diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-03-12 18:24:15 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-03-12 18:24:15 +0100 |
| commit | 2427bc570917d34eea8607c15dda7d4a48767a46 (patch) | |
| tree | 705a01e3591be6738de7d1e369e6e8c1cf8365e4 | |
| parent | 7d9dc14bac28639f086b981287098d8db839d04c (diff) | |
asturbate
| -rw-r--r-- | ga/n.lyx | 161 | ||||
| -rw-r--r-- | ga/n1.lyx | 5179 |
2 files changed, 5340 insertions, 0 deletions
diff --git a/ga/n.lyx b/ga/n.lyx new file mode 100644 index 0000000..7e60de8 --- /dev/null +++ b/ga/n.lyx @@ -0,0 +1,161 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize 10 +\spacing single +\use_hyperref false +\papersize a5paper +\use_geometry true +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\leftmargin 0.2cm +\topmargin 0.7cm +\rightmargin 0.2cm +\bottommargin 0.7cm +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle empty +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Title +Grupos y Anillos +\end_layout + +\begin_layout Date +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +def +\backslash +cryear{2020} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "../license.lyx" + +\end_inset + + +\end_layout + +\begin_layout Standard +Bibliografía: +\end_layout + +\begin_layout Itemize +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Chapter +Anillos +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n1.lyx" + +\end_inset + + +\end_layout + +\end_body +\end_document diff --git a/ga/n1.lyx b/ga/n1.lyx new file mode 100644 index 0000000..7f4aadf --- /dev/null +++ b/ga/n1.lyx @@ -0,0 +1,5179 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input defs +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Operaciones binarias +\end_layout + +\begin_layout Standard +Una +\series bold +operación +\series default + ( +\series bold +binaria +\series default +) en un conjunto +\begin_inset Formula $X$ +\end_inset + + es una aplicación +\begin_inset Formula $*:X\times X\to X$ +\end_inset + +, escribimos +\begin_inset Formula $a*b:=*(a,b)$ +\end_inset + +, y decimos que +\begin_inset Formula $*$ +\end_inset + + es: +\end_layout + +\begin_layout Itemize + +\series bold +Conmutativa +\series default + si +\begin_inset Formula $\forall x,y\in X,x*y=y*x$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Asociativa +\series default + si +\begin_inset Formula $\forall x,y,z\in X,(x*y)*z=x*(y*z)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un elemento +\begin_inset Formula $x\in X$ +\end_inset + + es: +\end_layout + +\begin_layout Itemize + +\series bold +Neutro por la izquierda +\series default + de +\begin_inset Formula $X$ +\end_inset + + con respecto a +\begin_inset Formula $*$ +\end_inset + + si +\begin_inset Formula $\forall y\in X,x*y=y$ +\end_inset + +, +\series bold +por la derecha +\series default + si +\begin_inset Formula $\forall y\in X,y*x=x$ +\end_inset + + y +\series bold +neutro +\series default + si es neutro por la izquierda y por la derecha. +\end_layout + +\begin_layout Itemize + +\series bold +Cancelativo por la izquierda +\series default + en +\begin_inset Formula $X$ +\end_inset + + respecto a +\begin_inset Formula $*$ +\end_inset + + si +\begin_inset Formula $\forall a,b\in X,(x*a=x*b\implies a=b)$ +\end_inset + +, +\series bold +por la derecha +\series default + si +\begin_inset Formula $\forall a,b\in X,(a*x=b*x\implies a=b)$ +\end_inset + + y +\series bold +cancelativo +\series default + si es cancelativo por la izquierda y por la derecha. +\end_layout + +\begin_layout Itemize + +\series bold +Simétrico +\series default + de +\begin_inset Formula $y\in X$ +\end_inset + + +\series bold +por la izquierda +\series default + si existe un neutro +\begin_inset Formula $e$ +\end_inset + + tal que +\begin_inset Formula $x*y=e$ +\end_inset + +, +\series bold +por la derecha +\series default + si +\begin_inset Formula $y*x=e$ +\end_inset + + y +\series bold +simétrico +\series default + de +\begin_inset Formula $y$ +\end_inset + + o +\series bold +invertible +\series default + si es simétrico por la izquierda y por la derecha. +\end_layout + +\begin_layout Standard +Dado un conjunto +\begin_inset Formula $X$ +\end_inset + + y una operación +\begin_inset Formula $*$ +\end_inset + + en +\begin_inset Formula $X$ +\end_inset + +, +\begin_inset Formula $(X,*)$ +\end_inset + + es: +\end_layout + +\begin_layout Enumerate +Un +\series bold +semigrupo +\series default + si +\begin_inset Formula $*$ +\end_inset + + es asociativa. +\end_layout + +\begin_layout Enumerate +Un +\series bold +monoide +\series default + si además +\begin_inset Formula $X$ +\end_inset + + tiene un elemento neutro respecto a +\begin_inset Formula $*$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Un +\series bold +grupo +\series default + si además todo elemento de +\begin_inset Formula $X$ +\end_inset + + es invertible. +\end_layout + +\begin_layout Enumerate +Un +\series bold +grupo abeliano +\series default + si además +\begin_inset Formula $*$ +\end_inset + + es conmutativa. +\end_layout + +\begin_layout Standard +Ejemplos: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(\mathbb{N},+)$ +\end_inset + + es un monoide conmutativo, y +\begin_inset Formula $(\mathbb{Z},+)$ +\end_inset + +, +\begin_inset Formula $(\mathbb{Q},+)$ +\end_inset + +, +\begin_inset Formula $(\mathbb{R},+)$ +\end_inset + + y +\begin_inset Formula $(\mathbb{C},+)$ +\end_inset + + son grupos abelianos. +\end_layout + +\begin_deeper +\begin_layout Standard +La suma es asociativa y conmutativa con elemento neutro 0, y todo elemento + +\begin_inset Formula $a$ +\end_inset + + tiene opuesto +\begin_inset Formula $-a$ +\end_inset + +, pero en +\begin_inset Formula $\mathbb{N}$ +\end_inset + + solo el 0 tiene opuesto. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $\mathbb{Q}$ +\end_inset + +, +\begin_inset Formula $\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $\mathbb{C}$ +\end_inset + + son monoides conmutativos con el producto. +\end_layout + +\begin_deeper +\begin_layout Standard +El producto es asociativo y conmutativo con neutro 1, pero el 0 nunca tiene + opuesto. +\end_layout + +\end_deeper +\begin_layout Enumerate +Llamamos +\begin_inset Formula $Y^{X}$ +\end_inset + + al conjunto de funciones de +\begin_inset Formula $X$ +\end_inset + + a +\begin_inset Formula $Y$ +\end_inset + +. + Dado un conjunto +\begin_inset Formula $X$ +\end_inset + +, +\begin_inset Formula $(X^{X},\circ)$ +\end_inset + + es un monoide, pero no es conmutativo si hay al menos dos elementos. +\end_layout + +\begin_deeper +\begin_layout Standard +Claramente +\begin_inset Formula $\circ$ +\end_inset + + es asociativa y tiene como neutro la identidad. + Si hay menos de dos elementos, claramente +\begin_inset Formula $\circ$ +\end_inset + + es conmutativa porque +\begin_inset Formula $X^{X}$ +\end_inset + + solo tiene un elemento, pero si tiene dos, por ejemplo +\begin_inset Formula $a,b\in X$ +\end_inset + +, sean +\begin_inset Formula $f(a):=a$ +\end_inset + +, +\begin_inset Formula $f(b):=a$ +\end_inset + +, +\begin_inset Formula $g(a):=b$ +\end_inset + +, +\begin_inset Formula $g(b):=a$ +\end_inset + +, entonces +\begin_inset Formula $(f\circ g)(a)=a$ +\end_inset + + pero +\begin_inset Formula $(g\circ f)(a)=b$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Llamamos +\series bold +grupo simétrico +\series default + en +\begin_inset Formula $X$ +\end_inset + +, +\begin_inset Formula $S_{X}$ +\end_inset + +, al conjunto de biyecciones de +\begin_inset Formula $X$ +\end_inset + + en +\begin_inset Formula $X$ +\end_inset + +. + Entonces +\begin_inset Formula $(S_{X},\circ)$ +\end_inset + + es un grupo. +\end_layout + +\begin_deeper +\begin_layout Standard +Es asociativa, tiene como neutro la identidad y todo elemento es invertible. +\end_layout + +\end_deeper +\begin_layout Enumerate +Sea +\begin_inset Formula $X$ +\end_inset + + un conjunto, +\begin_inset Formula $(\mathbb{R}^{X},+)$ +\end_inset + + con +\begin_inset Formula $(f+g)(a):=f(a)+g(a)$ +\end_inset + + es un grupo abeliano, y +\begin_inset Formula $(\mathbb{R}^{X},\cdot)$ +\end_inset + + con +\begin_inset Formula $(f\cdot g)(a):=f(a)g(a)$ +\end_inset + + es un monoide conmutativo cuyos elementos invertibles son las funciones + que no se anulan. +\end_layout + +\begin_deeper +\begin_layout Standard +Ambas operaciones son conmutativas y asociativas, la suma tiene como neutro + la función constante 0 y el producto la función constante 1. + El inverso de una función +\begin_inset Formula $f$ +\end_inset + + respecto a la suma es +\begin_inset Formula $-f$ +\end_inset + + dada por +\begin_inset Formula $(-f)(a):=-f(a)$ +\end_inset + +, pero respecto al producto es +\begin_inset Formula $g$ +\end_inset + + dada por +\begin_inset Formula $g(a):=f(a)^{-1}$ +\end_inset + +, que solo existe si +\begin_inset Formula $f$ +\end_inset + + no se anula. +\end_layout + +\end_deeper +\begin_layout Standard +Dada una operación +\begin_inset Formula $*$ +\end_inset + + en un conjunto +\begin_inset Formula $X$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $*$ +\end_inset + + es conmutativa, todo neutro por un lado es neutro, todo elemento cancelativo + por un lado es cancelativo y todo elemento con simétrico por un lado es + invertible. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $e$ +\end_inset + + es neutro por la izquierda y +\begin_inset Formula $f$ +\end_inset + + lo es por la derecha, entonces +\begin_inset Formula $e=f$ +\end_inset + +. + En particular, +\begin_inset Formula $X$ +\end_inset + + tiene a lo sumo un neutro. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $f=e*f=e$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Dado un monoide +\begin_inset Formula $(X,*)$ +\end_inset + + y +\begin_inset Formula $a\in X$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $x$ +\end_inset + + es simétrico por la izquierda de +\begin_inset Formula $a$ +\end_inset + + e +\begin_inset Formula $y$ +\end_inset + + es simétrico por la derecha de +\begin_inset Formula $a$ +\end_inset + +, entonces +\begin_inset Formula $x=y$ +\end_inset + +. + En particular, +\begin_inset Formula $a$ +\end_inset + + tiene a lo sumo un simétrico. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $y=e*y=(x*a)*y=x*(a*y)=x*e=x$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $a$ +\end_inset + + tiene simétrico por un lado, es cancelable por dicho lado. + En particular, todo elemento invertible es cancelable. +\end_layout + +\begin_deeper +\begin_layout Standard +Si, por ejemplo, +\begin_inset Formula $a$ +\end_inset + + tiene simétrico por la izquierda, si +\begin_inset Formula $x,y\in X$ +\end_inset + + cumplen +\begin_inset Formula $a*x=a*y$ +\end_inset + +, +\begin_inset Formula $x=e*x=(b*a)*x=b*(a*x)=b*(a*y)=(b*a)*y=e*y=y$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Section +Anillos +\end_layout + +\begin_layout Standard +Un +\series bold +anillo +\series default + es una terna +\begin_inset Formula $(A,+,\cdot)$ +\end_inset + + formada por un conjunto +\begin_inset Formula $A$ +\end_inset + + y dos operaciones sobre +\begin_inset Formula $A$ +\end_inset + + llamadas +\series bold +suma +\series default + y +\series bold +producto +\series default + tales que +\begin_inset Formula $(A,+)$ +\end_inset + + es un grupo abeliano, +\begin_inset Formula $(A,\cdot)$ +\end_inset + + es un monoide y el producto es +\series bold +distributivo +\series default + respecto de la suma, es decir, +\begin_inset Formula $\forall a,b,c\in A,(a\cdot(b+c)=(a\cdot b)+(a\cdot c)\land(a+b)\cdot c=(a\cdot c)+(b\cdot c))$ +\end_inset + +. + Si además +\begin_inset Formula $\cdot$ +\end_inset + + es conmutativo, decimos que +\begin_inset Formula $(A,+,\cdot)$ +\end_inset + + es un +\series bold +anillo conmutativo +\series default +. +\end_layout + +\begin_layout Standard +Asumimos que el producto tiene más preferencia que la suma, y escribimos + +\begin_inset Formula $ab:=a\cdot b$ +\end_inset + +. + Llamamos +\series bold +opuesto +\series default + de +\begin_inset Formula $a\in A$ +\end_inset + +, +\begin_inset Formula $-a$ +\end_inset + +, al simétrico de +\begin_inset Formula $a$ +\end_inset + + respecto de la suma, y escribimos +\begin_inset Formula $a-b:=a+(-b)$ +\end_inset + +. + Si además +\begin_inset Formula $a$ +\end_inset + + es invertible, llamamos +\series bold +inverso +\series default + de +\begin_inset Formula $a$ +\end_inset + +, +\begin_inset Formula $a^{-1}$ +\end_inset + +, al simétrico de +\begin_inset Formula $A$ +\end_inset + + respecto del producto. + Si +\begin_inset Formula $b$ +\end_inset + + es invertible en +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $A$ +\end_inset + + es conmutativo, escribimos +\begin_inset Formula $a/b:=\frac{a}{b}:=ab^{-1}$ +\end_inset + +. + Decimos que +\begin_inset Formula $a\in A$ +\end_inset + + es +\series bold +regular +\series default + si es cancelable respecto del producto o +\series bold +singular +\series default + en caso contrario. + Una +\series bold +unidad +\series default + de +\begin_inset Formula $A$ +\end_inset + + es un elemento invertible, y llamamos +\begin_inset Formula $A^{*}$ +\end_inset + + al conjunto de unidades de +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Ejemplos: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $\mathbb{Q}$ +\end_inset + +, +\begin_inset Formula $\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $\mathbb{C}$ +\end_inset + + son anillos conmutativos con la suma y el producto usuales. +\end_layout + +\begin_layout Enumerate +Dada una familia de anillos +\begin_inset Formula $(A_{i})_{i\in I}$ +\end_inset + +, el producto +\begin_inset Formula $\prod_{i\in I}A_{i}$ +\end_inset + + es un anillos con las operaciones definidas componente a componente, esto + es, dados +\begin_inset Formula $a,b\in\prod_{i\in I}A_{i}$ +\end_inset + +, +\begin_inset Formula $a+b:=(a_{i}+b_{i})_{i\in I}$ +\end_inset + + y +\begin_inset Formula $ab:=(a_{i}b_{i})_{i\in I}$ +\end_inset + +. + En particular, si +\begin_inset Formula $A$ +\end_inset + + es un anillo y +\begin_inset Formula $X$ +\end_inset + + es un conjunto, el conjunto +\begin_inset Formula $A^{X}=\prod_{x\in X}A$ +\end_inset + + es un anillo con la suma y el producto dados por +\begin_inset Formula $(f+g)(x):=f(x)+g(x)$ +\end_inset + + y +\begin_inset Formula $(fg)(x):=f(x)g(x)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset CommandInset label +LatexCommand label +name "enu:series" + +\end_inset + +Llamamos +\begin_inset Formula $A[[X]]$ +\end_inset + + al conjunto de las sucesiones de elementos del anillo +\begin_inset Formula $A$ +\end_inset + + entendidos como +\series bold +series de potencias +\series default + en una +\series bold +indeterminada +\series default + +\begin_inset Formula $X$ +\end_inset + +, +\begin_inset Formula $\sum_{n=0}^{\infty}a_{n}X^{n}$ +\end_inset + +. + Definiendo la suma como +\begin_inset Formula $(a_{n})_{n}+(b_{n})_{n}:=(a_{n}+b_{n})_{n}$ +\end_inset + + y el producto como +\begin_inset Formula $(a_{n})_{n}(b_{n})_{n}:=(\sum_{i=0}^{n}a_{i}b_{n-i})_{n}$ +\end_inset + +, tenemos un anillo. +\end_layout + +\begin_layout Enumerate +Llamamos +\begin_inset Formula $A[X]$ +\end_inset + + al conjunto de las sucesiones de elementos del anillo +\begin_inset Formula $A$ +\end_inset + + con un número finito de elementos no nulos, entendidas como +\series bold +polinomios +\series default + en una +\series bold +indeterminada +\series default + +\begin_inset Formula $X$ +\end_inset + +. + Este es un anillo con las mismas operaciones que en el punto +\begin_inset CommandInset ref +LatexCommand ref +reference "enu:series" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +. + Dado un polinomio +\begin_inset Formula $P(X):=a_{0}+a_{1}X+\dots+a_{n}X^{n}$ +\end_inset + +, llamamos +\series bold +coeficiente +\series default + de +\series bold +grado +\series default + +\begin_inset Formula $i$ +\end_inset + + de +\begin_inset Formula $P$ +\end_inset + + a +\begin_inset Formula $a_{i}$ +\end_inset + + y +\series bold +coeficiente independiente +\series default + de +\begin_inset Formula $P$ +\end_inset + + a +\begin_inset Formula $a_{0}$ +\end_inset + +. + Además, si +\begin_inset Formula $a_{n}\neq0$ +\end_inset + +, decimos que +\begin_inset Formula $P$ +\end_inset + + tiene +\series bold +grado +\series default + +\begin_inset Formula $n$ +\end_inset + + y +\begin_inset Formula $a_{n}$ +\end_inset + + es su +\series bold +coeficiente principal +\series default +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + es un anillo y +\begin_inset Formula $n$ +\end_inset + + es un entero positivo, entonces el conjunto +\begin_inset Formula ${\cal M}_{n}(A)$ +\end_inset + + de matrices cuadradas en +\begin_inset Formula $A$ +\end_inset + + de tamaño +\begin_inset Formula $n$ +\end_inset + + es un anillo con la suma y el producto habituales de matrices. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $A$ +\end_inset + + un anillo y +\begin_inset Formula $a,b,c\in A$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Todo elemento es cancelable respecto de la suma. +\end_layout + +\begin_layout Enumerate +Todo elemento invertible es regular. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $b+a=a\implies b=0$ +\end_inset + +, +\begin_inset Formula $\forall a\in A,ba=a\implies b=1$ +\end_inset + +. + En particular, el 0 y el 1 son únicos. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $b+a=a\implies b=b+(a-a)=(b+a)-a=a-a=0$ +\end_inset + +, +\begin_inset Formula $\forall a\in A,ba=a\implies b=b1=1$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +El opuesto de +\begin_inset Formula $a$ +\end_inset + + es único, y si +\begin_inset Formula $a$ +\end_inset + + es invertible, el inverso es único. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $0a=a0=0$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $0a+0a=(0+0)a=0a=0a+0\implies0a=0$ +\end_inset + +, y +\begin_inset Formula $a0=0$ +\end_inset + + se prueba análogamente. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $a(-b)=(-a)b=-(ab)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $a(-b)+ab=a(-b+b)=a0=0$ +\end_inset + +, luego +\begin_inset Formula $a(-b)$ +\end_inset + + es el opuesto de +\begin_inset Formula $ab$ +\end_inset + + respecto de la suma y, por unicidad, +\begin_inset Formula $a(-b)=-(ab)$ +\end_inset + +. + Que +\begin_inset Formula $(-a)b=-(ab)$ +\end_inset + + se prueba análogamente. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $a(b-c)=ab-ac$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $a(b-c)=a(b+(-c))=ab+a(-c)=ab+(-ac)=ab-ac$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + son invertibles si y sólo si lo son +\begin_inset Formula $ab$ +\end_inset + + y +\begin_inset Formula $ba$ +\end_inset + +, en cuyo caso +\begin_inset Formula $(ab)^{-1}=b^{-1}a^{-1}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Basta ver que +\begin_inset Formula $abb^{-1}a^{-1},b^{-1}a^{-1}ab,baa^{-1}b^{-1},a^{-1}b^{-1}ba=1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Tenemos +\begin_inset Formula $ab(ab)^{-1}=1$ +\end_inset + +, luego +\begin_inset Formula $b(ab)^{-1}$ +\end_inset + + es simétrico de +\begin_inset Formula $a$ +\end_inset + + por la derecha, y +\begin_inset Formula $(ba)^{-1}ba=1$ +\end_inset + +, luego +\begin_inset Formula $(ba)^{-1}b$ +\end_inset + + es simétrico de +\begin_inset Formula $a$ +\end_inset + + por la izquierda, luego +\begin_inset Formula $a$ +\end_inset + + es invertible. + Para +\begin_inset Formula $b$ +\end_inset + +, se hace de forma análoga. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $0=1$ +\end_inset + +, entonces +\begin_inset Formula $A=\{0\}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $a\in A\implies a=a1=a0=0$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Dado un anillo +\begin_inset Formula $A$ +\end_inset + +, llamamos +\begin_inset Formula $0_{A}$ +\end_inset + + al cero de +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $1_{A}$ +\end_inset + + al uno de +\begin_inset Formula $A$ +\end_inset + +. + Si +\begin_inset Formula $a\in A$ +\end_inset + +, definimos +\begin_inset Formula $0_{\mathbb{Z}}a:=0$ +\end_inset + +, y para +\begin_inset Formula $n\in\mathbb{Z}^{+}$ +\end_inset + +, +\begin_inset Formula $na:=(n-1)a+a$ +\end_inset + + y +\begin_inset Formula $(-n)a:=-(na)$ +\end_inset + +. + Definimos +\begin_inset Formula $a^{0_{\mathbb{Z}}}:=1_{A}$ +\end_inset + +, para +\begin_inset Formula $n\in\mathbb{Z}^{+}$ +\end_inset + +, +\begin_inset Formula $a^{n}:=a^{n-1}a$ +\end_inset + +, y si +\begin_inset Formula $a$ +\end_inset + + es invertible, +\begin_inset Formula $a^{-n}:=(a^{-1})^{n}$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Propiedades: Dados un anillo +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $a,b\in A$ +\end_inset + + y +\begin_inset Formula $m,n\in\mathbb{Z}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $n(a+b)=na+nb$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Para +\begin_inset Formula $n=0$ +\end_inset + +, +\begin_inset Formula $0(a+b)=0=0+0=0a+0b$ +\end_inset + +. + Para +\begin_inset Formula $n>0$ +\end_inset + +, por inducción, +\begin_inset Formula $n(a+b)=(n-1)(a+b)+(a+b)=(n-1)a+(n-1)b+a+b=(n-1)a+a+(n-1)b+b=na+nb$ +\end_inset + +, y entonces +\begin_inset Formula $(-n)(a+b)=-(n(a+b))=-(na+nb)=-(na)-(nb)=(-n)a+(-n)b$ +\end_inset + +. + El penúltimo paso de la última igualdad se debe a que +\begin_inset Formula $a+b+(-a)+(-b)=a+(-a)+b+(-b)=0+0=0$ +\end_inset + + y por tanto +\begin_inset Formula $-(a+b)=(-a)+(-b)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $(n+m)a=na+ma$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Para +\begin_inset Formula $m=0$ +\end_inset + +, +\begin_inset Formula $(n+0)a=na=na+0=na+0a$ +\end_inset + +. + Para +\begin_inset Formula $m>0$ +\end_inset + +, por inducción, +\begin_inset Formula $(n+m)a=(n+m-1)a+a=na+(m-1)a+a=na+ma$ +\end_inset + +. + Entonces +\begin_inset Formula $(n-m)a+ma=(n-m+m)a=na$ +\end_inset + +, luego restando +\begin_inset Formula $ma$ +\end_inset + + a ambos lados, +\begin_inset Formula $(n-m)a=na-ma$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $n(ma)=(nm)a$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Para +\begin_inset Formula $n=0$ +\end_inset + +, +\begin_inset Formula $0(ma)=0=0a=(0m)a$ +\end_inset + +. + Para +\begin_inset Formula $n>0$ +\end_inset + +, por inducción, +\begin_inset Formula $n(ma)=(n-1)(ma)+ma=((n-1)m)a+ma=((n-1)m+m)a=(nm)a$ +\end_inset + +, y entonces +\begin_inset Formula $(-n)(ma)=-(n(ma))=-((nm)a)=(-nm)a$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $n,m\geq0$ +\end_inset + +, +\begin_inset Formula $a^{n+m}=a^{n}a^{m}$ +\end_inset + +, y si +\begin_inset Formula $a$ +\end_inset + + es invertible, esto también se cumple para +\begin_inset Formula $n$ +\end_inset + + y +\begin_inset Formula $m$ +\end_inset + + enteros arbitrarios. +\end_layout + +\begin_deeper +\begin_layout Standard +Para +\begin_inset Formula $m=0$ +\end_inset + +, +\begin_inset Formula $a^{n+0}=a^{n}=a^{n}1=a^{n}a^{0}$ +\end_inset + +, y para +\begin_inset Formula $m>0$ +\end_inset + +, por inducción, +\begin_inset Formula $a^{n+m}=a^{n+m-1}a=a^{n}a^{m-1}a=a^{n}a^{m}$ +\end_inset + +. + Sea ahora +\begin_inset Formula $a$ +\end_inset + + invertible. + La prueba anterior vale también para +\begin_inset Formula $n<0$ +\end_inset + +, luego queda ver el caso en que +\begin_inset Formula $m<0$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Primero vemos que, para +\begin_inset Formula $m>0$ +\end_inset + +, +\begin_inset Formula $a^{m}=aa^{m-1}$ +\end_inset + +, pues para +\begin_inset Formula $m=1$ +\end_inset + +, +\begin_inset Formula $a^{1}=1a=a=aa^{0}=aa^{1-1}$ +\end_inset + +, y para +\begin_inset Formula $m>1$ +\end_inset + +, por inducción, +\begin_inset Formula $a^{m}=a^{m-1}a=aa^{m-2}a=aa^{m-1}$ +\end_inset + +. + Entonces +\begin_inset Formula $(a^{m})^{-1}=(a^{-1})^{m}=a^{-m}$ +\end_inset + +, pues para +\begin_inset Formula $m=0$ +\end_inset + +, +\begin_inset Formula $(a^{0})^{-1}=1^{-1}=1=(a^{-1})^{0}$ +\end_inset + +, y para +\begin_inset Formula $m>0$ +\end_inset + +, por inducción, +\begin_inset Formula $(a^{m})^{-1}=(aa^{m-1})^{-1}=(a^{m-1})^{-1}a^{-1}=(a^{-1})^{m-1}(a^{-1})^{1}=(a^{-1})^{m}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Con esto, sea +\begin_inset Formula $m>0$ +\end_inset + +, entonces +\begin_inset Formula $a^{n-m}a^{m}=a^{n-m+m}=a^{n}$ +\end_inset + +, luego +\begin_inset Formula $a^{n-m}=a^{n-m}a^{m}(a^{m})^{-1}=a^{n}(a^{m})^{-1}=a^{n}a^{-m}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + es conmutativo y +\begin_inset Formula $n\geq0$ +\end_inset + +, +\begin_inset Formula $(ab)^{n}=a^{n}b^{n}$ +\end_inset + +, y si además +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + son invertibles, esto también se cumple para todo entero +\begin_inset Formula $n$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Para +\begin_inset Formula $n=0$ +\end_inset + +, +\begin_inset Formula $(ab)^{0}=1=1\cdot1=a^{0}b^{0}$ +\end_inset + +. + Para +\begin_inset Formula $n>0$ +\end_inset + +, por inducción, +\begin_inset Formula $(ab)^{n}=(ab)^{n-1}ab=a^{n-1}b^{n-1}ab=a^{n-1}ab^{n-1}b=a^{n}b^{n}$ +\end_inset + +. + Si +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + son invertibles, entonces +\begin_inset Formula $ab$ +\end_inset + + también lo es, y +\begin_inset Formula $(ab)^{-n}=((ab)^{-1})^{n}=(b^{-1}a^{-1})^{n}=(b^{-1})^{n}(a^{-1})^{n}=b^{-n}a^{-n}=a^{-n}b^{-n}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Section +Subanillos +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $*$ +\end_inset + + una operación sobre un conjunto +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B\subseteq A$ +\end_inset + +, decimos que +\begin_inset Formula $B$ +\end_inset + + es +\series bold +cerrado +\series default + respecto a +\begin_inset Formula $*$ +\end_inset + + si +\begin_inset Formula $\forall a,b\in B,a*b\in B$ +\end_inset + +, en cuyo caso +\begin_inset Formula $\hat{*}:B\times B\to B$ +\end_inset + + dada por +\begin_inset Formula $x\hat{*}y:=x*y$ +\end_inset + + es la operación +\series bold +inducida +\series default + en +\begin_inset Formula $B$ +\end_inset + + por +\begin_inset Formula $*$ +\end_inset + +, que identificamos con +\begin_inset Formula $*$ +\end_inset + +. + Sea +\begin_inset Formula $B$ +\end_inset + + es cerrado respecto a +\begin_inset Formula $*$ +\end_inset + +, si +\begin_inset Formula $(A,*)$ +\end_inset + + y +\begin_inset Formula $(B,*)$ +\end_inset + + son semigrupos, +\begin_inset Formula $B$ +\end_inset + + es un +\series bold +subsemigrupo +\series default + de +\begin_inset Formula $A$ +\end_inset + +; si son monoides con el mismo neutro, es un +\series bold +submonoide +\series default +, y si son grupos con el mismo neutro, es un +\series bold +subgrupo +\series default +. + Si +\begin_inset Formula $B$ +\end_inset + + es cerrado respecto a las operaciones +\begin_inset Formula $+$ +\end_inset + + y +\begin_inset Formula $\cdot$ +\end_inset + + en +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $(A,+,\cdot)$ +\end_inset + + y +\begin_inset Formula $(B,+,\cdot)$ +\end_inset + + son anillos con el mismo uno, +\begin_inset Formula $B$ +\end_inset + + es un +\series bold +subanillo +\series default + de +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Para que +\begin_inset Formula $B\subseteq A$ +\end_inset + + sea un subsemigrupo del semigrupo +\begin_inset Formula $(A,*)$ +\end_inset + +, basta con que +\begin_inset Formula $B$ +\end_inset + + sea cerrado respecto a +\begin_inset Formula $*$ +\end_inset + +; para que sea un submonoide del monoide +\begin_inset Formula $(A,*)$ +\end_inset + +, también debe contener al neutro, y para que sea un subgrupo del grupo + +\begin_inset Formula $(A,*)$ +\end_inset + +, debe además ser cerrado respecto a inversos. +\end_layout + +\begin_layout Standard +\begin_inset Formula $B\subseteq A$ +\end_inset + + es un subanillo de un anillo +\begin_inset Formula $A$ +\end_inset + + si y sólo si contiene al 1 y es cerrado para sumas productos y opuestos, + si y sólo si contiene al 1 es cerrado para restas y productos, y en tal + caso el cero de +\begin_inset Formula $A$ +\end_inset + + es el de +\begin_inset Formula $B$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $[1\implies2]$ +\end_inset + + Por definición, +\begin_inset Formula $B$ +\end_inset + + es cerrado para sumas y productos y +\begin_inset Formula $1\in B$ +\end_inset + +. + Como +\begin_inset Formula $B$ +\end_inset + + es un anillo, tiene un cero +\begin_inset Formula $0_{B}$ +\end_inset + + y cada +\begin_inset Formula $b\in B$ +\end_inset + + tiene un opuesto en +\begin_inset Formula $B$ +\end_inset + +, pero +\begin_inset Formula $0_{B}+0_{B}=0_{B}=0+0_{B}$ +\end_inset + + y por tanto +\begin_inset Formula $0_{B}=0$ +\end_inset + +, luego el opuesto en +\begin_inset Formula $B$ +\end_inset + + es el mismo que en +\begin_inset Formula $A$ +\end_inset + + por unicidad y +\begin_inset Formula $B$ +\end_inset + + es cerrado para opuestos. +\end_layout + +\begin_layout Description +\begin_inset Formula $[2\implies3]$ +\end_inset + + Trivial. +\end_layout + +\begin_layout Description +\begin_inset Formula $[3\implies1]$ +\end_inset + + Solo hay que ver que +\begin_inset Formula $B$ +\end_inset + + es cerrado para sumas y tiene un 0 con el cual es cerrado para opuestos. + Tenemos +\begin_inset Formula $0=1-1\in B$ +\end_inset + + y, para +\begin_inset Formula $b\in B$ +\end_inset + +, +\begin_inset Formula $-b=0-b\in B$ +\end_inset + +, luego es cerrado para opuestos, y para +\begin_inset Formula $a,b\in B$ +\end_inset + +, +\begin_inset Formula $a+b=a-(-b)\in B$ +\end_inset + +, luego es cerrado para sumas. +\end_layout + +\begin_layout Standard +Algunos subanillos: +\end_layout + +\begin_layout Enumerate +Todo anillo +\begin_inset Formula $A$ +\end_inset + + es un subanillo de sí mismo, el +\series bold +subanillo impropio +\series default +, y el resto de subanillos son +\series bold +propios +\series default +. +\end_layout + +\begin_layout Enumerate +Cada uno de +\begin_inset Formula $\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $\mathbb{Q}$ +\end_inset + +, +\begin_inset Formula $\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $\mathbb{C}$ +\end_inset + + es un subanillo de los posteriores. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\{0\}$ +\end_inset + + es subanillo de +\begin_inset Formula $A$ +\end_inset + + si y sólo si +\begin_inset Formula $A=\{0\}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $\{0\}$ +\end_inset + + es subanillo, +\begin_inset Formula $1\in\{0\}$ +\end_inset + +, luego +\begin_inset Formula $0=1$ +\end_inset + + y +\begin_inset Formula $A=\{0\}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Obvio. +\end_layout + +\end_deeper +\begin_layout Enumerate +Llamamos +\series bold +subanillo primo +\series default + de +\begin_inset Formula $A$ +\end_inset + + a +\begin_inset Formula $\mathbb{Z}1:=\{n1_{A}\}_{n\in\mathbb{Z}}$ +\end_inset + +, el menor subanillo de +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Claramente +\begin_inset Formula $\mathbb{Z}1$ +\end_inset + + contiene al 1 y es cerrado para restas y productos. + Sea +\begin_inset Formula $B$ +\end_inset + + un subanillo de +\begin_inset Formula $A$ +\end_inset + +, queremos ver que para +\begin_inset Formula $n\in\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $n1\in B$ +\end_inset + +. + Si +\begin_inset Formula $n=0$ +\end_inset + +, +\begin_inset Formula $0\cdot1=0\in B$ +\end_inset + +. + Si +\begin_inset Formula $n>0$ +\end_inset + +, por inducción, +\begin_inset Formula $n1=(n-1)1+1\in B$ +\end_inset + + por ser suma de dos elementos de +\begin_inset Formula $B$ +\end_inset + +, y entonces +\begin_inset Formula $(-n)1=-(n1)\in B$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + son anillos y +\begin_inset Formula $B\neq0$ +\end_inset + +, +\begin_inset Formula $A\times\{0_{B}\}$ +\end_inset + + no es cerrado para sumas y productos pero no es un subanillo de +\begin_inset Formula $A\times B$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +No contiene al 1. +\end_layout + +\end_deeper +\begin_layout Enumerate +Dado +\begin_inset Formula $z\in\mathbb{C}$ +\end_inset + +, llamamos +\begin_inset Formula $\mathbb{Z}[z]:=\{a+bz\}_{a,b\in\mathbb{Z}}$ +\end_inset + + y +\begin_inset Formula $\mathbb{Q}[z]:=\{a+bz\}_{a,b\in\mathbb{Q}}$ +\end_inset + +. + Dado +\begin_inset Formula $m\in\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $\mathbb{Z}[\sqrt{m}]$ +\end_inset + + y +\begin_inset Formula $\mathbb{Q}[\sqrt{m}]$ +\end_inset + + son subanillos de +\begin_inset Formula $\mathbb{C}$ +\end_inset + +, y si además +\begin_inset Formula $m\geq0$ +\end_inset + +, lo son también de +\begin_inset Formula $\mathbb{R}$ +\end_inset + +. + Si +\begin_inset Formula $m$ +\end_inset + + es el cuadrado de un entero, entonces +\begin_inset Formula $\mathbb{Z}[\sqrt{m}]=\mathbb{Z}$ +\end_inset + + y +\begin_inset Formula $\mathbb{Q}[\sqrt{m}]=\mathbb{Q}$ +\end_inset + +, y de lo contrario +\begin_inset Formula $a+b\sqrt{m}=c+d\sqrt{m}\implies a=c\land b=d$ +\end_inset + +. + Podemos ver +\begin_inset Formula $\mathbb{Z}[\sqrt{m}]$ +\end_inset + + con +\begin_inset Formula $m<0$ +\end_inset + + como el conjunto de vértices de un enlosado del plano complejo por losas + rectangulares con base 1 y altura +\begin_inset Formula $\sqrt{m}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Dado un espacio topológico +\begin_inset Formula $X$ +\end_inset + +, +\begin_inset Formula $\{f\in\mathbb{R}^{X}:f\text{ continua}\}$ +\end_inset + + es un subanillo de +\begin_inset Formula $\mathbb{R}^{X}$ +\end_inset + + con la suma y el producto por elementos. +\end_layout + +\begin_layout Enumerate +Dado un espacio vectorial +\begin_inset Formula $V$ +\end_inset + +, +\begin_inset Formula $\{f\in V^{V}:f\text{ lineal}\}$ +\end_inset + + es un subanillo de +\begin_inset Formula $(V^{V},+,\circ)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Todo anillo +\begin_inset Formula $A$ +\end_inset + + es un subanillo de +\begin_inset Formula $A[X]$ +\end_inset + + identificando los elementos de +\begin_inset Formula $A$ +\end_inset + + con los +\series bold +polinomios constantes +\series default +, de la forma +\begin_inset Formula $P(X)=a_{0}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Dado un anillo +\begin_inset Formula $A$ +\end_inset + + y un conjunto +\begin_inset Formula $X$ +\end_inset + +, +\begin_inset Formula $\{f\in A^{X}:f\text{ constante}\}$ +\end_inset + + es un subanillo de +\begin_inset Formula $A^{X}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Homomorfismos +\end_layout + +\begin_layout Standard +Un +\series bold +homomorfismo +\series default + entre dos anillos +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + es una aplicación +\begin_inset Formula $f:A\to B$ +\end_inset + + tal que +\begin_inset Formula $\forall x,y\in A,(f(x+y)=f(x)+f(y)\land f(xy)=f(x)f(y))$ +\end_inset + + y +\begin_inset Formula $f(1)=1$ +\end_inset + +. + Un +\series bold +automorfismo +\series default + de +\begin_inset Formula $A$ +\end_inset + + es un homomorfismo de +\begin_inset Formula $A$ +\end_inset + + en +\begin_inset Formula $A$ +\end_inset + +, y un +\series bold +isomorfismo de anillos +\series default + es un homomorfismo de anillos biyectivo. + Dos anillos +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + son +\series bold +isomorfos +\series default + si existe un isomorfismo entre ellos. +\end_layout + +\begin_layout Standard +Propiedades: Sean +\begin_inset Formula $f:A\to B$ +\end_inset + + un homomorfismo de anillos y +\begin_inset Formula $a,b,a_{1},\dots,a_{n}\in A$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $f(0)=0$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $0+f(0)=f(0)=f(0+0)=f(0)+f(0)\implies0=f(0)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $f(-a)=-f(a)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $f(a)+f(-a)=f(a+(-a))=f(0)=0$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $f(a-b)=f(a)-f(b)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $f(a-b)=f(a)+f(-b)=f(a)-f(b)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $f(a_{1}+\dots+a_{n})=f(a_{1})+\dots+f(a_{n})$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $f(na)=nf(a)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Para +\begin_inset Formula $n=0$ +\end_inset + +, +\begin_inset Formula $f(0a)=f(0)=0=0f(a)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $a$ +\end_inset + + es invertible, +\begin_inset Formula $f(a)$ +\end_inset + + también lo es y +\begin_inset Formula $f(a)^{-1}=f(a^{-1})$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $f(a)f(a^{-1})=f(aa^{-1})=f(1)=1$ +\end_inset + +, +\begin_inset Formula $f(a^{-1})f(a)=f(a^{-1}a)=f(1)=1$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $f(a_{1}\cdots a_{n})=f(a_{1})\cdots f(a_{n})$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A'$ +\end_inset + + es un subanillo de +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $f(A')$ +\end_inset + + es un subanillo de +\begin_inset Formula $B$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $1=f(1)\in f(A')$ +\end_inset + +. + Sean +\begin_inset Formula $a,b\in f(A')$ +\end_inset + +, existen +\begin_inset Formula $x,y\in A'$ +\end_inset + + con +\begin_inset Formula $f(x)=a$ +\end_inset + + y +\begin_inset Formula $f(y)=b$ +\end_inset + +, luego +\begin_inset Formula $a-b=f(x)-f(y)=f(x-y)\in f(A')$ +\end_inset + +, y +\begin_inset Formula $ab=f(x)f(y)=f(xy)\in f(A')$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $B'$ +\end_inset + + es un subanillo de +\begin_inset Formula $B$ +\end_inset + +, +\begin_inset Formula $f^{-1}(B')$ +\end_inset + + es un subanillo de +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $1\in f^{-1}(1)\in f^{-1}(B')$ +\end_inset + +. + Sean +\begin_inset Formula $a,b\in f^{-1}(B')$ +\end_inset + +, +\begin_inset Formula $f(a),f(b)\in B'$ +\end_inset + +, con lo que +\begin_inset Formula $f(a-b)=f(a)-f(b)\in B'$ +\end_inset + + y por tanto +\begin_inset Formula $a-b\in f^{-1}(B')$ +\end_inset + + y +\begin_inset Formula $f(ab)=f(a)f(b)\in B'$ +\end_inset + + y por tanto +\begin_inset Formula $ab\in f^{-1}(B')$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $f$ +\end_inset + + es un isomorfismo de anillos, +\begin_inset Formula $f^{-1}$ +\end_inset + + también. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $f^{-1}(1)=1$ +\end_inset + +. + Para +\begin_inset Formula $a,b\in B$ +\end_inset + +, sean +\begin_inset Formula $x,y\in A$ +\end_inset + + tales que +\begin_inset Formula $f(x)=a$ +\end_inset + + y +\begin_inset Formula $f(y)=b$ +\end_inset + +, entonces +\begin_inset Formula $f(x+y)=f(x)+f(y)=a+b$ +\end_inset + + y por tanto +\begin_inset Formula $f^{-1}(a+b)=x+y=f^{-1}(a)+f^{-1}(b)$ +\end_inset + +, y +\begin_inset Formula $f(xy)=f(x)f(y)=ab$ +\end_inset + + y por tanto +\begin_inset Formula $f^{-1}(ab)=xy=f^{-1}(a)f^{-1}(b)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Ejemplos: +\end_layout + +\begin_layout Enumerate +Dados anillos +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + +, +\begin_inset Formula $f:A\to B$ +\end_inset + + dada por +\begin_inset Formula $f(a)=0$ +\end_inset + + es un homomorfismo si y sólo si +\begin_inset Formula $B=0$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $1=f(1)=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $f(1)=0=1$ +\end_inset + +, +\begin_inset Formula $f(a+b)=0=f(a)+f(b)$ +\end_inset + +, +\begin_inset Formula $f(ab)=0=f(a)f(b)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Sea +\begin_inset Formula $B$ +\end_inset + + un subanillo de +\begin_inset Formula $A$ +\end_inset + +, la inclusión +\begin_inset Formula $i:B\to A$ +\end_inset + + es un homomorfismo. +\end_layout + +\begin_layout Enumerate +Dado un anillo +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $\mu:\mathbb{Z}\to A$ +\end_inset + + dada por +\begin_inset Formula $\mu(n):=n1$ +\end_inset + + es el único homomorfismo de anillos +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + en +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\mu(1)=1$ +\end_inset + +, +\begin_inset Formula $\mu(a+b)=(a+b)1=a1+b1$ +\end_inset + +, +\begin_inset Formula $\mu(ab)=(ab)1=a(b1)=(a1)(b1)$ +\end_inset + +. + Para este último paso si +\begin_inset Formula $a=0$ +\end_inset + +, +\begin_inset Formula $a(b1)=0(b1)=(0\cdot1)(b1)$ +\end_inset + +, y si +\begin_inset Formula $a>0$ +\end_inset + +, por inducción, +\begin_inset Formula $a(b1)=(a-1)(b1)+b1=((a-1)1)(b1)+1(b1)=((a-1)1+1\cdot1)(b1)=(a1)(b1)$ +\end_inset + +, y entonces +\begin_inset Formula $(-a)(b1)=-(a(b1))=-((a1)(b1))=((-a)1)(b1)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Dada una familia de anillos +\begin_inset Formula $(A_{i})_{i\in I}$ +\end_inset + + y +\begin_inset Formula $j\in I$ +\end_inset + +, la +\series bold +proyección +\series default + +\begin_inset Formula $p_{j}:\prod_{i\in I}A_{i}\to A_{j}$ +\end_inset + + dada por +\begin_inset Formula $p_{j}(a):=a_{j}$ +\end_inset + + es un homomorfismo. +\end_layout + +\begin_layout Enumerate +La +\series bold +conjugación +\series default + de complejos, dada por +\begin_inset Formula $\overline{a+bi}:=a-bi$ +\end_inset + + para +\begin_inset Formula $a,b\in\mathbb{R}$ +\end_inset + +, es un automorfismo en +\begin_inset Formula $\mathbb{C}$ +\end_inset + +. + Del mismo modo, si +\begin_inset Formula $d$ +\end_inset + + es un entero que no es un cuadrado, definiendo el conjugado de +\begin_inset Formula $a+b\sqrt{d}$ +\end_inset + + como +\begin_inset Formula $a-b\sqrt{d}$ +\end_inset + + en +\begin_inset Formula $\mathbb{Z}[\sqrt{d}]$ +\end_inset + + o en +\begin_inset Formula $\mathbb{Q}[\sqrt{d}]$ +\end_inset + + tenemos un automorfismo. +\end_layout + +\begin_layout Enumerate +Sea +\begin_inset Formula $A$ +\end_inset + + un anillo y +\begin_inset Formula $b\in A$ +\end_inset + +, definimos el +\series bold +homomorfismo de sustitución +\series default + en +\begin_inset Formula $b$ +\end_inset + + como la función +\begin_inset Formula $S_{b}:A[X]\to A$ +\end_inset + + dada por +\begin_inset Formula $S_{b}(a_{0}+a_{1}X+\dots+a_{n}X^{n}):=a_{0}+a_{1}b+\dots+a_{n}b^{n}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Ideales +\end_layout + +\begin_layout Standard +Un +\series bold +ideal +\series default + de un anillo conmutativo +\begin_inset Formula $A$ +\end_inset + + es un subconjunto +\begin_inset Formula $I\subseteq A$ +\end_inset + + no vacío tal que +\begin_inset Formula $\forall x,y\in I,x+y\in I$ +\end_inset + + y +\begin_inset Formula $\forall x\in I,\forall a\in A,ax\in I$ +\end_inset + +. + Todo ideal contiene al 0, pues tomando +\begin_inset Formula $a\in I$ +\end_inset + +, +\begin_inset Formula $0=a+(-1)a\in I$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +\begin_inset Newpage pagebreak +\end_inset + + +\end_layout + +\begin_layout Standard +Ejemplos: +\end_layout + +\begin_layout Enumerate +Dado un anillo +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $0:=\{0\}$ +\end_inset + + es un ideal de +\begin_inset Formula $A$ +\end_inset + + llamado +\series bold +ideal cero +\series default +, y +\begin_inset Formula $A$ +\end_inset + + es un ideal llamado +\series bold +ideal impropio +\series default +, en oposición al resto que son +\series bold +ideales propios +\series default +. +\end_layout + +\begin_layout Enumerate +Dado un anillo +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $T\subseteq A$ +\end_inset + +, llamamos +\series bold +ideal generado +\series default + por +\begin_inset Formula $T$ +\end_inset + + a +\begin_inset Formula +\[ +TA:=(T):=\left\{ \sum_{k=1}^{n}a_{k}t_{k}\right\} _{n\in\mathbb{N},a_{k}\in A,t_{k}\in T}. +\] + +\end_inset + +En particular, dado +\begin_inset Formula $b\in A$ +\end_inset + +, llamamos +\series bold +ideal principal +\series default + generado por +\begin_inset Formula $b$ +\end_inset + + a +\begin_inset Formula $(b):=bA:=\{b\}A$ +\end_inset + +. + Todos los ideales de +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + son de esta forma. +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula $I$ +\end_inset + + un ideal de +\begin_inset Formula $\mathbb{Z}$ +\end_inset + +. + Si +\begin_inset Formula $I=0$ +\end_inset + +, entonces +\begin_inset Formula $I=(0)$ +\end_inset + +, por lo que suponemos +\begin_inset Formula $I\neq0$ +\end_inset + +. + Sea +\begin_inset Formula $n\in I\setminus\{0\}$ +\end_inset + +, o +\begin_inset Formula $n$ +\end_inset + + o +\begin_inset Formula $-n$ +\end_inset + + es positivo, luego +\begin_inset Formula $I$ +\end_inset + + contiene al menos un positivo y podemos definir +\begin_inset Formula $a:=\min(I\cap\mathbb{Z}^{+})$ +\end_inset + +. + Sea +\begin_inset Formula $b\in I$ +\end_inset + +, existen +\begin_inset Formula $q,r\in\mathbb{Z}$ +\end_inset + + tales que +\begin_inset Formula $b=aq+r$ +\end_inset + + y +\begin_inset Formula $0\leq r<a$ +\end_inset + +. + Entonces +\begin_inset Formula $r=b+(-q)a\in I$ +\end_inset + +, luego debe ser +\begin_inset Formula $r=0$ +\end_inset + + y por tanto +\begin_inset Formula $b=aq\in(a)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Sean +\begin_inset Formula $I$ +\end_inset + + un ideal de +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $J$ +\end_inset + + un ideal de +\begin_inset Formula $B$ +\end_inset + +, +\begin_inset Formula $I\times J$ +\end_inset + + es un ideal de +\begin_inset Formula $A\times B$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Dado un ideal +\begin_inset Formula $I$ +\end_inset + + de +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]:a_{0}\in I\}$ +\end_inset + + y +\begin_inset Formula $\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]:a_{0},\dots,a_{n}\in I\}$ +\end_inset + + son ideales de +\begin_inset Formula $A[X]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dado un ideal +\begin_inset Formula $I$ +\end_inset + + de +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $a,b\in A$ +\end_inset + + son +\series bold +congruentes módulo +\begin_inset Formula $I$ +\end_inset + + +\series default +, +\begin_inset Formula $a\equiv b$ +\end_inset + +, si +\begin_inset Formula $b-a\in I$ +\end_inset + +, y esta es una relación de equivalencia en +\begin_inset Formula $A$ +\end_inset + + con clases de equivalencia de la forma +\begin_inset Formula $[a]:=a+I:=\{a+x\}_{x\in I}$ +\end_inset + + y conjunto cociente +\begin_inset Formula $A/I=\{[a]\}_{a\in A}$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Las operaciones +\begin_inset Formula $[a]+[b]:=[a+b]$ +\end_inset + + y +\begin_inset Formula $[a][b]:=[ab]$ +\end_inset + + están bien definidas y dotan a +\begin_inset Formula $A/I$ +\end_inset + + de una estructura de anillo conmutativo con cero +\begin_inset Formula $[0]$ +\end_inset + + y uno +\begin_inset Formula $[1]$ +\end_inset + +, y llamamos a este anillo +\series bold +anillo cociente de +\begin_inset Formula $A$ +\end_inset + + módulo +\begin_inset Formula $I$ +\end_inset + + +\series default +. + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $a\equiv a'$ +\end_inset + + y +\begin_inset Formula $b\equiv b'$ +\end_inset + +, entonces +\begin_inset Formula $a-a',b-b'\in I$ +\end_inset + +. + Así, +\begin_inset Formula $(a+b)-(a'+b')=(a-a')+(b-b')\in I$ +\end_inset + + y por tanto +\begin_inset Formula $a+b\equiv a'+b'$ +\end_inset + +, +\begin_inset Formula $[a+b]=[a'+b']$ +\end_inset + + y la suma está bien definida. + Para el producto, +\begin_inset Formula $a'b'-ab=a'b'-a'b+a'b-ab=a'(b'-b)+(a'-a)b\in I$ +\end_inset + +, luego +\begin_inset Formula $[ab]=[a'b']$ +\end_inset + +. + Es claro que la suma y el producto definidos son asociativos y conmutativos, + pues +\begin_inset Formula $A$ +\end_inset + + es conmutativo, y que el producto es distributivo respecto de la suma. + Además, +\begin_inset Formula $[0]+[a]=[0+a]=[a]$ +\end_inset + + y +\begin_inset Formula $[1][b]=[1b]=[b]$ +\end_inset + +, luego +\begin_inset Formula $[0]$ +\end_inset + + y +\begin_inset Formula $[1]$ +\end_inset + + son respectivamente el 0 y el 1. + Finalmente, para +\begin_inset Formula $a\in A$ +\end_inset + +, +\begin_inset Formula $[-a]+[a]=[-a+a]=[0]$ +\end_inset + +, luego todo elemento +\begin_inset Formula $[a]$ +\end_inset + + tiene opuesto +\begin_inset Formula $[-a]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Algunos anillos cociente: +\end_layout + +\begin_layout Enumerate +Dado +\begin_inset Formula $n\in\mathbb{Z}^{+}$ +\end_inset + +, llamamos +\begin_inset Formula $\mathbb{Z}_{n}:=\frac{\mathbb{Z}}{n\mathbb{Z}}=\{0+n\mathbb{Z},\dots,(n-1)+n\mathbb{Z}\}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Dado +\begin_inset Formula $a\in\mathbb{Z}$ +\end_inset + +, si +\begin_inset Formula $r$ +\end_inset + + es el resto de +\begin_inset Formula $a$ +\end_inset + + entre +\begin_inset Formula $n$ +\end_inset + +, entonces +\begin_inset Formula $a\equiv r\bmod n$ +\end_inset + +, pero para +\begin_inset Formula $0\leq a,b<n$ +\end_inset + +, +\begin_inset Formula $a\equiv b\iff a-b\in n\mathbb{Z}\iff n|a-b\overset{|a-b|<n}{\iff}a=b$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $A/0\cong A$ +\end_inset + + y +\begin_inset Formula $A/A\cong0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Dado un anillo +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $A[X]/(X)\cong A$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $P,Q\in A[X]$ +\end_inset + + son congruentes módulo +\begin_inset Formula $(X)$ +\end_inset + + si y sólo si el coeficiente independiente de +\begin_inset Formula $P-Q$ +\end_inset + + es 0, si y sólo si +\begin_inset Formula $P$ +\end_inset + + y +\begin_inset Formula $Q$ +\end_inset + + tienen igual coeficiente independiente, y es claro que entonces la composición + de la inclusión con la proyección, +\begin_inset Formula $A\overset{i}{\to}A[X]\overset{\pi}{\to}A[X]/(X)$ +\end_inset + + es un isomorfismo. +\end_layout + +\end_deeper +\begin_layout Standard +Dado un anillo conmutativo +\begin_inset Formula $A$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $b\in A$ +\end_inset + + es invertible si y sólo si +\begin_inset Formula $(b)=A$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Dado +\begin_inset Formula $x\in A$ +\end_inset + +, +\begin_inset Formula $x=(bb^{-1})x=b(b^{-1}x)\in(b)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +En particular +\begin_inset Formula $1\in(b)$ +\end_inset + +, luego existe +\begin_inset Formula $a$ +\end_inset + + tal que +\begin_inset Formula $ba=1$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Un ideal +\begin_inset Formula $I$ +\end_inset + + de +\begin_inset Formula $A$ +\end_inset + + es impropio si y sólo si +\begin_inset Formula $1\in I$ +\end_inset + +, si y sólo si +\begin_inset Formula $I$ +\end_inset + + contiene una unidad de +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Description +\begin_inset Formula $[1\implies2\implies3]$ +\end_inset + + Obvio. +\end_layout + +\begin_layout Description +\begin_inset Formula $[3\implies1]$ +\end_inset + + Si +\begin_inset Formula $a\in I\cap A^{*}$ +\end_inset + +, +\begin_inset Formula $(a)\subseteq I$ +\end_inset + +, pero +\begin_inset Formula $a$ +\end_inset + + es invertible, luego +\begin_inset Formula $(a)=A$ +\end_inset + + y por tanto +\begin_inset Formula $I=A$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Sea +\begin_inset Formula $f:A\to B$ +\end_inset + + un homomorfismo de anillos, llamamos +\series bold +núcleo +\series default + de +\begin_inset Formula $f$ +\end_inset + + a +\begin_inset Formula $\ker f:=f^{-1}(0)$ +\end_inset + +. + Entonces +\begin_inset Formula $\text{Im}f$ +\end_inset + + es un subanillo de +\begin_inset Formula $B$ +\end_inset + + y +\begin_inset Formula $\ker f$ +\end_inset + + es un ideal de +\begin_inset Formula $A$ +\end_inset + +. + +\series bold +Demostración: +\series default + Para lo primero, +\begin_inset Formula $f(1)=1\in\text{Im}f$ +\end_inset + +, y para +\begin_inset Formula $a,b\in\text{Im}f$ +\end_inset + +, existen +\begin_inset Formula $x,y\in A$ +\end_inset + + con +\begin_inset Formula $f(x)=a$ +\end_inset + + y +\begin_inset Formula $f(y)=b$ +\end_inset + +, luego +\begin_inset Formula $a-b=f(x)-f(y)=f(x-y)\in\text{Im}f$ +\end_inset + + y +\begin_inset Formula $ab=f(x)f(y)=f(xy)\in\text{Im}f$ +\end_inset + +, luego +\begin_inset Formula $\text{Im}f$ +\end_inset + + contiene al 1 y es cerrado para sumas y productos y por tanto es un subanillo. + Para lo segundo, sabemos que +\begin_inset Formula $0\in\ker f$ +\end_inset + +, luego +\begin_inset Formula $\ker f\neq\emptyset$ +\end_inset + +. + Para +\begin_inset Formula $x,y\in\ker f$ +\end_inset + +, +\begin_inset Formula $f(x+y)=f(x)+f(y)=0$ +\end_inset + +, luego +\begin_inset Formula $x+y\in\ker f$ +\end_inset + +, y para +\begin_inset Formula $a\in A$ +\end_inset + +, +\begin_inset Formula $f(ax)=f(a)f(x)=f(a)0=0$ +\end_inset + +, luego +\begin_inset Formula $ax\in\ker f$ +\end_inset + +, lo que prueba que +\begin_inset Formula $\ker f$ +\end_inset + + es un ideal de +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un homomorfismo de anillos +\begin_inset Formula $f:A\to B$ +\end_inset + + es inyectivo si y sólo si +\begin_inset Formula $\ker f=0$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $f(a)=0=f(0)$ +\end_inset + +, entonces +\begin_inset Formula $a=0$ +\end_inset + +, luego +\begin_inset Formula $\ker f=0$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $a,b\in A$ +\end_inset + + con +\begin_inset Formula $a\neq b$ +\end_inset + +, entonces +\begin_inset Formula $f(a)-f(b)=f(a-b)\neq0$ +\end_inset + +, luego +\begin_inset Formula $f(a)\neq f(b)$ +\end_inset + +, con lo que +\begin_inset Formula $f$ +\end_inset + + es inyectiva. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de la correspondencia: +\series default + Si +\begin_inset Formula $I$ +\end_inset + + es un ideal de +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $J\overset{\pi}{\mapsto}J/I:=\{[a]\}_{a\in J}$ +\end_inset + + es una biyección entre el conjunto de los ideales de +\begin_inset Formula $A$ +\end_inset + + que contienen a +\begin_inset Formula $I$ +\end_inset + + y el conjunto de los ideales de +\begin_inset Formula $A/I$ +\end_inset + + y tanto +\begin_inset Formula $\pi$ +\end_inset + + como +\begin_inset Formula $\pi^{-1}$ +\end_inset + + preservan la inclusión. +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Empezamos viendo que, si +\begin_inset Formula $J\supseteq I$ +\end_inset + + es ideal de +\begin_inset Formula $A$ +\end_inset + + , +\begin_inset Formula $J/I$ +\end_inset + + es un ideal de +\begin_inset Formula $A/I$ +\end_inset + +. + En efecto, como +\begin_inset Formula $0\in J$ +\end_inset + +, +\begin_inset Formula $[0]\in J/I\neq\emptyset$ +\end_inset + +; para +\begin_inset Formula $[x],[y]\in J/I$ +\end_inset + +, +\begin_inset Formula $[x]+[y]=[x+y]\in J/I$ +\end_inset + +, y para +\begin_inset Formula $[x]\in J/I$ +\end_inset + + y +\begin_inset Formula $[a]\in A/I$ +\end_inset + +, +\begin_inset Formula $[a][x]=[ax]\in J/I$ +\end_inset + +. + Además, +\begin_inset Formula $\pi^{-1}(J/I)=J$ +\end_inset + +, pues +\begin_inset Formula $\pi^{-1}(J/I)=\{x:\pi(x)=[x]\in J/I\}$ +\end_inset + +, pero si +\begin_inset Formula $x\in J$ +\end_inset + +, +\begin_inset Formula $[x]\in J/I$ +\end_inset + +, y si +\begin_inset Formula $[x]\in J/I$ +\end_inset + +, existe +\begin_inset Formula $a\in I\subseteq J$ +\end_inset + + con +\begin_inset Formula $x+a\in J$ +\end_inset + + y por tanto +\begin_inset Formula $-a\in J$ +\end_inset + + y +\begin_inset Formula $(x+a)-a=x\in J$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Ahora vemos que, dado un ideal +\begin_inset Formula $X$ +\end_inset + + de +\begin_inset Formula $A/I$ +\end_inset + +, +\begin_inset Formula $\pi^{-1}(X)$ +\end_inset + + es un ideal de +\begin_inset Formula $A$ +\end_inset + + que contiene a +\begin_inset Formula $I$ +\end_inset + +. + En efecto, como +\begin_inset Formula $[0]=I\in X$ +\end_inset + +, +\begin_inset Formula $\pi^{-1}(X)=\{x:[x]\in X\}\ni0$ +\end_inset + +; para +\begin_inset Formula $x,y\in\pi^{-1}(X)$ +\end_inset + +, +\begin_inset Formula $[x],[y]\in X$ +\end_inset + +, luego +\begin_inset Formula $[x+y]=[x]+[y]\in X$ +\end_inset + + y +\begin_inset Formula $x+y\in\pi^{-1}(X)$ +\end_inset + +; para +\begin_inset Formula $x\in\pi^{-1}(X)$ +\end_inset + + y +\begin_inset Formula $a\in A$ +\end_inset + +, +\begin_inset Formula $[ax]=[a][x]\in X$ +\end_inset + + y +\begin_inset Formula $ax\in\pi^{-1}(X)$ +\end_inset + +, y para +\begin_inset Formula $x\in I$ +\end_inset + +, +\begin_inset Formula $[x]\in I/I=0$ +\end_inset + +, luego +\begin_inset Formula $x\in\pi^{-1}(0)\subseteq\pi^{-1}(X)$ +\end_inset + + e +\begin_inset Formula $I\subseteq\pi^{-1}(X)$ +\end_inset + +. + Además, +\begin_inset Formula $\pi^{-1}(X)/I=\{x:[x]\in X\}/I=\{[x]:[x]\in X\}=X$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Para ver que +\begin_inset Formula $\pi$ +\end_inset + + preserva la inclusión, sean +\begin_inset Formula $I\subseteq J\subseteq K$ +\end_inset + + ideales de +\begin_inset Formula $A$ +\end_inset + +, queremos ver que +\begin_inset Formula $J/I\subseteq K/I$ +\end_inset + +, pero para +\begin_inset Formula $[x]\in J/I$ +\end_inset + +, existe +\begin_inset Formula $a\in I\subseteq J$ +\end_inset + + con +\begin_inset Formula $x+a\in J$ +\end_inset + +, luego +\begin_inset Formula $x=(x+a)-a\in J\subseteq K$ +\end_inset + + y por tanto +\begin_inset Formula $[x]\in K/I$ +\end_inset + +. + Queda ver que +\begin_inset Formula $\pi^{-1}$ +\end_inset + + también preserva la inclusión. + Sean +\begin_inset Formula $X\subseteq Y$ +\end_inset + + ideales de +\begin_inset Formula $A/I$ +\end_inset + +, queremos ver que +\begin_inset Formula $\pi^{-1}(X)\subseteq\pi^{-1}(Y)$ +\end_inset + +. + En efecto, sea +\begin_inset Formula $x\in\pi^{-1}(X)$ +\end_inset + +, entonces +\begin_inset Formula $[x]\in X\subseteq Y$ +\end_inset + +, luego existe +\begin_inset Formula $a\in I\subseteq\pi^{-1}(Y)$ +\end_inset + + con +\begin_inset Formula $x+a\in\pi^{-1}(Y)$ +\end_inset + +, pero como +\begin_inset Formula $\pi^{-1}(Y)$ +\end_inset + + es un ideal, +\begin_inset Formula $x=(x+a)-a\in\pi^{-1}(Y)$ +\end_inset + +. +\end_layout + +\begin_layout Section +Operaciones con ideales +\end_layout + +\begin_layout Standard +La intersección de una familia de ideales de +\begin_inset Formula $A$ +\end_inset + + es un ideal de +\begin_inset Formula $A$ +\end_inset + +, con lo que +\begin_inset Formula $(X)$ +\end_inset + + es la intersección de todos los ideales de +\begin_inset Formula $A$ +\end_inset + + que contienen a +\begin_inset Formula $X$ +\end_inset + +. + Por otro lado, si +\begin_inset Formula $\{I_{x}\}_{x\in X}$ +\end_inset + + es una familia de ideales de +\begin_inset Formula $A$ +\end_inset + +, definimos +\begin_inset Formula +\begin{eqnarray*} +\sum_{x\in X}I_{x} & := & \left\{ \sum_{x\in S}a_{x}:S\subseteq X\text{ finito},a_{x}\in I_{x}\right\} ,\\ +\prod_{x\in X}I_{x} & := & \left\{ \sum_{k=1}^{n}\prod_{x\in S}a_{kx}:n\in\mathbb{N},S\subseteq X\text{ finito},a_{kx}\in I_{x}\right\} . +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Entonces: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\{I_{x}\}_{x\in X}$ +\end_inset + + es una familia de ideales de +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $\sum_{x\in X}I_{x}=\left(\bigcup_{x\in X}I_{x}\right)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $I_{1},\dots,I_{n}$ +\end_inset + + son ideales de +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $I_{1}\cdots I_{n}=\left(\left\{ x_{1}\cdots x_{n}\right\} _{x_{k}\in I_{k}}\right)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Ejemplos: +\end_layout + +\begin_layout Enumerate +Sean +\begin_inset Formula $n,m\in\mathbb{Z}$ +\end_inset + + coprimos, +\begin_inset Formula $(n)(m)=(nm)$ +\end_inset + +, +\begin_inset Formula $(n)\cap(m)=(\text{mcm}(n,m))$ +\end_inset + +, +\begin_inset Formula $(n)+(m)=(\text{mcd}(n,m))$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $(n)(m)=(\{ab\}_{a\in(n),b\in(m)})=(\{pnqm\}_{p,q\in\mathbb{Z}})=(\{knm\})_{k\in\mathbb{Z}}=(nm)$ +\end_inset + +. + +\begin_inset Formula $(n)\cap(m)=\{k\in\mathbb{Z}:n,m|k\}=\{k:\text{mcm}(n,m)|k\}=(\text{mcm}(n,m))$ +\end_inset + +. + +\begin_inset Formula $(n)+(m)=\{a+b\}_{a\in(n),b\in(m)}=\{pn+qm\}_{p,q\in\mathbb{Z}}=\{k\text{mcd}(n,m)\}_{k\in\mathbb{Z}}=(\text{mcd}(n,m))$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +En +\begin_inset Formula $\mathbb{Z}[X]$ +\end_inset + +, +\begin_inset Formula $(2)+(X)$ +\end_inset + +, formado por los polinomios cuyo término principal es par, no es principal. +\end_layout + +\begin_deeper +\begin_layout Standard +Supongamos que existe +\begin_inset Formula $a\in\mathbb{Z}[X]$ +\end_inset + + con +\begin_inset Formula $(2)+(X)=(a)$ +\end_inset + +. + Entonces +\begin_inset Formula $ba=2\in(2)$ +\end_inset + + para algún polinomio +\begin_inset Formula $b$ +\end_inset + +, luego +\begin_inset Formula $a\in\mathbb{Z}$ +\end_inset + +, y como +\begin_inset Formula $a\in(2,X)$ +\end_inset + +, +\begin_inset Formula $a$ +\end_inset + + es par, luego +\begin_inset Formula $X\notin(a)=(2)+(X)\#$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Section +Teoremas de isomorfía +\end_layout + +\begin_layout Standard + +\series bold +Primer teorema de isomorfía: +\series default + Dado un homomorfismo de anillos conmutativos +\begin_inset Formula $f:A\to B$ +\end_inset + +, existe un único isomorfismo de anillos +\begin_inset Formula $\tilde{f}:A/\ker f\to\text{Im}f$ +\end_inset + + tal que +\begin_inset Formula $i\circ\tilde{f}\circ p=f$ +\end_inset + +, donde +\begin_inset Formula $i:\text{Im}f\to B$ +\end_inset + + es la inclusión y +\begin_inset Formula $p:A\to A/\ker f$ +\end_inset + + es la proyección. + En particular, +\begin_inset Formula +\[ +A/\ker f\cong\text{Im}f. +\] + +\end_inset + + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $K:=\ker f$ +\end_inset + + e +\begin_inset Formula $I:=\text{Im}f$ +\end_inset + +. + La función +\begin_inset Formula $\tilde{f}:A/K\to I$ +\end_inset + + dada por +\begin_inset Formula $\tilde{f}(x+K):=f(x)$ +\end_inset + + está bien definida, pues si +\begin_inset Formula $x+K=y+K$ +\end_inset + +, +\begin_inset Formula $x-y\in F$ +\end_inset + + y por tanto +\begin_inset Formula $f(x)-f(y)=f(x-y)=0$ +\end_inset + + y +\begin_inset Formula $f(x)=f(y)$ +\end_inset + +. + Es claro que +\begin_inset Formula $\tilde{f}$ +\end_inset + + es un homomorfismo de anillos suprayectivo. + Para ver que es inyectivo, sea +\begin_inset Formula $x+K\in\ker\tilde{f}$ +\end_inset + +, entonces +\begin_inset Formula $0=\tilde{f}(x+K)=f(x)$ +\end_inset + + y por tanto +\begin_inset Formula $x\in K$ +\end_inset + + y +\begin_inset Formula $x+K=0+K=0$ +\end_inset + +. + De aquí que +\begin_inset Formula $\tilde{f}$ +\end_inset + + es un homomorfismo. + Para ver que +\begin_inset Formula $i\circ\tilde{f}\circ p=f$ +\end_inset + +, +\begin_inset Formula $(i\circ\tilde{f}\circ p)(x)=\tilde{f}(x+K)=f(x)$ +\end_inset + + para todo +\begin_inset Formula $x\in A$ +\end_inset + +. + Para la unicidad, sea +\begin_inset Formula $\tilde{f}:A/K\to I$ +\end_inset + + otro isomorfismo con +\begin_inset Formula $i\circ\hat{f}\circ p=f$ +\end_inset + +, para +\begin_inset Formula $x\in A$ +\end_inset + +, +\begin_inset Formula $\hat{f}(x+K)=i(\hat{f}(p(x))=f(x)=\tilde{f}(x+K)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Newpage pagebreak +\end_inset + + +\end_layout + +\begin_layout Standard +Así: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + son anillos conmutativos, +\begin_inset Formula $\frac{A\times B}{0\times B}\cong A$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +El homomorfismo de proyección +\begin_inset Formula $f:A\times B\to A$ +\end_inset + +, +\begin_inset Formula $f(a,b):=a$ +\end_inset + +, es suprayectivo con núcleo +\begin_inset Formula $0\times B$ +\end_inset + +, de donde se obtiene el resultado por el primer teorema de isomorfía. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + es un anillo conmutativo, +\begin_inset Formula $\frac{A[X]}{(X)}\cong A$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +El homomorfismo de sustitución en el 0 +\begin_inset Formula $f:A[X]\to A$ +\end_inset + +, +\begin_inset Formula $f(\sum_{i=0}^{n}a_{i}X^{i})=a_{0}$ +\end_inset + +, es suprayectivo con núcleo +\begin_inset Formula $(X)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Sea +\begin_inset Formula $I$ +\end_inset + + un ideal de de +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $\frac{A[X]}{I[X]}\cong(A/I)[X]$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +La función +\begin_inset Formula $f:A[X]\to(A/I)[X]$ +\end_inset + +, +\begin_inset Formula $f(\sum_{i=0}^{n}a_{i}X^{i})=\sum_{i=0}^{n}[a_{i}]X^{i}$ +\end_inset + +, es un homomorfismo suprayectivo con núcleo +\begin_inset Formula $I[X]=\{\sum_{i=0}^{n}a_{i}X^{i}:a_{i}\in I\}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard + +\series bold +Segundo teorema de isomorfía: +\series default + Dados dos ideales +\begin_inset Formula $I\subseteq J$ +\end_inset + + de +\begin_inset Formula $A$ +\end_inset + +, el ideal +\begin_inset Formula $J/I$ +\end_inset + + de +\begin_inset Formula $A/I$ +\end_inset + + cumple +\begin_inset Formula +\[ +\frac{A/I}{J/I}\cong\frac{A}{J}. +\] + +\end_inset + + +\series bold +Demostración: +\series default + +\begin_inset Formula $J/I$ +\end_inset + + es ideal de +\begin_inset Formula $A/I$ +\end_inset + + por el teorema de la correspondencia. + Sea +\begin_inset Formula $f:A/I\to A/J$ +\end_inset + + dada por +\begin_inset Formula $f(a+I):=a+J$ +\end_inset + +, es fácil ver que +\begin_inset Formula $f$ +\end_inset + + es un homomorfismo de anillos suprayectivo y que +\begin_inset Formula $\ker f=J/I$ +\end_inset + +, y entonces basta aplicar el primer teorema de isomorfía. +\end_layout + +\begin_layout Standard + +\series bold +Tercer teorema de isomorfía: +\series default + Sea +\begin_inset Formula $A$ +\end_inset + + un anillo con un subanillo +\begin_inset Formula $B$ +\end_inset + + y un ideal +\begin_inset Formula $I$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $B\cap I$ +\end_inset + + es un ideal de +\begin_inset Formula $B$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $x,y\in B\cap I$ +\end_inset + +, +\begin_inset Formula $x+y\in B$ +\end_inset + + y +\begin_inset Formula $x+y\in I$ +\end_inset + +, y sean +\begin_inset Formula $x\in B\cap I$ +\end_inset + + y +\begin_inset Formula $a\in B$ +\end_inset + +, +\begin_inset Formula $ax\in I$ +\end_inset + + y +\begin_inset Formula $ax\in B$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $B+I$ +\end_inset + + es un subanillo de +\begin_inset Formula $A$ +\end_inset + + que contiene a +\begin_inset Formula $I$ +\end_inset + + como ideal. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $a,b\in B$ +\end_inset + + y +\begin_inset Formula $x,y\in I$ +\end_inset + +, +\begin_inset Formula $(a+x)-(b+y)=(a-b)+(x-y)\in B+I$ +\end_inset + + y +\begin_inset Formula $(a+x)(b+y)=ab+ay+xb+xy=ab+(ay+bx+xy)\in B+I$ +\end_inset + +, y como +\begin_inset Formula $1\in B\subseteq B+I$ +\end_inset + +, +\begin_inset Formula $B+I$ +\end_inset + + es un subanillo. + Además, para +\begin_inset Formula $x,y\in I$ +\end_inset + +, +\begin_inset Formula $x+y\in I\subseteq B+I$ +\end_inset + +, y para +\begin_inset Formula $a\in B$ +\end_inset + + y +\begin_inset Formula $x,y\in I$ +\end_inset + +, +\begin_inset Formula $(a+x)y\overset{a+x\in A}{\in}I\subseteq B+I$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula +\[ +\frac{B}{B\cap I}\cong\frac{B+I}{I}. +\] + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula $f:B\to A/I$ +\end_inset + + dada por +\begin_inset Formula $f(x):=x+I$ +\end_inset + +, es claro que +\begin_inset Formula $\ker f=B\cap I$ +\end_inset + + e +\begin_inset Formula $\text{Im}f=(B+I)/I$ +\end_inset + +, y entonces basta aplicar el primer teorema de isomorfía. +\end_layout + +\end_deeper +\begin_layout Standard +Decimos que un anillo +\begin_inset Formula $A$ +\end_inset + + tiene +\series bold +característica +\series default + +\begin_inset Formula $n\in\mathbb{Z}^{\geq0}$ +\end_inset + + si +\begin_inset Formula $n$ +\end_inset + + es el menor entero positivo con +\begin_inset Formula $n1_{A}=0_{A}$ +\end_inset + +, o 0 si no existe tal +\begin_inset Formula $n$ +\end_inset + +. + Sean +\begin_inset Formula $A$ +\end_inset + + un anillo conmutativo, +\begin_inset Formula $f:\mathbb{Z}\to A$ +\end_inset + + el único homomorfismo de anillos ( +\begin_inset Formula $f(n)=n1$ +\end_inset + +) y +\begin_inset Formula $n\geq0$ +\end_inset + +, +\begin_inset Formula $A$ +\end_inset + + tiene característica +\begin_inset Formula $n$ +\end_inset + + si y sólo si +\begin_inset Formula $\ker f=n\mathbb{Z}$ +\end_inset + +, si y sólo si el subanillo primo de +\begin_inset Formula $A$ +\end_inset + + es isomorfo a +\begin_inset Formula $\mathbb{Z}_{n}$ +\end_inset + +, si y sólo si +\begin_inset Formula $A$ +\end_inset + + contiene un subanillo isomorfo a +\begin_inset Formula $\mathbb{Z}_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $[1\implies2]$ +\end_inset + + Si +\begin_inset Formula $n>0$ +\end_inset + +, para un cierto +\begin_inset Formula $m=qn+r$ +\end_inset + + con +\begin_inset Formula $q,r\in\mathbb{Z}$ +\end_inset + + y +\begin_inset Formula $0\leq r<n$ +\end_inset + +, +\begin_inset Formula $f(qn+r)=f(q)f(n)+f(r)\overset{n1=0}{=}f(r)$ +\end_inset + +, que es 0 si y sólo si +\begin_inset Formula $r=0$ +\end_inset + +, por lo que +\begin_inset Formula $\ker f=\{qn\}_{q\in\mathbb{Z}}=n\mathbb{Z}$ +\end_inset + +. + Si +\begin_inset Formula $n=0$ +\end_inset + +, +\begin_inset Formula $f(m)=0\iff m=0$ +\end_inset + +, pues para +\begin_inset Formula $m>0$ +\end_inset + + es +\begin_inset Formula $m1\neq0$ +\end_inset + + y para +\begin_inset Formula $m<0$ +\end_inset + + es +\begin_inset Formula $f(m)=f((-1)(-m))=f(-1)f(-m)=(-1)f(-m)=-f(-m)\neq0$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $[2\implies1]$ +\end_inset + + Si +\begin_inset Formula $\ker f=n\mathbb{Z}$ +\end_inset + + con +\begin_inset Formula $n>0$ +\end_inset + +, el menor entero positivo con +\begin_inset Formula $f(n)=n1=0$ +\end_inset + + es +\begin_inset Formula $n1_{\mathbb{Z}}=n$ +\end_inset + +. + Si +\begin_inset Formula $\ker f=0\mathbb{Z}=0$ +\end_inset + +, +\begin_inset Formula $f(n)=n1=0\iff n=0$ +\end_inset + + y +\begin_inset Formula $A$ +\end_inset + + tiene característica 0. +\end_layout + +\begin_layout Description +\begin_inset Formula $[2\implies3]$ +\end_inset + + +\begin_inset Formula $\text{Im}f=\{f(n)=n1\}_{n\in\mathbb{Z}}$ +\end_inset + + es el subanillo primo de +\begin_inset Formula $A$ +\end_inset + +, y por el primer teorema de isomorfía, +\begin_inset Formula $\mathbb{Z}_{n}=\frac{\mathbb{Z}}{n\mathbb{Z}}\cong\text{Im}f$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $[3\implies4]$ +\end_inset + + Obvio. +\end_layout + +\begin_layout Description +\begin_inset Formula $[4\implies2]$ +\end_inset + + Sean +\begin_inset Formula $g:\mathbb{Z}_{n}\to B$ +\end_inset + + un isomorfismo de +\begin_inset Formula $\mathbb{Z}_{n}$ +\end_inset + + con un subanillo +\begin_inset Formula $B$ +\end_inset + + de +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $\pi:\mathbb{Z}\to\mathbb{Z}_{n}$ +\end_inset + + la proyección y +\begin_inset Formula $u:B\to A$ +\end_inset + + la inclusión, +\begin_inset Formula $u\circ g\circ\pi:\mathbb{Z}\to A$ +\end_inset + + es un homomorfismo de anillos que debe coincidir con +\begin_inset Formula $f$ +\end_inset + + por unicidad, y como +\begin_inset Formula $u\circ g$ +\end_inset + + es inyectiva, +\begin_inset Formula $\ker f=\ker\pi=n\mathbb{Z}$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema chino de los restos: +\series default + Sean +\begin_inset Formula $A$ +\end_inset + + un anillo conmutativo e +\begin_inset Formula $I_{1},\dots,I_{n}$ +\end_inset + + con +\begin_inset Formula $n\geq1$ +\end_inset + + ideales de +\begin_inset Formula $A$ +\end_inset + + con +\begin_inset Formula $I_{i}+I_{j}=A$ +\end_inset + + para +\begin_inset Formula $i\neq j$ +\end_inset + +, entonces +\begin_inset Formula $I_{1}\cap\dots\cap I_{n}=I_{1}\cdots I_{n}$ +\end_inset + + y +\begin_inset Formula +\[ +\frac{A}{I_{1}\cap\dots\cap I_{n}}\cong\frac{A}{I_{1}}\times\cdots\times\frac{A}{I_{n}}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Supongamos primero +\begin_inset Formula $n=2$ +\end_inset + +. + Como +\begin_inset Formula $I_{1}+I_{2}=A$ +\end_inset + +, sean +\begin_inset Formula $x_{1}\in I_{1}$ +\end_inset + + y +\begin_inset Formula $x_{2}\in I_{2}$ +\end_inset + + con +\begin_inset Formula $x_{1}+x_{2}=1$ +\end_inset + +, para +\begin_inset Formula $a\in I_{1}\cap I_{2}$ +\end_inset + +, +\begin_inset Formula $a=x_{1}a+ax_{2}\in I_{1}I_{2}$ +\end_inset + +, luego +\begin_inset Formula $I_{1}\cap I_{2}\subseteq I_{1}I_{2}$ +\end_inset + +, y la otra inclusión es clara. + Por otro lado, +\begin_inset Formula $f:A\to\frac{A}{I_{1}}\times\frac{A}{I_{2}}$ +\end_inset + + dada por +\begin_inset Formula $f(a):=(a+I_{1},a+I_{2})$ +\end_inset + + es un homomorfismo de anillos con núcleo +\begin_inset Formula $I_{1}\cap I_{2}$ +\end_inset + +, y es suprayectiva porque para +\begin_inset Formula $(a_{1}+I_{1},a_{2}+I_{2})\in\frac{A}{I_{1}}\times\frac{A}{I_{2}}$ +\end_inset + +, +\begin_inset Formula +\begin{multline*} +f(a_{1}x_{2}+a_{2}x_{1})=(a_{1}x_{2}+a_{2}x_{1}+I_{1},a_{1}x_{2}+a_{2}x_{1}+I_{2})=\\ +=(a_{1}x_{2}+I_{1},a_{2}x_{1}+I_{2})\stackrel[x_{1}\equiv1\bmod I_{2}]{x_{2}\equiv1\bmod I_{1}}{=}(a_{1}+I_{1},a_{2}+I_{2}). +\end{multline*} + +\end_inset + + El resultado se obtiene por el primer teorema de isomorfía. +\end_layout + +\begin_layout Standard +Para +\begin_inset Formula $n>2$ +\end_inset + +, supongamos que esto se cumple para +\begin_inset Formula $n-1$ +\end_inset + +. + Entonces, por la hipótesis de inducción, +\begin_inset Formula $I_{1}\cap\cdots\cap I_{n-1}\cap I_{n}=(I_{1}\cap\cdots\cap I_{n-1})I_{n}=I_{1}\cdots I_{n-1}I_{n}$ +\end_inset + +. + Para +\begin_inset Formula $k\leq n-1$ +\end_inset + +, existen +\begin_inset Formula $a_{k}\in I_{k}$ +\end_inset + + y +\begin_inset Formula $b_{k}\in I_{n}$ +\end_inset + + con +\begin_inset Formula $a_{k}+b_{k}=1$ +\end_inset + + y, multiplicando, +\begin_inset Formula +\[ +1=\prod_{k=1}^{n-1}(a_{k}+b_{k})=:a_{1}\cdots a_{n-1}+b, +\] + +\end_inset + + con +\begin_inset Formula $b\in I_{n}$ +\end_inset + + porque en cada sumando que incluye hay al menos un factor en +\begin_inset Formula $I_{n}$ +\end_inset + +, y como +\begin_inset Formula $a_{1}\cdots a_{n-1}\in I_{1}\cap\cdots\cap I_{n-1}$ +\end_inset + +, +\begin_inset Formula $1\in(I_{1}\cap\cdots\cap I_{n-1})+I_{n}$ +\end_inset + + y por tanto +\begin_inset Formula $(I_{1}\cap\cdots\cap I_{n-1})+I_{n}=A$ +\end_inset + +. + Así, +\begin_inset Formula +\[ +\frac{A}{I_{1}\cap\cdots\cap I_{n}}\cong\frac{A}{I_{1}\cap\cdots\cap I_{n-1}}\times\frac{A}{I_{n}}\cong\frac{A}{I_{1}}\times\cdots\times\frac{A}{I_{n-1}}\times\frac{A}{I_{n}}. +\] + +\end_inset + + +\end_layout + +\end_body +\end_document |
