$ +\end_inset + +, y si +\begin_inset Formula $\tilde{\alpha}:=\exp_{p_{0}}^{-1}\circ\alpha$ +\end_inset + +, como +\begin_inset Formula $\Vert\tilde{\alpha}(a)\Vert=0$ +\end_inset + + y existe un +\begin_inset Formula $t\in(a,b)$ +\end_inset + + con +\begin_inset Formula $\Vert\tilde{\alpha}(a)\Vert\geq r>r^{*}$ +\end_inset + +, por continuidad de +\begin_inset Formula $\Vert\tilde{\alpha}\Vert$ +\end_inset + + es +\begin_inset Formula +\[ +A:=\{t\in(a,b):\Vert\tilde{\alpha}(t)\Vert=r^{*}\}=\{t\in[a,b]:\alpha(t)\in S(p_{0},r^{*})\}\neq\emptyset. +\] + +\end_inset + +Entonces, como +\begin_inset Formula $\{r^{*}\}$ +\end_inset + + es compacto, +\begin_inset Formula $A$ +\end_inset + + también lo es y existe +\begin_inset Formula $t^{*}:=\min A$ +\end_inset + +, y llamando +\begin_inset Formula $p^{*}:=\alpha(t^{*})\in S(p_{0},r^{*})$ +\end_inset + +, +\begin_inset Formula +\[ +L(\gamma_{p})=\Vert v_{p}\Vert<r^{*}=\Vert v_{p^{*}}\Vert=L(\gamma_{p^{*}})\leq L_{a}^{t^{*}}(\alpha)\leq L(\alpha). +\] + +\end_inset + + +\end_layout + +\begin_layout Section +Coordenadas normales +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $V$ +\end_inset + + un entorno normal de +\begin_inset Formula $p_{0}\in S$ +\end_inset + + dado por un entorno +\begin_inset Formula ${\cal U}\subseteq{\cal D}_{p_{0}}$ +\end_inset + +, +\begin_inset Formula $(e_{1},e_{2})$ +\end_inset + + una base ortonormal de +\begin_inset Formula $T_{p_{0}}S$ +\end_inset + + y +\begin_inset Formula $\phi:\mathbb{R}^{2}\to T_{p_{0}}S$ +\end_inset + + dado por +\begin_inset Formula $\phi(u,v)=ue_{1}+ve_{2}$ +\end_inset + +, entonces +\begin_inset Formula $\phi(0,0)=0$ +\end_inset + + y +\begin_inset Formula $U:=\phi^{-1}({\cal U})$ +\end_inset + + es abierto en +\begin_inset Formula $\mathbb{R}^{2}$ +\end_inset + +, luego +\begin_inset Formula $X:U\subseteq\mathbb{R}^{2}\to V\subseteq S$ +\end_inset + + dada por +\begin_inset Formula $X(u,v):=\exp_{p_{0}}(\phi(u,v))$ +\end_inset + + es una parametrización llamada +\series bold +sistema de coordenadas normales +\series default + en +\begin_inset Formula $p_{0}$ +\end_inset + +. + Propiedades: +\begin_inset Formula $\forall(u,0),(0,v)\in U$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $X(0,0)=p_{0}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $X(0,0)=\exp_{p_{0}}(0)=p_{0}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $X_{u}(u,0)=\gamma'_{e_{1}}(u)$ +\end_inset + + y +\begin_inset Formula $X_{v}(0,v)=\gamma'_{e_{2}}(v)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $X_{u}(u,0)=\frac{d}{du}(\exp_{p_{0}}(ue_{1}))(u)=\frac{d}{du}(\gamma_{e_{1}}(u))(u)=\gamma'_{e_{1}}(u)$ +\end_inset + +, y para +\begin_inset Formula $X_{v}$ +\end_inset + + es análogo. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $X_{u}(0,0)=e_{1}$ +\end_inset + + y +\begin_inset Formula $X_{v}(0,0)=e_{2}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $E(u,0)=G(0,v)=1$ +\end_inset + +, +\begin_inset Formula $F(0,0)=0$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula +\begin{align*} +E(u,0) & =\langle X_{u},X_{u}\rangle(u,0)=\Vert\gamma'_{e_{1}}(u)\Vert^{2}=\Vert e_{1}\Vert^{2}=1,\\ +F(0,0) & =\langle X_{u},X_{v}\rangle(0,0)=\langle e_{1},e_{2}\rangle=0,\\ +G(0,v) & =\langle X_{v},X_{v}\rangle(0,v)=\Vert\gamma'_{e_{2}}(v)\Vert^{2}=\Vert e_{2}\Vert^{2}=1. +\end{align*} + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Section +Coordenadas polares +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $V$ +\end_inset + + un entorno normal de +\begin_inset Formula $p_{0}\in S$ +\end_inset + + dado por un entorno +\begin_inset Formula ${\cal U}\subseteq{\cal D}_{p_{0}}$ +\end_inset + +, +\begin_inset Formula $(e_{1},e_{2})$ +\end_inset + + una base ortonormal de +\begin_inset Formula $T_{p_{0}}S$ +\end_inset + +, +\begin_inset Formula $\ell:=\{\lambda e_{1}\}_{\lambda\geq0}$ +\end_inset + +, +\begin_inset Formula $\phi:(0,+\infty)\times(0,2\pi)\to T_{p_{0}}S\setminus\ell$ +\end_inset + + el difeomorfismo dado por +\begin_inset Formula +\[ +\phi(r,\theta):=r\cos\theta e_{1}+r\sin\theta e_{2}, +\] + +\end_inset + + +\begin_inset Formula $V_{0}:=\exp_{p_{0}}({\cal U}\setminus\ell)$ +\end_inset + + y +\begin_inset Formula $U_{0}:=\phi^{-1}({\cal U}\setminus\ell)$ +\end_inset + +, entonces +\begin_inset Formula $X:U_{0}\to V_{0}$ +\end_inset + + dado por +\begin_inset Formula $X(r,\theta):=\exp_{p_{0}}(\phi(r,\theta))$ +\end_inset + + es una parametrización llamada +\series bold +sistema de coordenadas +\series default + ( +\series bold +geodésicas +\series default +) +\series bold +polares centrado en +\begin_inset Formula $p_{0}$ +\end_inset + + +\series default +, aunque +\begin_inset Formula $p_{0}\notin V_{0}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, sea +\begin_inset Formula $X:U_{0}\to V_{0}$ +\end_inset + + el sistema de coordenadas polares centrado en +\begin_inset Formula $p_{0}$ +\end_inset + +, entonces, para +\begin_inset Formula $(r,\theta)\in U_{0}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $E(r,\theta)=1$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula $v_{\theta}:=(\cos\theta e_{1}+\sin\theta e_{2})$ +\end_inset + +, de modo que +\begin_inset Formula $X(r,\theta)=\exp_{p_{0}}(rv_{\theta})=\gamma_{v_{\theta}}(r)$ +\end_inset + +. + Entonces +\begin_inset Formula $X_{r}(r,\theta)=\gamma'_{v_{\theta}}(r)$ +\end_inset + + y +\begin_inset Formula $E(r,\theta)=\Vert X_{r}(r,\theta)\Vert^{2}=\Vert\gamma'_{v_{\theta}}(r)\Vert=\Vert v_{\theta}\Vert^{2}=1$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $F(r,\theta)=0$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula +\begin{align*} +X_{r}(r,\theta) & =\frac{d}{dr}(\exp_{p_{0}}(rv_{\theta}))(r)=d(\exp_{p_{0}})_{rv_{\theta}}(v_{\theta}),\\ +X_{\theta}(r,\theta) & =\frac{d}{d\theta}(\exp_{p_{0}}(rv_{\theta}))(\theta)=d(\exp_{p_{0}})_{rv_{\theta}}(rv'_{\theta}), +\end{align*} + +\end_inset + +y por el lema de Gauss, +\begin_inset Formula +\[ +F(r,\theta)=\left\langle X_{r}(r,\theta),X_{\theta}(r,\theta)\right\rangle =\left\langle \frac{1}{r}d(\exp_{p_{0}})_{rv_{\theta}}(rv_{\theta}),d(\exp_{p_{0}})_{rv_{\theta}}(rv'_{\theta})\right\rangle =\frac{1}{r}\langle rv_{\theta},rv'_{\theta}\rangle=0. +\] + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $G(r,\theta)>0$ +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $G(r,\theta)=\Vert X_{\theta}(r,\theta)\Vert^{2}=\Vert rd(\exp_{p_{0}})_{rv_{\theta}}(v'_{\theta})\Vert^{2}=r^{2}\Vert d(\exp_{p_{0}})_{rv_{\theta}}(v'_{\theta})\Vert^{2}$ +\end_inset + +, que es positivo porque +\begin_inset Formula $r>0$ +\end_inset + +, +\begin_inset Formula $v'_{\theta}\neq0$ +\end_inset + + y +\begin_inset Formula $d(\exp_{p_{0}})_{rv_{\theta}}$ +\end_inset + + es un isomorfismo al ser +\begin_inset Formula $\exp_{p_{0}}$ +\end_inset + + un difeomorfismo en +\begin_inset Formula ${\cal U}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\lim_{r\to0}G(r,\theta)=0$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Para un +\begin_inset Formula $\theta$ +\end_inset + + fijo, +\begin_inset Formula +\[ +\lim_{r\to0}G(r,\theta)=\lim_{r\to0}r^{2}\Vert d(\exp_{p_{0}})_{rv_{\theta}}(v'_{\theta})\Vert^{2}=0^{2}\cdot\Vert d(\exp_{p_{0}})_{0}(v'_{\theta})\Vert^{2}=0. +\] + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\lim_{r\to0}\frac{\partial}{\partial r}(\sqrt{G(r)})(r,\theta)=1$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $\overline{X}(u,v):=\exp_{p_{0}}(ue_{1}+ve_{2})$ +\end_inset + + la parametrización normal centrada en +\begin_inset Formula $p_{0}$ +\end_inset + + a partir de +\begin_inset Formula $V$ +\end_inset + + y +\begin_inset Formula $\overline{E},\overline{F},\overline{G}$ +\end_inset + + los parámetros de su primera forma fundamental, como +\begin_inset Formula $X(r,\theta)=\overline{X}(r_{\theta}):=\overline{X}(r\cos\theta,r\sin\theta)$ +\end_inset + +, se tiene +\begin_inset Formula +\begin{align*} +X_{r}(r,\theta) & =\overline{X}_{u}(r_{\theta})\cos\theta+\overline{X}_{v}(r_{\theta})\sin\theta, & X_{\theta}(r,\theta) & =-\overline{X}_{u}(r_{\theta})r\sin\theta+\overline{X}_{v}(r_{\theta})r\cos\theta, +\end{align*} + +\end_inset + +pero +\begin_inset Formula $\Vert X_{r}\wedge X_{\theta}\Vert=\sqrt{EG-F^{2}}\stackrel[F=0]{E=1}{=}\sqrt{G}$ +\end_inset + + y +\begin_inset Formula $\Vert\overline{X}_{u}\wedge\overline{X}_{v}\Vert=\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}$ +\end_inset + +, y como +\begin_inset Formula +\[ +X_{r}\wedge X_{\theta}=r\cos^{2}\theta\overline{X}_{u}\wedge\overline{X}_{v}-r\sin^{2}\theta\overline{X}_{v}\wedge\overline{X}_{u}=r\overline{X}_{u}\wedge\overline{X}_{v}, +\] + +\end_inset + +queda +\begin_inset Formula $\sqrt{G}(r,\theta)=\Vert X_{r}\wedge X_{\theta}\Vert=r\Vert\overline{X}_{u}\wedge\overline{X}_{v}\Vert=r\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r\cos\theta,r\sin\theta)$ +\end_inset + +. + Entonces +\begin_inset Formula +\[ +\frac{\partial}{\partial r}\sqrt{G}=\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})+r\frac{\partial}{\partial r}\left(\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})\right), +\] + +\end_inset + +pero +\begin_inset Formula +\begin{multline*} +\lim_{r\to0}\frac{\partial}{\partial r}\left(\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})\right)=\lim_{r\to0}\frac{\frac{\partial}{\partial r}(\overline{E}(r_{\theta}))\overline{G}(r_{\theta})+\overline{E}(r_{\theta})\frac{\partial}{\partial r}(\overline{G}(r_{\theta}))-2\overline{F}(r_{\theta})\frac{\partial}{\partial r}(\overline{F}(r_{\theta}))}{2\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})}\in\mathbb{R}, +\end{multline*} + +\end_inset + +pues +\begin_inset Formula $\lim_{r\to0}\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})=\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(0,0)=1$ +\end_inset + + y la parte superior del cociente es continua y está definida para +\begin_inset Formula $r=0$ +\end_inset + +. + Así, +\begin_inset Formula +\[ +\lim_{r\to0}\frac{\partial}{\partial r}\sqrt{G}=\lim_{r\to0}\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})+\lim_{r\to0}r\frac{\partial}{\partial r}\left(\sqrt{\overline{E}\overline{G}-\overline{F}^{2}}(r_{\theta})\right)=1+0=0. +\] + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +La curvatura de Gauss, +\begin_inset Formula $K$ +\end_inset + +, satisface +\begin_inset Formula +\[ +\sqrt{G(r,\theta)}K(X(r,\theta))+\frac{\partial^{2}}{\partial r^{2}}(\sqrt{G(r,\theta)})=0. +\] + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Como +\begin_inset Formula $F=0$ +\end_inset + +, +\begin_inset Formula +\[ +K=\frac{-1}{2\sqrt{EG}}\left[\left(\frac{E_{\theta}}{\sqrt{EG}}\right)_{\theta}+\left(\frac{G_{r}}{\sqrt{EG}}\right)_{r}\right]\overset{E_{\theta}\equiv0}{=}-\frac{1}{2\sqrt{G}}\left(\frac{G_{r}}{\sqrt{G}}\right)_{r}=-\frac{1}{\sqrt{G}}(\sqrt{G})_{rr}, +\] + +\end_inset + +pues +\begin_inset Formula $(\sqrt{G})_{r}=\frac{1}{2}\frac{G_{r}}{\sqrt{G}}$ +\end_inset + +, y multiplicando por +\begin_inset Formula $\sqrt{G}$ +\end_inset + + y despejando, +\begin_inset Formula $\sqrt{G}K+(\sqrt{G})_{rr}=0$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $K$ +\end_inset + + es constante, +\begin_inset Formula +\[ +G(r,\theta)=\begin{cases} +r^{2}, & K=0;\\ +\frac{1}{K}\sin^{2}(\sqrt{K}r), & K>0;\\ +-\frac{1}{K}\sinh^{2}(\sqrt{-K}r), & K<0. +\end{cases} +\] + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Fijado +\begin_inset Formula $\theta$ +\end_inset + +, sea +\begin_inset Formula $u(r):=\sqrt{G(r,\theta)}$ +\end_inset + +, de modo que +\begin_inset Formula $G(r,\theta)=u(r)^{2}$ +\end_inset + +. + Se tiene +\begin_inset Formula +\[ +\left\{ \begin{aligned}u(r)K+\ddot{u} & =0,\\ +\lim_{r\to0}u(r) & =0,\\ +\lim_{r\to0}\dot{u}(r) & =1, +\end{aligned} +\right. +\] + +\end_inset + +lo que podemos tratar como un problema de Cauchy con una e.d.o. + homogénea. + Así: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $K=0$ +\end_inset + +, queda +\begin_inset Formula $\ddot{u}=0$ +\end_inset + + y +\begin_inset Formula $u(r)=ar+b$ +\end_inset + + para ciertos +\begin_inset Formula $a,b\in\mathbb{R}$ +\end_inset + +, con +\begin_inset Formula $0=u(0)=b$ +\end_inset + + y +\begin_inset Formula $1=u'(0)=a$ +\end_inset + +. + Por tanto +\begin_inset Formula $u(r)=r$ +\end_inset + + y +\begin_inset Formula $G(r,\theta)=r^{2}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $K>0$ +\end_inset + +, el polinomio asociado es +\begin_inset Formula $p(\lambda)=\lambda^{2}+K$ +\end_inset + + y +\begin_inset Formula $\lambda=\pm\sqrt{K}i$ +\end_inset + +, luego una base de soluciones es +\begin_inset Formula $\{\cos(\sqrt{K}r),\sin(\sqrt{K}r)\}$ +\end_inset + + y existen +\begin_inset Formula $a,b\in\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $u(r)=a\cos(\sqrt{K}r)+b\sin(\sqrt{K}r)$ +\end_inset + +, pero +\begin_inset Formula $0=u(0)=a$ +\end_inset + + y +\begin_inset Formula $1=u'(0)=b\sqrt{K}$ +\end_inset + +, luego +\begin_inset Formula $u(r)=\frac{1}{\sqrt{K}}\sin(\sqrt{K}r)$ +\end_inset + + y +\begin_inset Formula $G(r,\theta)=\frac{1}{K}\sin^{2}(\sqrt{K}r)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $K<0$ +\end_inset + +, el polinomio asociado es +\begin_inset Formula $p(\lambda)=\lambda^{2}-K$ +\end_inset + + y +\begin_inset Formula $\lambda=\pm\sqrt{K}$ +\end_inset + +, luego una base de soluciones es +\begin_inset Formula $\{e^{\sqrt{K}t},e^{-\sqrt{K}t}\}$ +\end_inset + + y existen +\begin_inset Formula $a,b\in\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $u(r)=ae^{\sqrt{K}t}+be^{-\sqrt{K}t}$ +\end_inset + +. + Ahora bien, +\begin_inset Formula $0=u(0)=a+b$ +\end_inset + + y +\begin_inset Formula $1=u'(0)=\sqrt{K}(a-b)$ +\end_inset + +, luego +\begin_inset Formula $2a=\frac{1}{\sqrt{K}}$ +\end_inset + +, +\begin_inset Formula $2b=-\frac{1}{\sqrt{K}}$ +\end_inset + + y, por tanto, +\begin_inset Formula $u(r)=\frac{1}{2\sqrt{K}}(e^{\sqrt{K}t}-e^{-\sqrt{K}t})=\frac{1}{\sqrt{K}}\sinh(\sqrt{K}t)$ +\end_inset + +, y +\begin_inset Formula $G(r,\theta)=\frac{1}{K}\sinh^{2}(\sqrt{K}t)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard + +\series bold +Teorema de Minding: +\series default + Dos superficies regulares con igual curvatura de Gauss constante son localmente + isométricas. +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $S_{1}$ +\end_inset + + y +\begin_inset Formula $S_{2}$ +\end_inset + + dos superficies regulares con curvatura de Gauss constante +\begin_inset Formula $K\in\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $p_{1}\in S_{1}$ +\end_inset + +, +\begin_inset Formula $p_{2}\in S_{2}$ +\end_inset + +, +\begin_inset Formula ${\cal U}_{1}$ +\end_inset + + y +\begin_inset Formula ${\cal U}_{2}$ +\end_inset + + entornos estrellados del 0 para los que existen difeomorfismos +\begin_inset Formula $\exp_{p_{1}}:{\cal U}_{1}\to U_{1}$ +\end_inset + + y +\begin_inset Formula $\exp_{p_{2}}:{\cal U}_{2}\to U_{2}$ +\end_inset + +, +\begin_inset Formula $\varepsilon>0$ +\end_inset + + con +\begin_inset Formula ${\cal D}(0_{p_{1}},\varepsilon)\subseteq{\cal U}_{1}$ +\end_inset + + y +\begin_inset Formula ${\cal D}(0_{p_{2}},\varepsilon)\subseteq{\cal U}_{2}$ +\end_inset + +, +\begin_inset Formula $V_{1}:=D(p_{1},\varepsilon)$ +\end_inset + + y +\begin_inset Formula $V_{2}:=D(p_{2},\varepsilon)$ +\end_inset + +, entonces +\begin_inset Formula $\exp_{p_{1}}:{\cal D}(0_{p_{1}},\varepsilon)\to V_{1}$ +\end_inset + + y +\begin_inset Formula $\exp_{p_{2}}:{\cal D}(0_{p_{2}},\varepsilon)\to V_{2}$ +\end_inset + + son difeomorfismos. +\end_layout + +\begin_layout Standard +Sean ahora +\begin_inset Formula $(e_{1},e_{2})$ +\end_inset + + una base ortonormal de +\begin_inset Formula $T_{p_{1}}S_{1}$ +\end_inset + +, +\begin_inset Formula $(f_{1},f_{2})$ +\end_inset + + una de +\begin_inset Formula $T_{p_{2}}S_{2}$ +\end_inset + + y +\begin_inset Formula $\tilde{\varphi}:T_{p_{1}}S_{1}\to T_{p_{2}}S_{2}$ +\end_inset + + una isometría lineal dada por +\begin_inset Formula $\tilde{\varphi}(e_{1}):=f_{1}$ +\end_inset + + y +\begin_inset Formula $\tilde{\varphi}(e_{2}):=f_{2}$ +\end_inset + +, entonces +\begin_inset Formula $\tilde{\varphi}({\cal D}(0_{p_{1}},\varepsilon))={\cal D}(0_{p_{2}},\varepsilon)$ +\end_inset + + y +\begin_inset Formula +\[ +\varphi:=\exp_{p_{2}}\circ\tilde{\varphi}|_{{\cal D}(0_{p_{1}},\varepsilon)}\circ\exp_{p_{1}}^{-1}:D(p_{1},\varepsilon)\to D(p_{2},\varepsilon) +\] + +\end_inset + +es un difeomorfismo, y queremos ver que también es una isometría. +\end_layout + +\begin_layout Standard +Para ello, tomando coordenadas geodésicas polares +\begin_inset Formula $X(r,\theta)$ +\end_inset + + en +\begin_inset Formula $D(p_{1},\varepsilon)$ +\end_inset + + con base +\begin_inset Formula $(e_{1},e_{2})$ +\end_inset + + y +\begin_inset Formula $\overline{X}(r,\theta)$ +\end_inset + + en +\begin_inset Formula $D(p_{2},\varepsilon)$ +\end_inset + + con base +\begin_inset Formula $(f_{1},f_{2})$ +\end_inset + +, sean +\begin_inset Formula $E,F,G$ +\end_inset + + y +\begin_inset Formula $\overline{E},\overline{F},\overline{G}$ +\end_inset + + los coeficientes de la primera forma fundamental de +\begin_inset Formula $X$ +\end_inset + + y +\begin_inset Formula $\overline{X}$ +\end_inset + +, +\begin_inset Formula $E=\overline{E}=1$ +\end_inset + +, +\begin_inset Formula $F=\overline{F}=0$ +\end_inset + + y, como +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $\overline{G}$ +\end_inset + + vienen dados por +\begin_inset Formula $K$ +\end_inset + +, +\begin_inset Formula $G=\overline{G}$ +\end_inset + +. + Además, +\begin_inset Formula +\begin{align*} +\varphi(X(r,\theta)) & =\varphi(\exp_{p_{1}}(r\cos\theta e_{1}+r\sin\theta e_{2}))=\exp_{p_{2}}(\tilde{\varphi}(r\cos\theta e_{1}+r\sin\theta e_{2}))=\\ + & =\exp_{p_{2}}(r\cos\theta f_{1}+r\sin\theta f_{2})=\overline{X}(r,\theta), +\end{align*} + +\end_inset + +luego +\begin_inset Formula $d\varphi_{X(r,\theta)}:T_{X(r,\theta)}S_{1}\to T_{\varphi(X(r,\theta))}S_{2}$ +\end_inset + + cumple +\begin_inset Formula +\begin{align*} +d\varphi_{X(r,\theta)}(X_{r}(r,\theta)) & =\frac{d}{dr}(\varphi(X(r,\theta)))=\overline{X}_{r}(r,\theta), & d\varphi_{X(r,\theta)}(X_{\theta}(r,\theta)) & =\overline{X}_{\theta}(r,\theta), +\end{align*} + +\end_inset + +de modo que +\begin_inset Formula +\[ +{\textstyle \left\langle d\varphi_{X}(X_{r}),d\varphi_{X}(X_{r})\right\rangle =\left\langle \overline{X}_{r},\overline{X}_{r}\right\rangle =\overline{E}=E=\left\langle X_{r},X_{r}\right\rangle } +\] + +\end_inset + +y, análogamente, +\begin_inset Formula $\langle d\varphi_{X}(X_{r}),d\varphi_{X}(X_{\theta})\rangle=\langle X_{r},X_{\theta}\rangle$ +\end_inset + + y +\begin_inset Formula $\langle d\varphi_{X}(X_{\theta}),d\varphi_{X}(X_{\theta})\rangle=\langle X_{\theta},X_{\theta}\rangle$ +\end_inset + +. + Como +\begin_inset Formula $(X_{r},X_{\theta})$ +\end_inset + + es una base de +\begin_inset Formula $T_{X}S_{1}$ +\end_inset + +, +\begin_inset Formula $\varphi$ +\end_inset + + es una isometría. +\end_layout + +\end_body +\end_document |
