diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2023-01-15 18:08:28 +0100 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2023-01-18 00:42:21 +0100 |
| commit | 2ffd2dd6bf328824dd2b47ba1f0d3b8d0eb2d332 (patch) | |
| tree | 96a812502563e237ff7b3fcbd13825f39f418822 | |
| parent | 975f990481ed3934f99e53a912f234955abb5912 (diff) | |
Terminado análisis funcional (tema 3)
| -rw-r--r-- | af/n.lyx | 97 | ||||
| -rw-r--r-- | af/n1.lyx | 2257 | ||||
| -rw-r--r-- | af/n1b.lyx | 6829 | ||||
| -rw-r--r-- | af/n2.lyx | 6297 | ||||
| -rw-r--r-- | af/n3.lyx | 4760 | ||||
| -rw-r--r-- | af/n4.lyx | 6992 |
6 files changed, 17842 insertions, 9390 deletions
@@ -135,7 +135,40 @@ filename "../license.lyx" \end_layout \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +urldef +\backslash +sigmafinite +\backslash +url{https://en.wikipedia.org/wiki/%CE%A3-finite_measure} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard Bibliografía: +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{sloppypar} +\end_layout + +\end_inset + + \end_layout \begin_layout Itemize @@ -295,12 +328,14 @@ Wikipedia, the Free Encyclopedia. \lang spanish Recuperado de -\begin_inset Flex URL +\begin_inset ERT status open \begin_layout Plain Layout -https://en.wikipedia.org/wiki/%CE%A3-finite_measure + +\backslash +sigmafinite{} \end_layout \end_inset @@ -308,6 +343,46 @@ https://en.wikipedia.org/wiki/%CE%A3-finite_measure el 13 de enero de 2023. \end_layout +\begin_layout Itemize + +\lang english +Wikipedia, the Free Encyclopedia. + +\emph on +Tychonoff space. + +\emph default +\lang spanish + Recuperado de +\begin_inset Flex URL +status open + +\begin_layout Plain Layout + +https://en.wikipedia.org/wiki/Tychonoff_space +\end_layout + +\end_inset + + el 17 de enero de 2023. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{sloppypar} +\end_layout + +\end_inset + + +\end_layout + \begin_layout Chapter Espacios de Banach \end_layout @@ -329,7 +404,7 @@ Espacios de Hilbert \begin_layout Standard \begin_inset CommandInset include LatexCommand input -filename "n1b.lyx" +filename "n2.lyx" \end_inset @@ -343,7 +418,21 @@ Teoría espectral \begin_layout Standard \begin_inset CommandInset include LatexCommand input -filename "n2.lyx" +filename "n3.lyx" + +\end_inset + + +\end_layout + +\begin_layout Chapter +Principios fundamentales +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n4.lyx" \end_inset @@ -120,411 +120,1273 @@ lineal conjugada \end_layout \begin_layout Section -Espacios de Banach +Espacios vectoriales topológicos \end_layout \begin_layout Standard -Dados un +Un +\series bold +espacio vectorial topológico +\series default + ( +\series bold +e.v.t. +\series default +) es un espacio topológico +\begin_inset Formula $(E,{\cal T})$ +\end_inset + + donde +\begin_inset Formula $E$ +\end_inset + + es un \begin_inset Formula $\mathbb{K}$ \end_inset --espacio vectorial -\begin_inset Formula $X$ +-espacio vectorial y +\begin_inset Formula $s:E\times E\to E$ \end_inset y -\begin_inset Formula $A\subseteq X$ +\begin_inset Formula $p:\mathbb{K}\times E\to E$ \end_inset -, llamamos -\begin_inset Formula $\text{span}A$ + dadas por +\begin_inset Formula $s(x,y)\coloneqq x+y$ \end_inset - al menor subespacio vectorial de -\begin_inset Formula $X$ + y +\begin_inset Formula $p(\alpha,x)\coloneqq\alpha x$ \end_inset - que contiene a -\begin_inset Formula $A$ + son continuas en la topología producto, y entonces +\begin_inset Formula ${\cal T}$ \end_inset -, y decimos que una -\begin_inset Formula $q:X\to\mathbb{R}$ + es una +\series bold +topología vectorial +\series default +. +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $\mathbb{K}$ \end_inset - es: -\end_layout +-espacios vectoriales +\begin_inset Formula $E$ +\end_inset -\begin_layout Enumerate + y +\begin_inset Formula $F$ +\end_inset +, un \series bold -Subaditiva +operador \series default - si -\begin_inset Formula $\forall x,y\in X,q(x+y)\leq q(x)+q(y)$ + es una función lineal de +\begin_inset Formula $E$ \end_inset -. -\end_layout + a +\begin_inset Formula $F$ +\end_inset -\begin_layout Enumerate +, y llamamos +\series bold +dual algebraico +\series default + de +\begin_inset Formula $E$ +\end_inset + al conjunto de funciones de +\begin_inset Formula $E$ +\end_inset + + a +\begin_inset Formula $\mathbb{K}$ +\end_inset + +, llamadas \series bold -Positivamente homogénea +formas lineales \series default - si -\begin_inset Formula $\forall a\in\mathbb{K}\cap\mathbb{R}^{+},\forall x\in X,q(ax)=aq(x)$ + de +\begin_inset Formula $E$ \end_inset . -\end_layout + Si +\begin_inset Formula $E$ +\end_inset -\begin_layout Enumerate + y +\begin_inset Formula $F$ +\end_inset + + son +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-e.v.t.s, +\begin_inset Formula ${\cal L}(E,F)$ +\end_inset + + es el conjunto de operadores continuos de +\begin_inset Formula $E$ +\end_inset + + a +\begin_inset Formula $F$ +\end_inset +, y llamamos \series bold -Absolutamente homogénea +dual topológico \series default - si -\begin_inset Formula $\forall a\in\mathbb{K},\forall x\in X,q(ax)=|a|q(x)$ + de +\begin_inset Formula $E$ +\end_inset + + a +\begin_inset Formula $E'\coloneqq{\cal L}(E,\mathbb{K})$ \end_inset . \end_layout -\begin_layout Enumerate -Una -\series bold -seminorma -\series default - si es subaditiva y absolutamente homogénea. +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{TEM} \end_layout -\begin_layout Enumerate +\end_inset + + +\end_layout + +\begin_layout Standard Una \series bold -norma +base de entornos \series default - si es una seminorma con -\begin_inset Formula $q^{-1}(0)=0$ + de +\begin_inset Formula $p\in X$ +\end_inset + + es una subfamilia +\begin_inset Formula ${\cal B}(p)\subseteq{\cal E}(p)$ +\end_inset + + tal que +\begin_inset Formula $\forall V\in{\cal E}(p),\exists U\in{\cal B}(p):U\subseteq V$ \end_inset . + [...] Un espacio topológico [...] satisface el +\series bold +primer axioma de numerabilidad +\series default +, o es +\series bold +1AN +\series default +, si todo punto posee una base de entornos numerable [...]. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + \end_layout \begin_layout Standard -Toda norma es definida positiva +Si +\begin_inset Formula $E$ +\end_inset + + es un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-e.v.t.: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $s_{a}:E\to E$ +\end_inset + + con +\begin_inset Formula $y\in E$ +\end_inset + + y +\begin_inset Formula $p_{\lambda}:E\to E$ +\end_inset + + con +\begin_inset Formula $\lambda\in\mathbb{K}^{*}$ +\end_inset + + dados por +\begin_inset Formula $s_{a}(x)\coloneqq x+a$ +\end_inset + + y +\begin_inset Formula $p_{\lambda}(x)\coloneqq\lambda x$ +\end_inset + + son homeomorfismos. \begin_inset Note Comment status open \begin_layout Plain Layout -, pues si -\begin_inset Formula $x\in X\setminus0$ +\begin_inset Formula $s_{a}$ \end_inset -, -\begin_inset Formula $q(x)=|-1|q(x)=q(-x)\neq0$ + es la composición de +\begin_inset Formula $x\mapsto(x,a)$ \end_inset -, pero -\begin_inset Formula $0=q(0)=q(x-x)\leq q(x)+q(-x)=2q(x)$ + con la suma, por lo que es continua, y análogamente lo es +\begin_inset Formula $p_{\lambda}$ +\end_inset + +, pero la inversa de +\begin_inset Formula $s_{a}$ +\end_inset + + es +\begin_inset Formula $s_{-a}$ +\end_inset + + y la de +\begin_inset Formula $p_{\lambda}$ +\end_inset + + es +\begin_inset Formula $p_{\lambda^{-1}}$ +\end_inset + +, que también son continuas. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +La suma de un abierto y un subconjunto cualquiera de +\begin_inset Formula $E$ +\end_inset + + es abierta en +\begin_inset Formula $E$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sean +\begin_inset Formula $G\subseteq E$ +\end_inset + + abierto y +\begin_inset Formula $A\subseteq E$ +\end_inset + +. + Todo +\begin_inset Formula $p\in G+A$ +\end_inset + + es de la forma +\begin_inset Formula $p=g+a$ +\end_inset + + con +\begin_inset Formula $g\in G$ \end_inset y -\begin_inset Formula $q(x)>0$ +\begin_inset Formula $a\in A$ +\end_inset + +, pero entonces +\begin_inset Formula $G+a\subseteq G+A$ +\end_inset + + es un entorno de +\begin_inset Formula $g+a$ +\end_inset + + por el homeomorfismo +\begin_inset Formula $s_{a}$ +\end_inset + +. +\end_layout + \end_inset \end_layout +\begin_layout Enumerate +La suma de un cerrado y un compacto de +\begin_inset Formula $E$ +\end_inset + + es cerrada en +\begin_inset Formula $E$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sean +\begin_inset Formula $F$ +\end_inset + + el cerrado y +\begin_inset Formula $K$ +\end_inset + + el compacto, tomamos una sucesión convergente arbitraria en +\begin_inset Formula $F+K$ +\end_inset + +, +\begin_inset Formula $(x_{n}+y_{n})_{n}$ +\end_inset + + con cada +\begin_inset Formula $x_{n}\in F$ +\end_inset + + y cada +\begin_inset Formula $y_{n}\in K$ +\end_inset + +, y +\begin_inset Formula $z\coloneqq\lim_{n}(x_{n}+y_{n})$ +\end_inset + +. + Como +\begin_inset Formula $K$ +\end_inset + + es compacto, existe una subsucesión +\begin_inset Formula $(x_{n_{k}})_{k}$ +\end_inset + + convergente a un +\begin_inset Formula $x\in K$ +\end_inset + +, luego +\begin_inset Formula $(y_{n_{k}})_{k}$ +\end_inset + + converge a +\begin_inset Formula $z-x\in F$ +\end_inset + + y por tanto +\begin_inset Formula $z=(z-x)+x\in F+K$ \end_inset . \end_layout -\begin_layout Standard -Un -\series bold -espacio normado -\series default - es un -\begin_inset Formula $\mathbb{K}$ \end_inset --espacio vectorial + +\end_layout + +\begin_layout Enumerate +Un subespacio vectorial de \begin_inset Formula $X$ \end_inset - con una norma -\begin_inset Formula $\Vert\cdot\Vert:X\to\mathbb{R}$ + es propio si y sólo si su interior es vacío. +\begin_inset Note Comment +status open + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $Y<X$ +\end_inset + + un subespacio vectorial propio y +\begin_inset Formula $p\in X\setminus Y$ +\end_inset + +, para +\begin_inset Formula $y\in Y$ +\end_inset + +, por continuidad de la suma y el producto, +\begin_inset Formula $\lim_{h\to0}(y+hp)=y$ +\end_inset + +, por lo que +\begin_inset Formula $(y+\frac{p}{n})_{n\in\mathbb{N}^{*}}$ +\end_inset + + es una sucesión de elementos de +\begin_inset Formula $X\setminus Y$ +\end_inset + + que converge a +\begin_inset Formula $y$ +\end_inset + +, +\begin_inset Formula $y\notin\mathring{Y}$ +\end_inset + + y +\begin_inset Formula $\mathring{Y}=\emptyset$ \end_inset . - Todo espacio normado -\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ \end_inset - es un espacio métrico con la distancia -\begin_inset Formula $(x,y)\mapsto\Vert x-y\Vert$ + +\end_layout + \end_inset -, y llamamos -\begin_inset Formula $B_{X}\coloneqq B[0,1]=\overline{B(0,1)}=\{x\in X\mid\Vert x\Vert\leq1\}$ +El contrarrecíproco es trivial. +\end_layout + \end_inset - y conjunto de -\series bold -vectores unitarios -\series default - a -\begin_inset Formula $S_{X}\coloneqq\partial B(0,1)=\{x\in X\mid\Vert x\Vert=1\}$ + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $F\subseteq E$ +\end_inset + + es un subespacio vectorial también lo es +\begin_inset Formula $\overline{F}$ \end_inset . - La norma es uniformemente continua en este espacio métrico \begin_inset Note Comment status open \begin_layout Plain Layout -, pues para -\begin_inset Formula $\varepsilon>0$ +Dados +\begin_inset Formula $a\in\mathbb{K}$ \end_inset -, si -\begin_inset Formula $x,y\in X$ + y +\begin_inset Formula $x,y\in\overline{F}$ \end_inset - cumplen -\begin_inset Formula $\Vert x-y\Vert<\varepsilon$ +, +\begin_inset Formula $x$ \end_inset -, por subaditividad es -\begin_inset Formula $\Vert x\Vert\leq\Vert x-y\Vert+\Vert y\Vert$ + e +\begin_inset Formula $y$ \end_inset - y por tanto -\begin_inset Formula $\left|\Vert x\Vert-\Vert y\Vert\right|=\Vert x\Vert-\Vert y\Vert\leq\Vert x-y\Vert<\varepsilon$ + son límites de sucesiones respectivas +\begin_inset Formula $\{x_{n}\}_{n},\{y_{n}\}_{n}\subseteq F$ \end_inset +, con lo que +\begin_inset Formula $x+y=\lim_{n}(x_{n}+y_{n})\in\overline{F}$ +\end_inset + y +\begin_inset Formula $ax=\lim_{n}ax_{n}\in\overline{F}$ +\end_inset + +. \end_layout \end_inset -. - Un vector es + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $F$ +\end_inset + + es otro e.v.t. + y +\begin_inset Formula $T:E\to F$ +\end_inset + + es lineal, +\begin_inset Formula $T$ +\end_inset + + es continua si y sólo si lo es en 0, y si +\begin_inset Formula $F=\mathbb{K}$ +\end_inset + + con la topología usual, +\begin_inset Formula $T$ +\end_inset + + es continua si y sólo si +\begin_inset Formula $\ker T\leq E$ +\end_inset + + es cerrado. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $A\subseteq E$ +\end_inset + + es \series bold -unitario +equilibrado \series default - si tiene norma 1. - Un + si +\begin_inset Formula $\forall\alpha\in\mathbb{K},(|\alpha|\leq1\implies\alpha A\subseteq A)$ +\end_inset + +, es \series bold -espacio de Banach +absorbente \series default - es un espacio normado completo. + si +\begin_inset Formula $\forall x\in E,\exists\rho_{0}>0:\forall\rho\in\mathbb{K},(|\rho|\geq\rho_{0}\implies x\in\rho A)$ +\end_inset + +, y es +\series bold +total +\series default + si +\begin_inset Formula $\overline{\text{span}A}=E$ +\end_inset + +. + Los entornos de 0 son absorbentes. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + \end_layout \begin_layout Standard -\begin_inset ERT +Si +\begin_inset Formula $E$ +\end_inset + + es un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-e.v.t. + y +\begin_inset Formula ${\cal U}$ +\end_inset + + una base de entornos de 0: +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $x\in E$ +\end_inset + + y +\begin_inset Formula $\alpha\in\mathbb{K}^{*}$ +\end_inset + +, +\begin_inset Formula $x+\alpha{\cal U}$ +\end_inset + + es base de entornos de +\begin_inset Formula $x$ +\end_inset + +. +\begin_inset Note Note status open \begin_layout Plain Layout +nproof +\end_layout + +\end_inset -\backslash -begin{samepage} \end_layout +\begin_layout Enumerate +\begin_inset Formula $\forall M\subseteq E,\overline{M}=\bigcap_{U\in{\cal U}}(M+U)$ \end_inset +. +\begin_inset Note Note +status open +\begin_layout Plain Layout +nproof \end_layout -\begin_layout Standard -Sea -\begin_inset Formula $(X,\Vert\cdot\Vert)$ \end_inset - un -\begin_inset Formula $\mathbb{K}$ + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall U\in{\cal U},\exists V\in{\cal U}:V+V\subseteq U$ \end_inset --espacio normado: +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + \end_layout \begin_layout Enumerate -Todo subespacio vectorial de -\begin_inset Formula $X$ +\begin_inset Formula $\forall U\in{\cal U},\exists V\in{\cal U}:\forall\alpha\in\mathbb{K},(|\alpha|\leq1\implies\alpha V\subseteq U)$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + \end_inset - es normado con la norma inducida. + \end_layout \begin_layout Enumerate -\begin_inset Formula $s:X\times X\to X$ +Todo +\begin_inset Formula $U\in{\cal U}$ +\end_inset + + es absorbente. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\tilde{{\cal U}}\coloneqq\left\{ \bigcup_{|\alpha|\leq1}\alpha U\right\} _{U\in{\cal U}}$ \end_inset y -\begin_inset Formula $p:\mathbb{K}\times X\to X$ +\begin_inset Formula $\overline{{\cal U}}\coloneqq\{\overline{U}\}_{U\in{\cal U}}$ \end_inset - dadas por -\begin_inset Formula $s(x,y)\coloneqq x+y$ + son bases de entornos de 0, con lo que toda e.v.t. + tiene una base de entornos del 0 formada por conjuntos absorbentes, equilibrado +s y cerrados. +\end_layout + +\begin_layout Standard +Una +\series bold +base de filtro +\series default + en un conjunto +\begin_inset Formula $S$ +\end_inset + + es un +\begin_inset Formula ${\cal U}\subseteq{\cal P}(S)$ +\end_inset + + no vacío tal que +\begin_inset Formula $\forall U,V\in{\cal U},\exists W\in{\cal U}:W\subseteq U\cap V$ +\end_inset + +, y se puede definir una topología en +\begin_inset Formula $S$ +\end_inset + + tomando una base de filtros sobre cada punto, que actuará como base de + entornos. +\end_layout + +\begin_layout Section +Espacios localmente convexos +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $E$ +\end_inset + + un espacio vectorial y +\begin_inset Formula ${\cal U}$ +\end_inset + + una base de filtro en +\begin_inset Formula $E$ +\end_inset + + formada por conjuntos absorbentes y equilibrados y tal que +\begin_inset Formula $\bigcap{\cal U}=0$ \end_inset y -\begin_inset Formula $p(a,x)\coloneqq ax$ +\begin_inset Formula $\forall U\in{\cal U},\exists V\in{\cal U}:V+V\subseteq U$ \end_inset - son continuas. -\begin_inset Note Comment +, existe una única topología vectorial sobre +\begin_inset Formula $E$ +\end_inset + + tal que para +\begin_inset Formula $x\in E$ +\end_inset + +, +\begin_inset Formula $\{x+U\}_{U\in{\cal U}}$ +\end_inset + + es base de entornos de +\begin_inset Formula $x$ +\end_inset + +. +\begin_inset Note Note status open \begin_layout Plain Layout -Sea -\begin_inset Formula $A\subseteq X$ +nproof +\end_layout + \end_inset - abierto, queremos ver que -\begin_inset Formula $s^{-1}(A)$ + +\end_layout + +\begin_layout Standard +Dado un +\begin_inset Formula $\mathbb{K}$ \end_inset - y -\begin_inset Formula $p^{-1}(A)$ +-espacio vectorial +\begin_inset Formula $E$ \end_inset - son abiertos con la topología producto. - Sean -\begin_inset Formula $(x,y)\in s^{-1}(A)$ +, +\begin_inset Formula $q:E\to\mathbb{R}$ +\end_inset + + es +\series bold +subaditiva +\series default + si +\begin_inset Formula $\forall x,y\in E,q(x+y)\leq q(x)+q(y)$ +\end_inset + +, +\series bold +positivamente homogénea +\series default + si +\begin_inset Formula $\forall\lambda\in\mathbb{R}^{+},\forall x\in E,q(\lambda x)=\lambda q(x)$ \end_inset y -\begin_inset Formula $b\coloneqq s(x,y)$ +\series bold +absolutamente homogénea +\series default + si +\begin_inset Formula $\forall\lambda\in\mathbb{K},\forall x\in E,q(\lambda x)=|\lambda|q(x)$ \end_inset -, existe -\begin_inset Formula $\varepsilon>0$ +. + Una +\series bold +seminorma +\series default + es una función +\begin_inset Formula $E\to\mathbb{R}$ \end_inset - tal que -\begin_inset Formula $B(b,\varepsilon)\subseteq A$ + subaditiva y absolutamente homogénea. + Las seminormas son no negativas +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +, pues si +\begin_inset Formula $q:E\to\mathbb{R}$ \end_inset -, pero entonces, para -\begin_inset Formula $(x',y')\in B(x,\frac{\varepsilon}{2})\times B(y,\frac{\varepsilon}{2})$ + es una seminorma y +\begin_inset Formula $x\in X$ \end_inset , +\begin_inset Formula $0=0q(x)=q(0x)=q(0)=q(x-x)\leq q(x)+q(-x)=q(x)+|-1|q(x)=2q(x)$ +\end_inset + + +\end_layout + +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $E$ +\end_inset + + un espacio vectorial y +\begin_inset Formula ${\cal P}\subseteq\mathbb{R}^{E}$ +\end_inset + + una familia de seminormas con +\begin_inset Formula $\bigcap_{p\in{\cal P}}\{x\in E\mid p(x)=0\}=0$ +\end_inset + +, \begin_inset Formula \[ -\Vert s(x',y')-b\Vert=\Vert\cancel{b}+(x'-x)+(y'-y)\cancel{-b}\Vert\leq\Vert x'-x\Vert+\Vert y'-y\Vert<\varepsilon, +{\cal U}\coloneqq\left\{ \bigcap_{p\in{\cal F}}\{x\in E\mid p(x)<\varepsilon\}\right\} _{{\cal F}\subseteq{\cal P}\text{ finito},\varepsilon>0} \] \end_inset -luego -\begin_inset Formula $s(x',y')\in B(x,\frac{\varepsilon}{2})\subseteq A$ +es una base de filtro formada por conjuntos convexos, absorbentes y equilibrados +, con intersección vacía y tal que para +\begin_inset Formula $U\in{\cal U}$ +\end_inset + + existe +\begin_inset Formula $V\in{\cal V}$ +\end_inset + + con +\begin_inset Formula $V+V\subseteq U$ +\end_inset + +, y llamamos +\series bold +topología asociada a +\begin_inset Formula ${\cal P}$ +\end_inset + + +\series default + a la única topología vectorial sobre +\begin_inset Formula $E$ +\end_inset + + que tiene a +\begin_inset Formula ${\cal U}$ +\end_inset + + como base de entornos de 0. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $E$ +\end_inset + + es un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio vectorial, +\begin_inset Formula $A\subseteq E$ +\end_inset + + es +\series bold +absolutamente convexo +\series default + si es convexo y equilibrado, si y sólo si +\begin_inset Formula $\forall x,y\in A,\forall\alpha,\beta\in\mathbb{K},(|\alpha|+|\beta|\leq1\implies\alpha x+\beta y\in A)$ \end_inset . - Sean -\begin_inset Formula $(a,x)\subseteq p^{-1}(A)$ +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + \end_inset - y -\begin_inset Formula $b\coloneqq p(a,x)$ + +\end_layout + +\begin_layout Standard +La intersección de conjuntos absolutamente convexos es absolutamente convexa, + y llamamos +\series bold +envoltura absolutamente convexa +\series default + de +\begin_inset Formula $A\subseteq E$ \end_inset -, existe -\begin_inset Formula $\varepsilon\in(0,1)$ +, +\begin_inset Formula $\Gamma(A)$ \end_inset - tal que -\begin_inset Formula $B(b,\varepsilon)\subseteq A$ + a la intersección de todos los conjuntos absolutamente convexos que contienen + a +\begin_inset Formula $A$ \end_inset -, pero entonces para -\begin_inset Formula $(a',x')\in B(a,\frac{\varepsilon}{|a|+\Vert x\Vert+1})\times B(x,\frac{\varepsilon}{|a|+\Vert x\Vert+1})$ +. +\end_layout + +\begin_layout Standard +La intersección de conjuntos convexos es convexa, y llamamos +\series bold +envoltura convexa +\series default + de +\begin_inset Formula $A\subseteq E$ \end_inset , -\begin_inset Formula -\begin{align*} -\Vert p(a',x')-b\Vert & =\Vert((a'-a)+a)((x'-x)+x)-ax\Vert=\\ - & =|a'-a|\Vert x'-x\Vert+|a|\Vert x'-x\Vert+|a'-a|\Vert x\Vert<\\ - & <\frac{\varepsilon}{|a|+\Vert x\Vert+1}\left(\frac{\varepsilon}{|a|+\Vert x\Vert+1}+|a|+\Vert x\Vert\right)\leq\varepsilon\frac{1+|a|+\Vert x\Vert}{|a|+\Vert x\Vert+1}=\varepsilon, -\end{align*} +\begin_inset Formula $\text{co}A$ +\end_inset +, a la intersección de todos los convexos que contienen a +\begin_inset Formula $A$ \end_inset -con lo que -\begin_inset Formula $p(a',x')\in B(b,\varepsilon)\subseteq A$ +, que es absolutamente convexa si +\begin_inset Formula $A$ +\end_inset + + es equilibrado. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un +\series bold +espacio localmente convexo +\series default + es un e.v.t. + +\begin_inset Formula $(E,{\cal T})$ \end_inset + con una base de entornos de 0 formada por conjuntos convexos, y entonces + +\begin_inset Formula ${\cal T}$ +\end_inset + + es +\series bold +localmente convexa +\series default . + Todo e.l.c. + tiene una base de entornos del origen formada por conjuntos absolutamente + convexos y cerrados. + Un +\series bold +espacio de Fréchet +\series default + es un e.l.c. + metrizable y completo. \end_layout +\begin_layout Standard +Dados un espacio vectorial +\begin_inset Formula $E$ \end_inset + y +\begin_inset Formula $A\subseteq E$ +\end_inset + absorbente, llamamos +\series bold +funcional de Minkowski +\series default + asociado a +\begin_inset Formula $A$ +\end_inset + + a +\begin_inset Formula $p_{A}:E\to\mathbb{R}$ +\end_inset + + como +\begin_inset Formula $p_{A}(x)\coloneqq\inf\{t>0\mid x\in tA\}$ +\end_inset + +, y entonces: \end_layout \begin_layout Enumerate -\begin_inset Formula $s_{y}:X\to X$ +\begin_inset Formula $p_{A}$ \end_inset - con -\begin_inset Formula $y\in X$ + es no negativa y positivamente homogénea. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + es convexo, +\begin_inset Formula $p_{A}$ +\end_inset + + es subaditiva y +\begin_inset Formula $\{x\in E\mid p_{A}(x)<1\}\subseteq A\subseteq\{x\in E\mid p_{A}(x)\leq1\}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + es absolutamente convexo, +\begin_inset Formula $p_{A}$ +\end_inset + + es una seminorma. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Toda seminorma +\begin_inset Formula $p:E\to\mathbb{R}$ +\end_inset + + es el funcional de Minkowski asociado a +\begin_inset Formula $\{x\in E\mid p(x)\leq1\}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $E$ \end_inset + es un e.v.t. y -\begin_inset Formula $p_{a}:X\to X$ +\begin_inset Formula $C\subseteq E$ \end_inset - con -\begin_inset Formula $a\in\mathbb{K}^{*}$ + es convexo y absorbente, +\begin_inset Formula $0\in\mathring{C}$ \end_inset - dados por -\begin_inset Formula $s_{y}(x)\coloneqq x+y$ + si y sólo si el funcional de Minkowski +\begin_inset Formula $p_{C}$ +\end_inset + + es continuo en +\begin_inset Formula $E$ +\end_inset + +, y entonces +\begin_inset Formula $\mathring{C}=\{x\in E\mid p_{C}(x)<1\}$ \end_inset y -\begin_inset Formula $p_{a}(x)\coloneqq ax$ +\begin_inset Formula $\overline{C}=\{x\in E\mid p_{C}(x)\leq1\}$ \end_inset - son homeomorfismos. -\begin_inset Note Comment +. +\begin_inset Note Note status open \begin_layout Plain Layout -\begin_inset Formula $s_{y}$ +nproof +\end_layout + \end_inset - es la composición de -\begin_inset Formula $x\mapsto(x,y)$ + +\end_layout + +\begin_layout Standard +Una seminorma +\begin_inset Formula $p:E\to\mathbb{R}$ \end_inset - con la suma, por lo que es continua, y análogamente lo es -\begin_inset Formula $p_{a}$ + es continua si y sólo si +\begin_inset Formula $\{x\in E\mid p(x)<1\}$ \end_inset -, pero la inversa de -\begin_inset Formula $s_{y}$ + es abierta, si y sólo si +\begin_inset Formula $0\in\mathring{\overbrace{\{x\in E\mid p(x)<1\}}}$ \end_inset - es -\begin_inset Formula $s_{-y}$ +, si y sólo si +\begin_inset Formula $p$ \end_inset - y la de -\begin_inset Formula $p_{a}$ + es continua en 0, si y sólo si existe una seminorma continua +\begin_inset Formula $q:E\to\mathbb{R}$ \end_inset - es -\begin_inset Formula $p_{a^{-1}}$ + con +\begin_inset Formula $p\leq q$ \end_inset -, que también son continuas. +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof \end_layout \end_inset @@ -532,58 +1394,263 @@ status open \end_layout -\begin_layout Enumerate -La suma de un abierto y un subconjunto cualquiera de -\begin_inset Formula $X$ +\begin_layout Standard +Como +\series bold +teorema +\series default +, un e.v.t. + +\begin_inset Formula $(E,{\cal T})$ \end_inset - es abierta en -\begin_inset Formula $X$ + es localmente convexo si y sólo si +\begin_inset Formula ${\cal T}$ +\end_inset + + está asociada a una familia de seminormas. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dados dos e.l.c. + +\begin_inset Formula $E$ +\end_inset + + y +\begin_inset Formula $F$ +\end_inset + +, +\begin_inset Formula $T:E\to F$ +\end_inset + + lineal es continua si y sólo si lo es en 0, si y sólo si para toda seminorma + continua +\begin_inset Formula $q:F\to\mathbb{R}$ +\end_inset + + existe una seminorma continua +\begin_inset Formula $p:E\to\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $q\circ T\leq p$ \end_inset . -\begin_inset Note Comment +\begin_inset Note Note status open \begin_layout Plain Layout -Sean -\begin_inset Formula $G\subseteq X$ +nproof +\end_layout + \end_inset - abierto y -\begin_inset Formula $A\subseteq X$ + +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $E$ +\end_inset + + es un e.v.t., +\begin_inset Formula $E'\neq0$ +\end_inset + + si y sólo si existe +\begin_inset Formula $U\in{\cal E}(0_{E})$ +\end_inset + + convexo distinto de +\begin_inset Formula $E$ \end_inset . - Todo -\begin_inset Formula $p\in G+A$ +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + \end_inset - es de la forma -\begin_inset Formula $p=g+a$ + +\end_layout + +\begin_layout Section +Ejemplos de espacios localmente convexos +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $Z$ \end_inset - con -\begin_inset Formula $g\in G$ + es un conjunto y +\begin_inset Formula $\mathbb{K}^{Z}$ +\end_inset + + es un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio vectorial, +\begin_inset Formula $\{f\mapsto|f(z)|\}_{z\in Z}$ +\end_inset + + es una familia de seminormas en +\begin_inset Formula $\mathbb{K}^{Z}$ +\end_inset + + que define la +\series bold +topología de convergencia puntual +\series default +, +\begin_inset Formula ${\cal T}_{\text{p}}$ +\end_inset + +, sobre +\begin_inset Formula $\mathbb{K}^{Z}$ +\end_inset + +, en que una base de entornos en un +\begin_inset Formula $f:Z\to\mathbb{K}$ +\end_inset + + es +\begin_inset Formula +\[ +\left\{ \{g\in\mathbb{K}^{Z}\mid\forall z\in F,|f(z)-g(z)|<\varepsilon\}\right\} _{F\subseteq Z\text{ finito},\varepsilon>0}. +\] + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $X$ +\end_inset + + es un espacio topológico, llamamos +\begin_inset Formula $C(X)$ +\end_inset + + al subespacio de +\begin_inset Formula $(\mathbb{K}^{X},{\cal T}_{\text{p}})$ +\end_inset + + de las funciones continuas y +\begin_inset Formula $C_{\text{b}}(X)$ +\end_inset + + al subespacio de +\begin_inset Formula $(\mathbb{K}^{X},{\cal T}_{\text{p}})$ +\end_inset + + de las funciones continuas y acotadas. +\end_layout + +\begin_layout Standard +\begin_inset Formula $X$ +\end_inset + + es +\series bold +completamente regular +\series default + si para todo cerrado +\begin_inset Formula $A\subseteq X$ \end_inset y -\begin_inset Formula $a\in A$ +\begin_inset Formula $x\in X\setminus A$ \end_inset -, pero entonces -\begin_inset Formula $G+a\subseteq G+A$ + existe +\begin_inset Formula $f:X\to\mathbb{R}$ \end_inset - es un entorno de -\begin_inset Formula $g+a$ + continua con +\begin_inset Formula $f(A)=0$ \end_inset - por el homeomorfismo -\begin_inset Formula $s_{a}$ + y +\begin_inset Formula $f(x)=1$ \end_inset -. +, y entonces, si +\begin_inset Formula ${\cal K}$ +\end_inset + + es la familia de los compactos de +\begin_inset Formula $X$ +\end_inset + +, la familia de seminormas +\begin_inset Formula $\{f\mapsto\max_{x\in K}|f(x)|\}_{K\in{\cal K}}$ +\end_inset + + en +\begin_inset Formula $C(X)$ +\end_inset + + tiene asociada una topología +\begin_inset Formula ${\cal T}_{\text{K}}$ +\end_inset + +, la +\series bold +topología de convergencia uniforme sobre compactos +\series default +, en que una base de entornos de +\begin_inset Formula $f\in C(X)$ +\end_inset + + es +\begin_inset Formula +\[ +\left\{ \{g\in C(X)\mid\forall x\in K,|f(x)-g(x)|<\varepsilon\}\right\} _{K\in{\cal K},\varepsilon>0}. +\] + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof \end_layout \end_inset @@ -591,74 +1658,234 @@ Sean \end_layout -\begin_layout Enumerate -La suma de un cerrado y un compacto de +\begin_layout Standard +Una +\series bold +sucesión exhaustiva de compactos +\series default + de un espacio topológico \begin_inset Formula $X$ \end_inset - es cerrada en + es una sucesión +\begin_inset Formula $(K_{n})_{n}$ +\end_inset + + de compactos con unión \begin_inset Formula $X$ \end_inset + y tal que cada +\begin_inset Formula $K_{n}\subseteq\mathring{K}_{n+1}$ +\end_inset + . -\begin_inset Note Comment + Todo abierto +\begin_inset Formula $\Omega\subseteq\mathbb{K}^{k}$ +\end_inset + + es completamente regular y admite una sucesión exhaustiva de compactos + +\begin_inset Formula $(K_{n})_{n}$ +\end_inset + +, y entonces +\begin_inset Formula ${\cal T}_{\text{K}}$ +\end_inset + + es la topología asociada a la familia +\begin_inset Formula $\{f\mapsto\max_{x\in K_{n}}|f(x)|\}_{n}$ +\end_inset + + y está asociada a la métrica +\begin_inset Formula +\[ +d(f,g)\coloneqq\sum_{n}\frac{1}{2^{n}}\frac{p_{K_{n}}(f-g)}{1+p_{K_{n}}(f-g)}, +\] + +\end_inset + +con lo que +\begin_inset Formula $(C(\Omega),{\cal T}_{\text{K}})$ +\end_inset + + es un espacio de Fréchet. +\begin_inset Note Note status open \begin_layout Plain Layout -Sean -\begin_inset Formula $F$ +nproof +\end_layout + \end_inset - el cerrado y -\begin_inset Formula $K$ + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Weierstrass: +\series default + Si +\begin_inset Formula $\Omega\subseteq\mathbb{C}$ \end_inset - el compacto, tomamos una sucesión convergente arbitraria en -\begin_inset Formula $F+K$ + es abierto, el límite de una sucesión de funciones holomorfas en +\begin_inset Formula $({\cal C}(\Omega),{\cal T}_{\text{K}})$ \end_inset -, -\begin_inset Formula $(x_{n}+y_{n})_{n}$ + es holomorfa, y en particular +\begin_inset Formula $({\cal H}(\Omega),{\cal T}_{\text{K}})$ \end_inset - con cada -\begin_inset Formula $x_{n}\in F$ + es un espacio de Fréchet. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + \end_inset - y cada -\begin_inset Formula $y_{n}\in K$ + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{reminder}{FVV2} +\end_layout + \end_inset -, y -\begin_inset Formula $z\coloneqq\lim_{n}(x_{n}+y_{n})$ + +\end_layout + +\begin_layout Standard +Llamamos +\series bold +soporte +\series default + de una función +\begin_inset Formula $g:\Omega\rightarrow\mathbb{C}$ \end_inset -. - Como -\begin_inset Formula $K$ + a +\begin_inset Formula $\text{sop}(g)\coloneqq\overline{\{g\neq0\}}$ \end_inset - es compacto, existe una subsucesión -\begin_inset Formula $(x_{n_{k}})_{k}$ +[...]. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{reminder} +\end_layout + \end_inset - convergente a un -\begin_inset Formula $x\in K$ + +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $\Omega\subseteq\mathbb{R}^{n}$ \end_inset -, luego -\begin_inset Formula $(y_{n_{k}})_{k}$ + abierto: +\end_layout + +\begin_layout Enumerate +El conjunto de funciones +\begin_inset Formula $f:\Omega\to\mathbb{R}$ \end_inset - converge a -\begin_inset Formula $z-x\in F$ + +\begin_inset Formula $m$ \end_inset - y por tanto -\begin_inset Formula $z=(z-x)+x\in F+K$ + veces diferenciables con +\begin_inset Formula $\dif^{(m)}f$ +\end_inset + + continua, +\begin_inset Formula ${\cal E}^{m}(\Omega)\coloneqq{\cal C}^{m}(\Omega)$ +\end_inset + +, es un espacio de Fréchet con la +\series bold +topología de convergencia uniforme sobre compactos de las funciones y sus + derivadas hasta el grado +\begin_inset Formula $m$ +\end_inset + + +\series default +, dada por la familia de seminormas +\begin_inset Formula +\[ +\left\{ p_{K}^{m}(f)\coloneqq\sup_{\begin{subarray}{c} +\alpha\in\mathbb{N}^{n}\\ +|\alpha|\coloneqq\alpha_{1}+\dots+\alpha_{n}\leq m +\end{subarray}}\sup_{x\in K}|D^{\alpha}f(x)|\right\} _{K\subseteq\Omega\text{ compacto}}, +\] + +\end_inset + +donde +\begin_inset Formula +\[ +D^{\alpha}f(x)\coloneqq\frac{\partial^{|\alpha|}f}{\partial x_{1}^{\alpha_{1}}\cdots\partial x_{n}^{\alpha_{n}}}. +\] + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula ${\cal E}(\Omega)\coloneqq{\cal C}^{\infty}(\Omega)\coloneqq\bigcap_{m}{\cal C}^{m}(\Omega)$ +\end_inset + + es un e.l.c. + metrizable con la +\series bold +topología de convergencia uniforme sobre compactos de las funciones y todas + sus derivadas +\series default +, dada por la familia de seminormas +\begin_inset Formula $\{p_{K}^{m}\}_{K\subseteq\Omega\text{ compacto},m\in\mathbb{N}}$ \end_inset . +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof \end_layout \end_inset @@ -667,45 +1894,184 @@ Sean \end_layout \begin_layout Enumerate -Si -\begin_inset Formula $Y\subseteq X$ +Si para +\begin_inset Formula $K\subseteq\Omega$ \end_inset - es un subespacio vectorial también lo es -\begin_inset Formula $\overline{Y}$ + compacto, +\begin_inset Formula ${\cal D}_{K}(\Omega)\coloneqq\{f\in{\cal C}^{\infty}(\Omega)\mid\text{sop}f\subseteq K\}$ +\end_inset + +, llamamos +\series bold +base de distribuciones +\series default + a +\begin_inset Formula ${\cal D}(\Omega)\coloneqq\bigcup_{K\subseteq\Omega\text{ compacto}}{\cal D}_{K}(\Omega)\neq0$ +\end_inset + + con la topología más fina que hace continuas las inclusiones +\begin_inset Formula ${\cal D}_{K}(\Omega)\hookrightarrow{\cal D}(\Omega)$ \end_inset . +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Espacios normados +\end_layout + +\begin_layout Standard +Una +\series bold +norma +\series default + es una seminorma +\begin_inset Formula $q$ +\end_inset + + con +\begin_inset Formula $q^{-1}(0)=0$ +\end_inset + +. + Un +\series bold +espacio normado +\series default + es un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio vectorial +\begin_inset Formula $X$ +\end_inset + + con una norma +\begin_inset Formula $\Vert\cdot\Vert:X\to\mathbb{R}$ +\end_inset + +. + Todo espacio normado +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + es un e.l.c. + metrizable con la distancia +\begin_inset Formula $(x,y)\mapsto\Vert x-y\Vert$ +\end_inset + +. + \begin_inset Note Comment status open \begin_layout Plain Layout -Dados -\begin_inset Formula $a\in\mathbb{K}$ + +\series bold +Demostración: +\series default + Claramente es una distancia y +\begin_inset Formula $\{B(0,\frac{1}{n})\}_{n\in\mathbb{N}}$ +\end_inset + + es una base de entornos convexos del 0. + Sean +\begin_inset Formula $A\subseteq X$ +\end_inset + + abierto, +\begin_inset Formula $s:X\times X\to X$ +\end_inset + + la suma y +\begin_inset Formula $p:\mathbb{K}\times X\to X$ +\end_inset + + el producto, queremos ver que +\begin_inset Formula $s^{-1}(A)$ \end_inset y -\begin_inset Formula $x,y\in\overline{Y}$ +\begin_inset Formula $p^{-1}(A)$ \end_inset -, -\begin_inset Formula $x$ + son abiertos. + Sean +\begin_inset Formula $(x,y)\in s^{-1}(A)$ \end_inset - e -\begin_inset Formula $y$ + y +\begin_inset Formula $b\coloneqq s(x,y)$ \end_inset - son límites de sucesiones respectivas -\begin_inset Formula $\{x_{n}\}_{n},\{y_{n}\}_{n}\subseteq Y$ +, existe +\begin_inset Formula $\varepsilon>0$ \end_inset -, con lo que -\begin_inset Formula $x+y=\lim_{n}(x_{n}+y_{n})\in\overline{Y}$ + tal que +\begin_inset Formula $B(b,\varepsilon)\subseteq A$ +\end_inset + +, pero entonces, para +\begin_inset Formula $(x',y')\in B(x,\frac{\varepsilon}{2})\times B(y,\frac{\varepsilon}{2})$ +\end_inset + +, +\begin_inset Formula +\[ +\Vert s(x',y')-b\Vert=\Vert\cancel{b}+(x'-x)+(y'-y)\cancel{-b}\Vert\leq\Vert x'-x\Vert+\Vert y'-y\Vert<\varepsilon, +\] + +\end_inset + +luego +\begin_inset Formula $s(x',y')\in B(x,\frac{\varepsilon}{2})\subseteq A$ +\end_inset + +. + Sean +\begin_inset Formula $(a,x)\subseteq p^{-1}(A)$ \end_inset y -\begin_inset Formula $ax=\lim_{n}ax_{n}\in\overline{Y}$ +\begin_inset Formula $b\coloneqq p(a,x)$ +\end_inset + +, existe +\begin_inset Formula $\varepsilon\in(0,1)$ +\end_inset + + tal que +\begin_inset Formula $B(b,\varepsilon)\subseteq A$ +\end_inset + +, pero entonces para +\begin_inset Formula $(a',x')\in B(a,\frac{\varepsilon}{|a|+\Vert x\Vert+1})\times B(x,\frac{\varepsilon}{|a|+\Vert x\Vert+1})$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +\Vert p(a',x')-b\Vert & =\Vert((a'-a)+a)((x'-x)+x)-ax\Vert=\\ + & =|a'-a|\Vert x'-x\Vert+|a|\Vert x'-x\Vert+|a'-a|\Vert x\Vert<\\ + & <\frac{\varepsilon}{|a|+\Vert x\Vert+1}\left(\frac{\varepsilon}{|a|+\Vert x\Vert+1}+|a|+\Vert x\Vert\right)\leq\varepsilon\frac{1+|a|+\Vert x\Vert}{|a|+\Vert x\Vert+1}=\varepsilon, +\end{align*} + +\end_inset + +con lo que +\begin_inset Formula $p(a',x')\in B(b,\varepsilon)\subseteq A$ \end_inset . @@ -716,70 +2082,140 @@ Dados \end_layout -\begin_layout Enumerate -Un subespacio vectorial de -\begin_inset Formula $X$ +\begin_layout Standard +Como +\series bold +teorema +\series default +, un e.l.c. + +\begin_inset Formula $(E,{\cal T})$ \end_inset - es propio si y sólo si su interior es vacío. -\begin_inset Note Comment -status open + es metrizable si y sólo si es 1AN, si y sólo si +\begin_inset Formula ${\cal T}$ +\end_inset -\begin_layout Enumerate -\begin_inset Argument item:1 + es asociada a una familia numerable de seminormas continuas. +\begin_inset Note Note status open \begin_layout Plain Layout -\begin_inset Formula $\implies]$ +nproof +\end_layout + \end_inset \end_layout +\begin_layout Standard +Un e.l.c. + +\begin_inset Formula $(E,{\cal T})$ \end_inset -Sea -\begin_inset Formula $Y<X$ + es +\series bold +normable +\series default + si +\begin_inset Formula ${\cal T}$ \end_inset - un subespacio vectorial propio y -\begin_inset Formula $p\in X\setminus Y$ + es la topología asociada a una norma en +\begin_inset Formula $E$ \end_inset -, para -\begin_inset Formula $y\in Y$ +. + Si +\begin_inset Formula $E$ \end_inset -, -\begin_inset Formula $(y+\frac{p}{n})_{n\in\mathbb{N}^{*}}$ + es un e.l.c., +\begin_inset Formula $A\subseteq E$ \end_inset - es una sucesión de elementos de -\begin_inset Formula $X\setminus Y$ + es +\series bold +acotado +\series default + si +\begin_inset Formula $\forall U\in{\cal E}(0),\exists\rho>0:A\subseteq\rho U$ \end_inset - que converge a -\begin_inset Formula $y$ +, si y sólo si para toda seminorma +\begin_inset Formula $p:E\to\mathbb{R}$ \end_inset -, con lo que -\begin_inset Formula $y\notin\text{int}Y$ + continua es +\begin_inset Formula $\sup\{p(x)\}_{x\in A}<\infty$ \end_inset - e -\begin_inset Formula $\text{int}Y=\emptyset$ +. + +\series bold +Teorema de Kolmogoroff: +\series default + Un e.l.c. + es normable si y sólo si +\begin_inset Formula $0_{E}$ \end_inset -. + tiene un entorno acotado. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof \end_layout -\begin_deeper -\begin_layout Enumerate -\begin_inset Argument item:1 +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $X$ +\end_inset + + es un espacio normado, llamamos +\begin_inset Formula $B_{X}\coloneqq B[0,1]=\overline{B(0,1)}=\{x\in X\mid\Vert x\Vert\leq1\}$ +\end_inset + +, que es equilibrado y absorbente, y conjunto de +\series bold +vectores unitarios +\series default + a +\begin_inset Formula $S_{X}\coloneqq\partial B(0,1)=\{x\in X\mid\Vert x\Vert=1\}$ +\end_inset + +. + La norma es uniformemente continua +\begin_inset Note Comment status open \begin_layout Plain Layout -\begin_inset Formula $\impliedby]$ +, pues para +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, si +\begin_inset Formula $x,y\in X$ +\end_inset + + cumplen +\begin_inset Formula $\Vert x-y\Vert<\varepsilon$ +\end_inset + +, por subaditividad es +\begin_inset Formula $\Vert x\Vert\leq\Vert x-y\Vert+\Vert y\Vert$ +\end_inset + + y por tanto +\begin_inset Formula $\left|\Vert x\Vert-\Vert y\Vert\right|=\Vert x\Vert-\Vert y\Vert\leq\Vert x-y\Vert<\varepsilon$ \end_inset @@ -787,13 +2223,29 @@ status open \end_inset -El contrarrecíproco es trivial. +. + Todo subespacio vectorial de un espacio normado es normado con la norma + inducida. \end_layout -\end_deeper +\begin_layout Standard +Un +\series bold +espacio de Banach +\series default + es un espacio normado completo. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $(X,\Vert\cdot\Vert)$ \end_inset + un +\begin_inset Formula $\mathbb{K}$ +\end_inset +-espacio normado: \end_layout \begin_layout Enumerate @@ -993,90 +2445,25 @@ Toda sucesión de Cauchy en \end_layout -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -end{samepage} -\end_layout - -\end_inset - - +\begin_layout Section +Operadores \end_layout \begin_layout Standard -Dado un espacio normado -\begin_inset Formula $X$ -\end_inset - -, -\begin_inset Formula $A\subseteq X$ -\end_inset - - es +Un operador entre espacios normados se dice \series bold acotado \series default - si -\begin_inset Formula $\{\Vert x\Vert\}_{x\in A}$ -\end_inset - - está acotado superiormente. -\end_layout - -\begin_layout Standard -Dados dos -\begin_inset Formula $\mathbb{K}$ -\end_inset - --espacios normados -\begin_inset Formula $X$ -\end_inset - - e -\begin_inset Formula $Y$ -\end_inset - -, un -\series bold -operador -\series default - de -\begin_inset Formula $X$ -\end_inset - - a -\begin_inset Formula $Y$ -\end_inset - - es una función lineal de + si es continuo, y si \begin_inset Formula $X$ \end_inset - a -\begin_inset Formula $Y$ -\end_inset - -, y se llama -\series bold -acotado -\series default - si es continuo. - Llamamos -\begin_inset Formula ${\cal L}(X,Y)$ -\end_inset - - al conjunto de operadores acotados de -\begin_inset Formula $X$ + es un +\begin_inset Formula $\mathbb{K}$ \end_inset - a -\begin_inset Formula $Y$ +-espacio normado, llamamos +\begin_inset Formula $X^{*}\coloneqq X'={\cal L}(X,\mathbb{K})$ \end_inset . @@ -1298,6 +2685,19 @@ tomando \end_inset también lo es. + Si +\begin_inset Formula $Y=\mathbb{K}$ +\end_inset + +, +\begin_inset Formula ${\cal L}(X,Y)=X^{*}$ +\end_inset + + y esta norma se llama +\series bold +norma dual +\series default +. \begin_inset Note Comment status open @@ -1678,45 +3078,8 @@ Sean \end_layout -\begin_layout Standard -Una -\series bold -forma lineal -\series default - en -\begin_inset Formula $X$ -\end_inset - - es una función lineal -\begin_inset Formula $X\to\mathbb{K}$ -\end_inset - -. - Llamamos -\series bold -dual algebraico -\series default - de -\begin_inset Formula $X$ -\end_inset - - al conjunto de formas lineales de -\begin_inset Formula $X$ -\end_inset - - y -\series bold -dual topológico -\series default - de -\begin_inset Formula $X$ -\end_inset - - a -\begin_inset Formula $X^{*}\coloneqq{\cal L}(X,\mathbb{K})$ -\end_inset - -. +\begin_layout Section +Isomorfismos topológicos \end_layout \begin_layout Standard @@ -2261,6 +3624,10 @@ luego \end_layout +\begin_layout Section +Espacios cociente +\end_layout + \begin_layout Standard \begin_inset ERT status open @@ -3152,10 +4519,6 @@ Para la otra cota, \end_layout -\begin_layout Standard -Así: -\end_layout - \begin_layout Enumerate Todos los espacios normados de igual dimensión finta son topológicamente isomorfos. @@ -3511,6 +4874,28 @@ end{samepage} \end_layout \begin_layout Standard +Para +\begin_inset Formula $\Omega\subseteq\mathbb{C}$ +\end_inset + + abierto, +\begin_inset Formula $({\cal H}(\Omega),{\cal T}_{\text{K}})$ +\end_inset + + es un espacio de Fréchet que no es de Banach. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard Dado un espacio normado \begin_inset Formula $X$ \end_inset @@ -3743,54 +5128,6 @@ end{reminder} \end_layout \begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -begin{reminder}{FVV2} -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Llamamos -\series bold -soporte -\series default - de una función -\begin_inset Formula $g:\Omega\rightarrow\mathbb{C}$ -\end_inset - - a -\begin_inset Formula $\text{sop}(g)\coloneqq\overline{\{g\neq0\}}$ -\end_inset - -[...]. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -end{reminder} -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard Para \begin_inset Formula $S\neq\emptyset$ \end_inset @@ -3815,7 +5152,11 @@ espacio de las funciones acotadas \begin_inset Formula $\ell^{\infty}(S)\coloneqq(\{f\in\mathbb{K}^{S}\mid\Vert f\Vert_{\infty}<\infty\},\Vert\cdot\Vert_{\infty})$ \end_inset -. + y +\series bold +topología de convergencia uniforme +\series default + a la topología asociada a esta norma. \begin_inset Note Note status open @@ -3840,7 +5181,7 @@ Si además \begin_layout Enumerate El espacio -\begin_inset Formula $C_{b}(S)$ +\begin_inset Formula $C_{\text{b}}(S)$ \end_inset de funciones @@ -3887,7 +5228,7 @@ se anula en el infinito \end_inset continuas que se anulan en el infinito es un subespacio cerrado de -\begin_inset Formula $C_{b}(S)$ +\begin_inset Formula $C_{\text{c}}(S)$ \end_inset . @@ -3909,7 +5250,7 @@ Si \end_inset es localmente compacto y Hausdorff, el espacio -\begin_inset Formula $C_{c}(S)$ +\begin_inset Formula $C_{\text{c}}(S)$ \end_inset de funciones @@ -4216,7 +5557,7 @@ Si \end_inset con la medida de Lebesgue inducida, -\begin_inset Formula $C_{c}(\Omega)$ +\begin_inset Formula $C_{\text{c}}(\Omega)$ \end_inset es denso en @@ -4237,6 +5578,22 @@ nproof \end_layout \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{samepage} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard Para \begin_inset Formula $p\geq1$ \end_inset @@ -4318,6 +5675,22 @@ nproof \end_layout \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{samepage} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard La suma de subespacios cerrados puede no ser un subespacio cerrado. \begin_inset Note Note status open @@ -4368,7 +5741,7 @@ Para \end_inset compacto, -\begin_inset Formula ${\cal D}_{K}^{m}(\Omega)\coloneqq(\{f\in{\cal C}^{m}(\Omega)\mid\text{sop}f\subseteq K\},\Vert\cdot\Vert_{m})$ +\begin_inset Formula $({\cal D}_{K}^{m}(\Omega)\coloneqq\{f\in{\cal C}^{m}(\Omega)\mid\text{sop}f\subseteq K\},\Vert\cdot\Vert_{m})$ \end_inset es un espacio de Banach. diff --git a/af/n1b.lyx b/af/n1b.lyx deleted file mode 100644 index 8338697..0000000 --- a/af/n1b.lyx +++ /dev/null @@ -1,6829 +0,0 @@ -#LyX 2.3 created this file. For more info see http://www.lyx.org/ -\lyxformat 544 -\begin_document -\begin_header -\save_transient_properties true -\origin unavailable -\textclass book -\begin_preamble -\input{../defs} -\usepackage{commath} -\end_preamble -\use_default_options true -\maintain_unincluded_children false -\language spanish -\language_package default -\inputencoding auto -\fontencoding global -\font_roman "default" "default" -\font_sans "default" "default" -\font_typewriter "default" "default" -\font_math "auto" "auto" -\font_default_family default -\use_non_tex_fonts false -\font_sc false -\font_osf false -\font_sf_scale 100 100 -\font_tt_scale 100 100 -\use_microtype false -\use_dash_ligatures true -\graphics default -\default_output_format default -\output_sync 0 -\bibtex_command default -\index_command default -\paperfontsize default -\spacing single -\use_hyperref false -\papersize default -\use_geometry false -\use_package amsmath 1 -\use_package amssymb 1 -\use_package cancel 1 -\use_package esint 1 -\use_package mathdots 1 -\use_package mathtools 1 -\use_package mhchem 1 -\use_package stackrel 1 -\use_package stmaryrd 1 -\use_package undertilde 1 -\cite_engine basic -\cite_engine_type default -\biblio_style plain -\use_bibtopic false -\use_indices false -\paperorientation portrait -\suppress_date false -\justification true -\use_refstyle 1 -\use_minted 0 -\index Index -\shortcut idx -\color #008000 -\end_index -\secnumdepth 3 -\tocdepth 3 -\paragraph_separation indent -\paragraph_indentation default -\is_math_indent 0 -\math_numbering_side default -\quotes_style french -\dynamic_quotes 0 -\papercolumns 1 -\papersides 1 -\paperpagestyle default -\tracking_changes false -\output_changes false -\html_math_output 0 -\html_css_as_file 0 -\html_be_strict false -\end_header - -\begin_body - -\begin_layout Standard -David Hilbert (1862–1943) fue un influyente matemático alemán que formuló - la teoría de los espacios de Hilbert. - En 1900 publicó una lista de 23 problemas que marcarían en buena medida - el progreso matemático en el siglo XX, y presentó 10 de ellos en el -\emph on -\lang english -International Congress of Mathematicians -\emph default -\lang spanish - de París de 1900. - Fue editor jefe de -\emph on -\lang ngerman -Mathematische Annalen -\emph default -\lang spanish -, una revista matemática muy prestigiosa por casi 150 años, y tuvo discípulos - como -\lang ngerman -Alfréd Haar, Erhard Schmidt, Hugo Steihaus, Hermann Weyl o Ernst Zermelo -\lang spanish -. -\end_layout - -\begin_layout Standard -Dado un -\begin_inset Formula $\mathbb{K}$ -\end_inset - --espacio vectorial -\begin_inset Formula $H$ -\end_inset - -, -\begin_inset Formula $\langle\cdot,\cdot\rangle:H\times H\to\mathbb{K}$ -\end_inset - - es una -\series bold -forma hermitiana -\series default - si para -\begin_inset Formula $a,b\in\mathbb{K}$ -\end_inset - - y -\begin_inset Formula $x,y,z\in H$ -\end_inset - - se tiene -\begin_inset Formula $\langle ax+by,z\rangle=a\langle x,z\rangle+b\langle y,z\rangle$ -\end_inset - - y -\begin_inset Formula $\langle x,y\rangle=\overline{\langle y,x\rangle}$ -\end_inset - -, y es -\series bold -definida positiva -\series default - si para -\begin_inset Formula $x\in H\setminus0$ -\end_inset - - es -\begin_inset Formula $\langle x,x\rangle\in\mathbb{R}^{+}$ -\end_inset - -. - Un -\series bold -producto escalar -\series default - es una forma hermitiana definida positiva, y un -\series bold -espacio prehilbertiano -\series default - es par formado por un espacio vectorial y un producto escalar sobre este. -\end_layout - -\begin_layout Standard -Dado un espacio prehilbertiano -\begin_inset Formula $(H,\langle\cdot,\cdot\rangle)$ -\end_inset - -: -\end_layout - -\begin_layout Enumerate - -\series bold -Desigualdad de Cauchy-Schwartz: -\series default - -\begin_inset Formula $\forall x,y\in H,|\langle x,y\rangle|^{2}\leq\langle x,x\rangle\langle y,y\rangle$ -\end_inset - -, con igualdad si y sólo si -\begin_inset Formula $x$ -\end_inset - - e -\begin_inset Formula $y$ -\end_inset - - son linealmente dependientes. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $H$ -\end_inset - - es un espacio normado con la norma -\begin_inset Formula $\Vert x\Vert\coloneqq\sqrt{\langle x,x\rangle}$ -\end_inset - -, y para -\begin_inset Formula $x,y\in H$ -\end_inset - -, -\begin_inset Formula $\Vert x+y\Vert=\Vert x\Vert+\Vert y\Vert\iff x=0\lor y=0\lor\exists a>0:x=ay$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Enumerate -Para -\begin_inset Formula $a,b\in\mathbb{K}$ -\end_inset - - y -\begin_inset Formula $x,y,z\in H$ -\end_inset - -, -\begin_inset Formula $\langle x,ay+bz\rangle=\overline{a}\langle x,y\rangle+\overline{b}\langle x,z\rangle$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -Para -\begin_inset Formula $x,y\in H$ -\end_inset - -, -\begin_inset Formula $\Vert x+y\Vert^{2}=\Vert x\Vert^{2}+\Vert y\Vert^{2}+2\text{Re}\langle x,y\rangle$ -\end_inset - -. -\end_layout - -\begin_deeper -\begin_layout Standard -\begin_inset Formula $\Vert x+y\Vert^{2}=\langle x+y,x+y\rangle=\langle x,x\rangle+\langle x,y\rangle+\overline{\langle x,y\rangle}+\langle y,y\rangle$ -\end_inset - -. -\end_layout - -\end_deeper -\begin_layout Standard - -\series bold -Identidades de polarización: -\series default - Si -\begin_inset Formula $H$ -\end_inset - - es un espacio prehilbertiano y -\begin_inset Formula $x,y\in H$ -\end_inset - -: -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $\langle x,y\rangle=\frac{1}{4}(\Vert x+y\Vert^{2}-\Vert x-y\Vert^{2}+\text{i}\Vert x+\text{i}y\Vert^{2}-\text{i}\Vert x-\text{i}y\Vert^{2})$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Enumerate -Si -\begin_inset Formula $H$ -\end_inset - - se define sobre -\begin_inset Formula $\mathbb{R}$ -\end_inset - -, -\begin_inset Formula $\langle x,y\rangle=\frac{1}{4}(\Vert x+y\Vert^{2}-\Vert x-y\Vert^{2})$ -\end_inset - -. -\end_layout - -\begin_layout Standard - -\series bold -Teorema de von Neumann: -\series default - Un espacio normado -\begin_inset Formula $(X,\Vert\cdot\Vert)$ -\end_inset - - admite un producto escalar -\begin_inset Formula $\langle\cdot,\cdot\rangle$ -\end_inset - - en -\begin_inset Formula $X$ -\end_inset - - con -\begin_inset Formula $\langle x,x\rangle\equiv\Vert x\Vert^{2}$ -\end_inset - - si y sólo si -\begin_inset Formula $\Vert\cdot\Vert$ -\end_inset - - verifica la -\series bold -ley del paralelogramo: -\series default - -\begin_inset Formula -\[ -\forall x,y\in H,\Vert x+y\Vert^{2}+\Vert x-y\Vert^{2}=2(\Vert x\Vert^{2}+\Vert y\Vert^{2}). -\] - -\end_inset - - -\end_layout - -\begin_layout Itemize -\begin_inset Argument item:1 -status open - -\begin_layout Plain Layout -\begin_inset Formula $\implies]$ -\end_inset - - -\end_layout - -\end_inset - -En general -\begin_inset Formula $\langle x,y+z\rangle=\overline{\langle y+z,x\rangle}=\overline{\langle y,x\rangle}+\overline{\langle z,x\rangle}=\langle x,y\rangle+\langle x,z\rangle$ -\end_inset - -, de donde -\begin_inset Formula -\begin{multline*} -\Vert x+y\Vert^{2}+\Vert x-y\Vert^{2}=\langle x+y,x+y\rangle+\langle x-y,x-y\rangle=\\ -=\langle x,x\rangle+\langle x,y\rangle+\langle y,x\rangle+\langle y,y\rangle+\langle x,x\rangle-\langle x,y\rangle-\langle y,x\rangle+\langle y,y\rangle=2(\Vert x\Vert^{2}+\Vert y\Vert^{2}). -\end{multline*} - -\end_inset - - -\end_layout - -\begin_layout Itemize -\begin_inset Argument item:1 -status open - -\begin_layout Plain Layout -\begin_inset Formula $\impliedby]$ -\end_inset - - -\end_layout - -\end_inset - -Definimos -\begin_inset Formula $\langle\cdot,\cdot\rangle$ -\end_inset - - según la identidad de polarización, y queremos ver que es un producto escalar - cuya norma es la inicial. - Se tiene -\begin_inset Formula -\begin{align*} -\langle x,x\rangle & =\frac{1}{4}\left(\Vert2x\Vert^{2}-\Vert x-x\Vert^{2}+\text{i}\Vert x+\text{i}x\Vert^{2}-\text{i}\Vert x-\text{i}x\Vert^{2}\right)=\\ - & =\frac{1}{4}\left(4\Vert x\Vert^{2}+\text{i}|1+\text{i}|^{2}\Vert x\Vert^{2}-\text{i}|1-\text{i}|^{2}\Vert x\Vert^{2}\right)=\Vert x\Vert^{2}, -\end{align*} - -\end_inset - -y -\begin_inset Formula -\begin{align*} -4\langle x,y\rangle & =\Vert x+y\Vert^{2}-\Vert x-y\Vert^{2}+\text{i}\Vert x+\text{i}y\Vert^{2}-\text{i}\Vert x-\text{i}y\Vert^{2}\\ - & =\Vert y+x\Vert^{2}-\Vert y-x\Vert^{2}+\text{i}\Vert y-\text{i}x\Vert-\text{i}\Vert y+\text{i}x\Vert^{2}=4\overline{\langle y,x\rangle}\\ - & =\Vert-x-y\Vert^{2}-\Vert-x+y\Vert^{2}+\text{i}\Vert-x-\text{i}y\Vert^{2}-\text{i}\Vert-x+\text{i}y\Vert^{2}=-4\langle-x,y\rangle\\ - & =\Vert\text{i}x+\text{i}y\Vert^{2}-\Vert\text{i}x-\text{i}y\Vert^{2}+\text{i}\Vert\text{i}x-y\Vert^{2}-\text{i}\Vert\text{i}x+y\Vert^{2}=4\frac{\langle\text{i}x,y\rangle}{\text{i}}. -\end{align*} - -\end_inset - -Para ver que -\begin_inset Formula $\langle x+z,y\rangle=\langle x,y\rangle+\langle z,y\rangle$ -\end_inset - -, -\begin_inset Formula -\begin{multline*} -\Vert x+z+y\Vert^{2}-\Vert x+z-y\Vert^{2}=\left\Vert \left(x+\frac{y}{2}\right)+\left(z+\frac{y}{2}\right)\right\Vert ^{2}-\left\Vert \left(x+\frac{y}{2}\right)-\left(z+\frac{y}{2}\right)\right\Vert ^{2}=\\ -=2\left\Vert x+\frac{y}{2}\right\Vert ^{2}+2\left\Vert z+\frac{y}{2}\right\Vert ^{2}\cancel{-\Vert x-z\Vert^{2}}-2\left\Vert x-\frac{y}{2}\right\Vert ^{2}-2\left\Vert z-\frac{y}{2}\right\Vert ^{2}\cancel{+\Vert x-z\Vert^{2}}, -\end{multline*} - -\end_inset - -de donde -\begin_inset Formula -\begin{eqnarray*} -4\langle x+z,y\rangle & = & \Vert x+z+y\Vert^{2}-\Vert x+z-y\Vert^{2}+\text{i}\Vert x+z+\text{i}y\Vert^{2}-\text{i}\Vert x+z-\text{i}y\Vert^{2}\\ - & = & 2\left(\left\Vert x+\frac{y}{2}\right\Vert ^{2}+\left\Vert z+\frac{y}{2}\right\Vert ^{2}-\left\Vert x-\frac{y}{2}\right\Vert ^{2}-\left\Vert z-\frac{y}{2}\right\Vert \right)\\ - & & +2\text{i}\left(\left\Vert x+\text{i}\frac{y}{2}\right\Vert ^{2}+\left\Vert z+\text{i}\frac{z}{2}\right\Vert ^{2}-\left\Vert x-\text{i}\frac{y}{2}\right\Vert ^{2}-\left\Vert z-\text{i}\frac{y}{2}\right\Vert ^{2}\right)\\ - & = & 8\left\langle x,\frac{y}{2}\right\rangle +8\left\langle z,\frac{y}{2}\right\rangle , -\end{eqnarray*} - -\end_inset - -y por tanto -\begin_inset Formula -\[ -\langle x+z,y\rangle=2\left\langle x,\frac{y}{2}\right\rangle +2\left\langle z,\frac{y}{2}\right\rangle =\langle x,y\rangle+\langle z,y\rangle, -\] - -\end_inset - -donde en la segunda igualdad hemos usado la primera igualdad con -\begin_inset Formula $z=0$ -\end_inset - - o -\begin_inset Formula $x=0$ -\end_inset - -. - Usando esto y que -\begin_inset Formula $\langle-x,y\rangle$ -\end_inset - - es fácil ver que -\begin_inset Formula $\langle ax,y\rangle=a\langle x,y\rangle$ -\end_inset - - para -\begin_inset Formula $a\in\mathbb{Q}$ -\end_inset - -; para -\begin_inset Formula $a\in\mathbb{R}$ -\end_inset - - se usa la continuidad de la norma y por tanto del producto escalar, y para - -\begin_inset Formula $a\in\mathbb{C}$ -\end_inset - - se usa -\begin_inset Formula $\langle\text{i}x,y\rangle=\text{i}\langle x,y\rangle$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset Formula $(\ell^{\infty},\Vert\cdot\Vert_{\infty})$ -\end_inset - - y -\begin_inset Formula $({\cal C}([a,b]),\Vert\cdot\Vert_{1})$ -\end_inset - - son espacios normados no prehilbertianos. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Dos espacios prehilbertianos -\begin_inset Formula $(H_{1},\langle\cdot,\cdot\rangle_{1})$ -\end_inset - - y -\begin_inset Formula $(H_{2},\langle\cdot,\cdot\rangle_{2})$ -\end_inset - - son -\series bold -equivalentes -\series default - si existe un isomorfismo algebraico -\begin_inset Formula $T:H_{1}\to H_{2}$ -\end_inset - - con -\begin_inset Formula $\langle x,y\rangle_{1}=\langle T(x),T(y)\rangle_{2}$ -\end_inset - - para todo -\begin_inset Formula $x,y\in H_{1}$ -\end_inset - -, si y sólo si existe un isomorfismo isométrico entre los espacios normados. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Si -\begin_inset Formula $H$ -\end_inset - - es un espacio prehilbertiano, -\begin_inset Formula $x,y\in H$ -\end_inset - - son -\series bold -ortogonales -\series default -, -\begin_inset Formula $x\bot y$ -\end_inset - -, si -\begin_inset Formula $\langle x,y\rangle=0$ -\end_inset - -. - Decimos que -\begin_inset Formula $x\in H$ -\end_inset - - es -\series bold -ortogonal -\series default - a -\begin_inset Formula $M\subseteq H$ -\end_inset - -, -\begin_inset Formula $x\bot M$ -\end_inset - -, si -\begin_inset Formula $\forall y\in M,x\bot y$ -\end_inset - -, y llamamos -\begin_inset Formula $M^{\bot}\coloneqq\{x\in H:x\bot M\}$ -\end_inset - -. - Una familia -\begin_inset Formula $\{x_{i}\}_{i\in I}\subseteq H$ -\end_inset - - es -\series bold -ortogonal -\series default - si -\begin_inset Formula $\forall i,j\in I,(i\neq j\implies x_{i}\bot x_{j})$ -\end_inset - -, y es -\series bold -ortonormal -\series default - si además -\begin_inset Formula $\forall i,\Vert x_{i}\Vert=1$ -\end_inset - -. - Entonces: -\end_layout - -\begin_layout Enumerate - -\series bold -Teorema de Pitágoras: -\series default - Si -\begin_inset Formula $x\bot y$ -\end_inset - -, -\begin_inset Formula $\Vert x+y\Vert^{2}=\Vert x\Vert^{2}+\Vert y\Vert^{2}$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Enumerate -Si -\begin_inset Formula $(x_{i})_{i\in I}$ -\end_inset - - es una familia ortogonal de elementos no nulos, es una familia linealmente - independiente. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Enumerate -Si -\begin_inset Formula $M\subseteq H$ -\end_inset - -, -\begin_inset Formula $M^{\bot}$ -\end_inset - - es un subespacio cerrado de -\begin_inset Formula $H$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard - -\series bold -Lema de Gram-Schmidt: -\series default - Sean -\begin_inset Formula $H$ -\end_inset - - prehilbertiano, -\begin_inset Formula $\{x_{n}\}_{n}\subseteq H$ -\end_inset - - una familia contable linealmente independiente y -\begin_inset Formula $(u_{n})_{n}$ -\end_inset - - e -\begin_inset Formula $(y_{n})_{n}$ -\end_inset - - dadas por -\begin_inset Formula $u_{n}\coloneqq\frac{y_{n}}{\Vert y_{n}\Vert}$ -\end_inset - -, -\begin_inset Formula $y_{0}\coloneqq x_{0}$ -\end_inset - - y para -\begin_inset Formula $n\geq1$ -\end_inset - -, -\begin_inset Formula -\[ -y_{n}\coloneqq x_{n}-\sum_{j<n}\langle x_{n},u_{j}\rangle u_{j}, -\] - -\end_inset - - -\begin_inset Formula $(u_{n})_{n}$ -\end_inset - - es una sucesión ortonormal en -\begin_inset Formula $H$ -\end_inset - - y, para cada -\begin_inset Formula $n$ -\end_inset - -, -\begin_inset Formula $\text{span}\{u_{1},\dots,u_{n}\}=\text{span}\{x_{1},\dots,x_{n}\}$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Si -\begin_inset Formula $M$ -\end_inset - - es un subespacio de dimensión finita del espacio prehilbertiano -\begin_inset Formula $H$ -\end_inset - -: -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $M$ -\end_inset - - tiene una base algebraica formada por vectores ortonormales. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $M$ -\end_inset - - es equivalente a -\begin_inset Formula $\mathbb{K}^{\dim M}$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Un -\series bold -espacio de Hilbert -\series default - es un espacio prehilbertiano completo. - Dado un espacio de medida -\begin_inset Formula $(\Omega,\Sigma,\mu)$ -\end_inset - -, -\begin_inset Formula $L^{2}(\Omega,\Sigma,\mu)$ -\end_inset - - es un espacio de Hilbert con -\begin_inset Formula -\[ -\langle f,g\rangle\coloneqq\int_{\Omega}f\overline{g}\dif\mu, -\] - -\end_inset - -y en particular lo son -\begin_inset Formula $\ell^{2}$ -\end_inset - - con -\begin_inset Formula $\langle x,y\rangle\coloneqq\sum_{n}x_{n}\overline{y_{n}}$ -\end_inset - - y -\begin_inset Formula $\ell_{n}^{2}$ -\end_inset - - con -\begin_inset Formula $\langle x,y\rangle\coloneqq\sum_{i}x_{i}\overline{y_{i}}$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Son espacios prehilbertianos no completos: -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $c_{00}$ -\end_inset - - con el producto escalar de -\begin_inset Formula $\ell^{2}$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $C([a,b])$ -\end_inset - - con el producto escalar de -\begin_inset Formula $L^{2}([a,b])$ -\end_inset - - con la medida de Lebesgue, y entonces -\begin_inset Formula $C([a,b])$ -\end_inset - - es denso en -\begin_inset Formula $L^{2}([a,b])$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Section -Mejor aproximación -\end_layout - -\begin_layout Standard -Si -\begin_inset Formula $X$ -\end_inset - - es un espacio vectorial, -\begin_inset Formula $A\subseteq X$ -\end_inset - - es -\series bold -convexo -\series default - si -\begin_inset Formula $\forall\lambda\in[0,1]$ -\end_inset - -, -\begin_inset Formula $\lambda A+(1-\lambda)A\subseteq A$ -\end_inset - -. - Si -\begin_inset Formula $X$ -\end_inset - - es normado, -\begin_inset Formula $S\subseteq X$ -\end_inset - - no vacío y -\begin_inset Formula $x\in X$ -\end_inset - -, un -\begin_inset Formula $y\in S$ -\end_inset - - es un -\series bold -vector de mejor aproximación -\series default - de -\begin_inset Formula $x$ -\end_inset - - a -\begin_inset Formula $S$ -\end_inset - - si -\begin_inset Formula $\Vert x-y\Vert=\min_{z\in S}\Vert x-z\Vert$ -\end_inset - -. -\end_layout - -\begin_layout Standard - -\series bold -Teorema de mejor aproximación: -\series default - Si -\begin_inset Formula $H$ -\end_inset - - es un espacio prehilbertiano y -\begin_inset Formula $C\subseteq H$ -\end_inset - - es no vacío, convexo y completo, para cada -\begin_inset Formula $x\in H$ -\end_inset - - existe una mejor aproximación de -\begin_inset Formula $x$ -\end_inset - - a -\begin_inset Formula $C$ -\end_inset - -. - -\series bold -Demostración: -\series default - Podemos suponer por traslación que -\begin_inset Formula $x=0$ -\end_inset - -, y llamamos -\begin_inset Formula $\alpha\coloneqq\inf_{z\in C}\Vert z\Vert$ -\end_inset - -. - Para la existencia tomamos una sucesión -\begin_inset Formula $\{y_{n}\}_{n}\subseteq C$ -\end_inset - - con -\begin_inset Formula $\lim_{n}\Vert y_{n}\Vert=\alpha$ -\end_inset - - y probamos que es de Cauchy, pues entonces por completitud existe -\begin_inset Formula $y\coloneqq\lim_{n}y_{n}\in C$ -\end_inset - - y por continuidad de la norma es -\begin_inset Formula $\Vert y\Vert=\alpha$ -\end_inset - -. - Para -\begin_inset Formula $\varepsilon>0$ -\end_inset - - existe -\begin_inset Formula $n_{0}$ -\end_inset - - tal que si -\begin_inset Formula $n\geq n_{0}$ -\end_inset - - es -\begin_inset Formula $\Vert y_{n}\Vert^{2}<\alpha^{2}+\varepsilon$ -\end_inset - -, y por la ley del paralelogramo es -\begin_inset Formula -\[ -\left\Vert \frac{y_{n}-y_{m}}{2}\right\Vert ^{2}=\frac{1}{2}(\Vert y_{n}\Vert^{2}+\Vert y_{m}\Vert^{2})-\left\Vert \frac{y_{n}+y_{m}}{2}\right\Vert ^{2}\leq\frac{1}{2}(\alpha^{2}+\varepsilon+\alpha^{2}+\varepsilon)-\alpha^{2}=\varepsilon, -\] - -\end_inset - -pues por convexidad -\begin_inset Formula $\frac{y_{n}+y_{m}}{2}\in S$ -\end_inset - - y por tanto su norma es mayor o igual a -\begin_inset Formula $\alpha$ -\end_inset - -. - Para la unicidad, si -\begin_inset Formula $y,z\in C$ -\end_inset - - cumplen -\begin_inset Formula $\Vert y\Vert=\Vert z\Vert=\alpha$ -\end_inset - -, por un argumento como el anterior, -\begin_inset Formula -\[ -\left\Vert \frac{y-z}{2}\right\Vert ^{2}=\frac{1}{2}(\Vert y\Vert^{2}+\Vert z\Vert^{2})-\left\Vert \frac{y+z}{2}\right\Vert ^{2}\leq\frac{1}{2}(\alpha^{2}+\alpha^{2})-\alpha^{2}=0. -\] - -\end_inset - - -\end_layout - -\begin_layout Standard -Como -\series bold -teorema -\series default -, si -\begin_inset Formula $Y$ -\end_inset - - es un subespacio de un espacio prehilbertiano -\begin_inset Formula $H$ -\end_inset - - y -\begin_inset Formula $x\in H$ -\end_inset - -: -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $y\in Y$ -\end_inset - - es de mejor aproximación de -\begin_inset Formula $x$ -\end_inset - - a -\begin_inset Formula $Y$ -\end_inset - - si y sólo si -\begin_inset Formula $x-y\bot Y$ -\end_inset - -. -\end_layout - -\begin_deeper -\begin_layout Enumerate -\begin_inset Argument item:1 -status open - -\begin_layout Plain Layout -\begin_inset Formula $\implies]$ -\end_inset - - -\end_layout - -\end_inset - -Para -\begin_inset Formula $z\in Y$ -\end_inset - - y -\begin_inset Formula $a\in\mathbb{K}$ -\end_inset - -, como -\begin_inset Formula $y-az\in Y$ -\end_inset - -, -\begin_inset Formula -\[ -\Vert x-y\Vert^{2}\leq\Vert x-y+az\Vert^{2}=\Vert x-y\Vert^{2}+2\text{Re}(a\langle z,x-y\rangle)+|a|^{2}\Vert z\Vert^{2}, -\] - -\end_inset - -luego -\begin_inset Formula $0\leq2\text{Re}(a\langle z,x-y\rangle)+|a|^{2}\Vert z\Vert^{2}$ -\end_inset - - y, haciendo -\begin_inset Formula $a=t\langle x-y,z\rangle$ -\end_inset - - con -\begin_inset Formula $t\in\mathbb{R}$ -\end_inset - -, -\begin_inset Formula $0\leq2t|\langle x-y,z\rangle|^{2}+t^{2}|\langle x-y,z\rangle|^{2}\Vert z\Vert^{2}$ -\end_inset - -. - Si hubiera -\begin_inset Formula $z\in Y$ -\end_inset - - con -\begin_inset Formula $\langle x-y,z\rangle\neq0$ -\end_inset - -, -\begin_inset Formula $0\leq2t+t^{2}\Vert z\Vert^{2}$ -\end_inset - - para todo -\begin_inset Formula $t\in\mathbb{R}$ -\end_inset - -, pero si -\begin_inset Formula $\Vert z\Vert^{2}=0$ -\end_inset - -, esto es negativo cuando -\begin_inset Formula $t<0$ -\end_inset - -, y si -\begin_inset Formula $\Vert z\Vert^{2}>0$ -\end_inset - -, es negativo al menos cuando -\begin_inset Formula $t=-\frac{1}{\Vert z\Vert^{2}}\#$ -\end_inset - -, luego -\begin_inset Formula $x-y\bot z$ -\end_inset - - y -\begin_inset Formula $x-y\bot Y$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -\begin_inset Argument item:1 -status open - -\begin_layout Plain Layout -\begin_inset Formula $\impliedby]$ -\end_inset - - -\end_layout - -\end_inset - -Para -\begin_inset Formula $z\in Y$ -\end_inset - -, por el teorema de Pitágoras, -\begin_inset Formula -\[ -\Vert x-z\Vert^{2}=\Vert x-y+y-z\Vert^{2}=\Vert x-y\Vert^{2}+\Vert y-z\Vert^{2}\geq\Vert x-y\Vert^{2}. -\] - -\end_inset - - -\end_layout - -\end_deeper -\begin_layout Enumerate -Si existe una mejor aproximación de -\begin_inset Formula $x$ -\end_inset - - a -\begin_inset Formula $Y$ -\end_inset - -, es única. -\end_layout - -\begin_deeper -\begin_layout Standard -Sean -\begin_inset Formula $y,z\in Y$ -\end_inset - - de mejor aproximación, como -\begin_inset Formula $x-y,x-z\in Y^{\bot}$ -\end_inset - -, su diferencia -\begin_inset Formula $y-z\in Y^{\bot}\cap Y$ -\end_inset - -, luego -\begin_inset Formula $\langle y-z,y-z\rangle=0$ -\end_inset - - e -\begin_inset Formula $y=z$ -\end_inset - -. -\end_layout - -\end_deeper -\begin_layout Enumerate -Si -\begin_inset Formula $Y$ -\end_inset - - es completo, hay vector de mejor aproximación. -\end_layout - -\begin_deeper -\begin_layout Standard -Por el teorema anterior (los subespacios son convexos). -\end_layout - -\end_deeper -\begin_layout Section -Determinante de Gram -\end_layout - -\begin_layout Standard -Sean -\begin_inset Formula $H$ -\end_inset - - prehilbertiano y -\begin_inset Formula $M\leq H$ -\end_inset - - de dimensión finita con base ortonormal -\begin_inset Formula $(e_{i})_{i}$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -Para -\begin_inset Formula $x\in H$ -\end_inset - - existe un único vector de aproximación de -\begin_inset Formula $x$ -\end_inset - - a -\begin_inset Formula $M$ -\end_inset - - dado por -\begin_inset Formula -\[ -\sum_{i}\langle x,e_{i}\rangle e_{i}. -\] - -\end_inset - - -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $d(x,M)^{2}=\Vert x\Vert^{2}-\sum_{i}|\langle x,e_{i}\rangle|^{2}$ -\end_inset - -. -\end_layout - -\begin_layout Standard -Llamamos -\series bold -determinante de Gram -\series default - de -\begin_inset Formula $(x_{i})_{i=1}^{n}$ -\end_inset - - a -\begin_inset Formula -\[ -G(x_{1},\dots,G_{n})\coloneqq\det(\langle x_{j},x_{i}\rangle)_{1\leq i\leq n}^{1\leq j\leq n}. -\] - -\end_inset - -Como -\series bold -teorema -\series default -, si -\begin_inset Formula $H$ -\end_inset - - es prehilbertiano, -\begin_inset Formula $M\leq H$ -\end_inset - - de dimensión finita con base -\begin_inset Formula $(b_{i})_{i}$ -\end_inset - - y -\begin_inset Formula $x\in H$ -\end_inset - -, el vector de mejor aproximación de -\begin_inset Formula $x$ -\end_inset - - a -\begin_inset Formula $M$ -\end_inset - - es -\begin_inset Formula -\[ -\frac{-1}{G(b_{1},\dots,b_{n})}\begin{vmatrix}\langle x_{1},x_{1}\rangle & \langle x_{2},x_{1}\rangle & \cdots & \langle x_{n},x_{1}\rangle & \langle x,x_{1}\rangle\\ -\langle x_{1},x_{2}\rangle & \langle x_{2},x_{2}\rangle & \cdots & \langle x_{n},x_{2}\rangle & \langle x,x_{2}\rangle\\ -\vdots & \vdots & \ddots & \vdots & \vdots\\ -\langle x_{1},x_{n}\rangle & \langle x_{2},x_{n}\rangle & \cdots & \langle x_{n},x_{n}\rangle & \langle x,x_{n}\rangle\\ -x_{1} & x_{2} & \cdots & x_{n} & 0 -\end{vmatrix}, -\] - -\end_inset - -y -\begin_inset Formula -\[ -d(x,M)=\sqrt{\frac{G(x_{1},\dots,x_{n},x)}{G(x_{1},\dots,x_{n})}}. -\] - -\end_inset - - -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Algunas aplicaciones: -\end_layout - -\begin_layout Enumerate - -\series bold -Resolución de sistemas sobre-dimensionados por mínimos cuadrados. - -\series default - Tenemos un fenómeno experimental que se puede modelar como una función - lineal -\begin_inset Formula $y(x)=a_{1}x_{1}+\dots+a_{n}x_{n}$ -\end_inset - -, pero no conocemos los -\begin_inset Formula $a_{i}$ -\end_inset - -. - Hacemos -\begin_inset Formula $m$ -\end_inset - - experimentos fijando un -\begin_inset Formula $x_{i}$ -\end_inset - - en cada uno y midiendo -\begin_inset Formula $y_{i}\coloneqq y(x_{i})$ -\end_inset - - para plantear un sistema de -\begin_inset Formula $m$ -\end_inset - - ecuaciones. - Solo hacen falta -\begin_inset Formula $n$ -\end_inset - - experimentos cuidando que los -\begin_inset Formula $x_{i}$ -\end_inset - - sean linealmente independientes, pero en general conviene hacer más, -\begin_inset Formula $m>n$ -\end_inset - -. - Como las mediciones son aproximadas, el sistema puede ser incompatible, - por lo que se eligen los -\begin_inset Formula $a_{i}\in\mathbb{R}$ -\end_inset - - de forma que se minimice -\begin_inset Formula -\[ -\sum_{i\in\mathbb{N}_{m}}\left(y_{i}-\sum_{j\in\mathbb{N}_{n}}a_{j}x_{ij}\right)^{2}=\left\Vert y-\sum_{j\in\mathbb{N}_{n}}a_{j}X_{j}\right\Vert ^{2}, -\] - -\end_inset - -donde -\begin_inset Formula $X_{j}\coloneqq(x_{1j},\dots,x_{mj})$ -\end_inset - -. - Si -\begin_inset Formula $X_{1},\dots,X_{n}$ -\end_inset - - son linealmente independientes, sea -\begin_inset Formula $M\coloneqq\text{span}\{X_{1},\dots,X_{n}\}<\mathbb{R}^{m}$ -\end_inset - -, buscamos el vector -\begin_inset Formula $Z\in M$ -\end_inset - - de mejor aproximación de -\begin_inset Formula $y$ -\end_inset - - en -\begin_inset Formula $M$ -\end_inset - - que, expresado respecto de la base -\begin_inset Formula $(X_{1},\dots,X_{n})$ -\end_inset - -, nos dará el vector -\begin_inset Formula $(a_{1},\dots,a_{n})$ -\end_inset - - buscado. -\end_layout - -\begin_layout Enumerate - -\series bold -Ajustes polinómicos por mínimos cuadrados. - -\series default - Queremos modelar un fenómeno experimental como una función polinómica -\begin_inset Formula $f:[a,b]\to\mathbb{R}$ -\end_inset - -, y tenemos -\begin_inset Formula $k$ -\end_inset - - observaciones de la forma -\begin_inset Formula $f(t_{i})=y_{i}$ -\end_inset - - con -\begin_inset Formula $t_{1}<\dots<t_{k}$ -\end_inset - -. - Existe un polinomio de grado máximo -\begin_inset Formula $k-1$ -\end_inset - - que cumple esto, pero muchas veces -\begin_inset Formula $k$ -\end_inset - - es muy grande y esto complica los cálculos y puede llevar al -\emph on -\lang english -overfitting -\emph default -\lang spanish - o fenómeno de Runge. - Entonces buscamos un polinomio -\begin_inset Formula $f$ -\end_inset - - de grado máximo -\begin_inset Formula $n$ -\end_inset - - bastante menor que -\begin_inset Formula $k-1$ -\end_inset - - que minimice -\begin_inset Formula -\[ -\sum_{i\in\mathbb{N}_{k}}|y_{i}-f(t_{i})|^{2}=\left\Vert y-\sum_{j=0}^{n}f_{j}t^{j}\right\Vert ^{2}, -\] - -\end_inset - -donde -\begin_inset Formula $t^{j}\coloneqq(t_{1}^{j},\dots,t_{k}^{j})$ -\end_inset - -. - Para ello, como para -\begin_inset Formula $k\geq2$ -\end_inset - - los -\begin_inset Formula $t^{j}$ -\end_inset - - son linealmente independientes, consideramos -\begin_inset Formula $M\coloneqq\text{span}\{1,t,t^{2},\dots,t^{n}\}<\mathbb{R}^{n+1}$ -\end_inset - - y buscamos la mejor aproximación de -\begin_inset Formula $y$ -\end_inset - - a -\begin_inset Formula $M$ -\end_inset - -. -\end_layout - -\begin_layout Section -Teorema de la proyección -\end_layout - -\begin_layout Standard - -\series bold -Teorema de la proyección: -\series default - Si -\begin_inset Formula $H$ -\end_inset - - es un espacio de Hilbert con un subespacio cerrado -\begin_inset Formula $M$ -\end_inset - - y -\begin_inset Formula $P_{M}:H\to M$ -\end_inset - - la -\series bold -proyección ortogonal -\series default - de -\begin_inset Formula $H$ -\end_inset - - sobre -\begin_inset Formula $M$ -\end_inset - - que asigna a cada -\begin_inset Formula $x\in H$ -\end_inset - - la mejor aproximación de -\begin_inset Formula $x$ -\end_inset - - a -\begin_inset Formula $M$ -\end_inset - -: -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $H$ -\end_inset - - es suma directa topológica de -\begin_inset Formula $M$ -\end_inset - - y -\begin_inset Formula $M^{\bot}$ -\end_inset - -, -\begin_inset Formula $P_{M}$ -\end_inset - - es la proyección canónica y, si -\begin_inset Formula $P_{M^{\bot}}:H\to M^{\bot}$ -\end_inset - - es la otra proyección canónica, si -\begin_inset Formula $M\neq0$ -\end_inset - -, -\begin_inset Formula $\Vert P_{M}\Vert=1$ -\end_inset - -, y si -\begin_inset Formula $M^{\bot}\neq0$ -\end_inset - -, -\begin_inset Formula $\Vert P_{M^{\bot}}\Vert=1$ -\end_inset - -. -\end_layout - -\begin_deeper -\begin_layout Standard -Por la definición de producto escalar, -\begin_inset Formula $M^{\bot}\leq H$ -\end_inset - -. - Claramente -\begin_inset Formula $M\cap M^{\bot}=0$ -\end_inset - -, y para -\begin_inset Formula $x\in M$ -\end_inset - -, como -\begin_inset Formula $y\coloneqq P_{M}(x)$ -\end_inset - - cumple -\begin_inset Formula $x-y\bot M$ -\end_inset - -, -\begin_inset Formula $x=y+z$ -\end_inset - - con -\begin_inset Formula $y\in M$ -\end_inset - - y -\begin_inset Formula $z\coloneqq x-y\in M^{\bot}$ -\end_inset - -, luego -\begin_inset Formula $M+M^{\bot}=H$ -\end_inset - - y -\begin_inset Formula $H$ -\end_inset - - es suma directa algebraica de -\begin_inset Formula $M$ -\end_inset - - y -\begin_inset Formula $M^{\bot}$ -\end_inset - -. - -\begin_inset Formula $P_{M}$ -\end_inset - - es la proyección canónica porque, si -\begin_inset Formula $y\in M$ -\end_inset - - y -\begin_inset Formula $z\in M^{\bot}$ -\end_inset - -, -\begin_inset Formula $(y+z)-y=z\bot M$ -\end_inset - -, y por unicidad de la mejor aproximación, -\begin_inset Formula $P_{M}(y+z)=y$ -\end_inset - -. - -\begin_inset Formula $P_{M}$ -\end_inset - - y -\begin_inset Formula $P_{M^{\bot}}$ -\end_inset - - son lineales por ser proyecciones canónicas, y para -\begin_inset Formula $x=y+z\in S_{H}$ -\end_inset - - con -\begin_inset Formula $y\in M$ -\end_inset - - y -\begin_inset Formula $z\in M^{\bot}$ -\end_inset - -, -\begin_inset Formula $\Vert x\Vert^{2}=\Vert y\Vert^{2}+\Vert z\Vert^{2}=\Vert P_{M}(x)\Vert^{2}+\Vert P_{M^{\bot}}(x)\Vert^{2}$ -\end_inset - - y -\begin_inset Formula $\Vert P_{M}(x)\Vert,\Vert P_{M^{\bot}}(x)\Vert\leq\Vert x\Vert=1$ -\end_inset - -, lo que prueba la continuidad y por tanto que -\begin_inset Formula $M$ -\end_inset - - es topológica. - Además, si -\begin_inset Formula $M\neq0$ -\end_inset - -, existe -\begin_inset Formula $y\in S_{M}$ -\end_inset - - y -\begin_inset Formula $\Vert P_{M}(y)\Vert=\Vert y\Vert=1$ -\end_inset - -, luego -\begin_inset Formula $\Vert P_{M}\Vert=1$ -\end_inset - -, y análogamente para -\begin_inset Formula $M^{\bot}$ -\end_inset - -. -\end_layout - -\end_deeper -\begin_layout Enumerate -\begin_inset Formula $P_{M}(H)=M$ -\end_inset - -, -\begin_inset Formula $\ker P_{M}=M^{\bot}$ -\end_inset - - y -\begin_inset Formula $P_{M^{\bot}}=1_{H}-P_{M}$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -Para -\begin_inset Formula $x,y\in H$ -\end_inset - -, -\begin_inset Formula $\langle P_{M}(x),y\rangle=\langle x,P_{M}(y)\rangle$ -\end_inset - - y -\begin_inset Formula $\langle P_{M^{\bot}}(x),y\rangle=\langle x,P_{M^{\bot}}(y)\rangle$ -\end_inset - -. -\end_layout - -\begin_deeper -\begin_layout Standard -Si -\begin_inset Formula $x=x_{1}+x_{2}$ -\end_inset - - e -\begin_inset Formula $y=y_{1}+y_{2}$ -\end_inset - - con -\begin_inset Formula $x_{1},y_{1}\in M$ -\end_inset - - y -\begin_inset Formula $x_{2},y_{2}\in M^{\bot}$ -\end_inset - -, -\begin_inset Formula $\langle P_{M}(x),y\rangle=\langle x_{1},y_{1}+y_{2}\rangle=\langle x_{1},y_{1}\rangle=\langle x_{1}+x_{2},y_{1}\rangle=\langle x,P_{M}(y)\rangle$ -\end_inset - -, y para -\begin_inset Formula $P_{M^{\bot}}$ -\end_inset - - es análogo. -\end_layout - -\end_deeper -\begin_layout Enumerate -\begin_inset Formula $M^{\bot\bot}=M$ -\end_inset - -. -\end_layout - -\begin_deeper -\begin_layout Standard -Si -\begin_inset Formula $x\in M$ -\end_inset - -, para -\begin_inset Formula $y\in M^{\bot}$ -\end_inset - -, -\begin_inset Formula $\langle y,x\rangle=\overline{\langle x,y\rangle}=0$ -\end_inset - -, luego -\begin_inset Formula $x\in M^{\bot\bot}$ -\end_inset - -. - Si -\begin_inset Formula $x\in M^{\bot\bot}\subseteq H$ -\end_inset - -, sean -\begin_inset Formula $y\in M$ -\end_inset - - y -\begin_inset Formula $z\in M^{\bot}$ -\end_inset - - con -\begin_inset Formula $x=y+z$ -\end_inset - -, -\begin_inset Formula $0=\langle x,z\rangle=\langle y,z\rangle+\langle z,z\rangle=\langle z,z\rangle=\Vert z\Vert^{2}$ -\end_inset - -, luego -\begin_inset Formula $z=0$ -\end_inset - - y -\begin_inset Formula $x\in M$ -\end_inset - -. -\end_layout - -\end_deeper -\begin_layout Standard -Esto no es cierto si -\begin_inset Formula $M$ -\end_inset - - no es cerrado ni si -\begin_inset Formula $H$ -\end_inset - - no es completo. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Un espacio normado es de Hilbert si y sólo si cada subespacio cerrado tiene - un complementario topológico. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Un subconjunto -\begin_inset Formula $S$ -\end_inset - - de un espacio normado -\begin_inset Formula $(X,\Vert\cdot\Vert)$ -\end_inset - - es -\series bold -total -\series default - si -\begin_inset Formula $\overline{\text{span}S}=X$ -\end_inset - -, y si -\begin_inset Formula $H$ -\end_inset - - es de Hilbert esto ocurre si y sólo si -\begin_inset Formula $S^{\bot}=0$ -\end_inset - -. -\end_layout - -\begin_layout Section -Dual de un espacio de Hilbert -\end_layout - -\begin_layout Standard - -\series bold -Teorema de Riesz-Fréchet: -\series default - Dados un espacio de Hilbert -\begin_inset Formula $H$ -\end_inset - - y un operador -\begin_inset Formula $f:H\to\mathbb{K}$ -\end_inset - -, -\begin_inset Formula $f$ -\end_inset - - es acotado si y sólo si existe -\begin_inset Formula $y\in H$ -\end_inset - - con -\begin_inset Formula $f=\langle\cdot,y\rangle$ -\end_inset - -, en cuyo caso -\begin_inset Formula $y$ -\end_inset - - es único y -\begin_inset Formula $\Vert f\Vert=\Vert y\Vert$ -\end_inset - -. -\end_layout - -\begin_layout Itemize -\begin_inset Argument item:1 -status open - -\begin_layout Plain Layout -\begin_inset Formula $\implies]$ -\end_inset - - -\end_layout - -\end_inset - -Para la unicidad, si -\begin_inset Formula $f(x)=\langle x,y\rangle=\langle x,z\rangle$ -\end_inset - - para todo -\begin_inset Formula $x\in H$ -\end_inset - -, -\begin_inset Formula $\langle x,y-z\rangle=0$ -\end_inset - -, luego -\begin_inset Formula $y-z\bot H$ -\end_inset - - y, como -\begin_inset Formula $H^{\bot}=0$ -\end_inset - -, -\begin_inset Formula $y=z$ -\end_inset - -. - Para la existencia, si -\begin_inset Formula $f=0$ -\end_inset - - tomamos -\begin_inset Formula $y=0$ -\end_inset - -, y en otro caso, -\begin_inset Formula $Y\coloneqq\ker f$ -\end_inset - - es un subespacio cerrado de -\begin_inset Formula $H$ -\end_inset - - y por tanto -\begin_inset Formula $H=Y\oplus Y^{\bot}$ -\end_inset - -, con -\begin_inset Formula $\dim Y^{\bot}=\dim\text{Im}f=1$ -\end_inset - -. - Sea entonces -\begin_inset Formula $z\in Y^{\bot}$ -\end_inset - - unitario, la proyección ortogonal de un -\begin_inset Formula $x\in H$ -\end_inset - - sobre -\begin_inset Formula $Y^{\bot}$ -\end_inset - - es -\begin_inset Formula $\langle x,z\rangle z$ -\end_inset - -, luego -\begin_inset Formula $x-\langle x,z\rangle z\in Y$ -\end_inset - - y -\begin_inset Formula -\[ -f(x)=f(x-\langle x,z\rangle z+\langle x,z\rangle z)=f(\langle x,z\rangle z)=\langle x,z\rangle f(z)=\langle x,\overline{f(z)}z\rangle\eqqcolon\langle x,y\rangle. -\] - -\end_inset - -Para -\begin_inset Formula $x\in S_{H}$ -\end_inset - -, por la desigualdad de Cauchy-Schwartz, -\begin_inset Formula $\Vert f(x)\Vert^{2}=|\langle x,y\rangle|^{2}\leq\langle x,x\rangle\langle y,y\rangle=\Vert y\Vert^{2}$ -\end_inset - -, luego -\begin_inset Formula $\Vert f\Vert\leq\Vert y\Vert$ -\end_inset - -, pero -\begin_inset Formula $f(\frac{y}{\Vert y\Vert})=\frac{f(y)}{\Vert y\Vert}=\frac{\Vert y\Vert^{2}}{\Vert y\Vert}=\Vert y\Vert$ -\end_inset - -, luego -\begin_inset Formula $\Vert f\Vert=\Vert y\Vert$ -\end_inset - -. -\end_layout - -\begin_layout Itemize -\begin_inset Argument item:1 -status open - -\begin_layout Plain Layout -\begin_inset Formula $\impliedby]$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Formula $f\coloneqq\langle\cdot,y\rangle$ -\end_inset - - es lineal, y es continua por el argumento anterior que prueba que -\begin_inset Formula $\Vert f\Vert=\Vert y\Vert$ -\end_inset - -. -\end_layout - -\begin_layout Standard -El teorema no es válido si -\begin_inset Formula $H$ -\end_inset - - no es completo. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Sean -\begin_inset Formula $H$ -\end_inset - - un espacio de Hilbert y -\begin_inset Formula $T:H^{*}\to H$ -\end_inset - - que a cada -\begin_inset Formula $f$ -\end_inset - - le asocia el -\begin_inset Formula $y$ -\end_inset - - con -\begin_inset Formula $f=\langle\cdot,y\rangle$ -\end_inset - -: -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $T$ -\end_inset - - es biyectiva, isométrica y lineal conjugada. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $H^{*}$ -\end_inset - - es un espacio de Hilbert con el producto escalar -\begin_inset Formula $\langle f,g\rangle^{*}\coloneqq\langle T(g),T(f)\rangle$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $J:H\to H^{**}$ -\end_inset - - dada por -\begin_inset Formula $J(x)(f)\coloneqq f(x)$ -\end_inset - - es un isomorfismo algebraico isométrico. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Dado un un -\begin_inset Formula $\mathbb{K}$ -\end_inset - --espacio vectorial -\begin_inset Formula $X$ -\end_inset - -, -\begin_inset Formula $B:X\times X\to\mathbb{K}$ -\end_inset - - es -\series bold -bilineal -\series default - si las -\begin_inset Formula $B(\cdot,y)$ -\end_inset - - y -\begin_inset Formula $B(x,\cdot)$ -\end_inset - - son lineales, -\series bold -sesquilineal -\series default - si las -\begin_inset Formula $B(\cdot,y)$ -\end_inset - - son lineales y las -\begin_inset Formula $B(x,\cdot)$ -\end_inset - - son lineales conjugadas, -\series bold -simétrica -\series default - si -\begin_inset Formula $B(x,y)\equiv B(y,x)$ -\end_inset - - y -\series bold -positiva -\series default - si -\begin_inset Formula $\forall x\in X,B(x,x)\geq0$ -\end_inset - -. - Si además -\begin_inset Formula $X$ -\end_inset - - es normado, -\begin_inset Formula $B$ -\end_inset - - es -\series bold -acotada -\series default - si -\begin_inset Formula $\exists M>0:\forall x,y\in X,|B(x,y)|\leq M\Vert x\Vert\Vert y\Vert$ -\end_inset - -, y es -\series bold -fuertemente positiva -\series default - si -\begin_inset Formula $\exists c>0:\forall x\in X,B(x,x)\geq c\Vert x\Vert^{2}$ -\end_inset - -. - -\end_layout - -\begin_layout Standard -Si -\begin_inset Formula $B$ -\end_inset - - es bilineal o sesquilineal, es acotada si y sólo si es continua, y para - todo -\begin_inset Formula $x$ -\end_inset - - e -\begin_inset Formula $y$ -\end_inset - - es -\begin_inset Formula $2B(x,x)+2B(y,y)=B(x+y,x+y)+B(x-y,x-y)$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard - -\series bold -Teorema de Lax-Milgram: -\series default - Sean -\begin_inset Formula $H$ -\end_inset - - un espacio de Hilbert y -\begin_inset Formula $B$ -\end_inset - - una -\begin_inset Formula $H$ -\end_inset - --forma sesquilineal acotada y fuertemente positiva, existe un único isomorfismo - de espacios de Hilbert -\begin_inset Formula $T:H\to H$ -\end_inset - - tal que -\begin_inset Formula $\forall x,y\in H,B(x,y)=\langle x,T(y)\rangle$ -\end_inset - -. - -\series bold -Demostración: -\series default - Sea -\begin_inset Formula -\[ -Y\coloneqq\{y\in H\mid\exists z\in H:\langle\cdot,y\rangle=B(\cdot,z)\}, -\] - -\end_inset - - -\begin_inset Formula $0\in Y$ -\end_inset - - tomando -\begin_inset Formula $z=0$ -\end_inset - - y -\begin_inset Formula $z$ -\end_inset - - está unívocamente determinado por -\begin_inset Formula $y$ -\end_inset - -, ya que si -\begin_inset Formula $\langle\cdot,y\rangle=B(\cdot,z)=B(\cdot,z')$ -\end_inset - - entonces -\begin_inset Formula $B(\cdot,z-z')=0$ -\end_inset - - y en particular -\begin_inset Formula $0=B(z-z',z-z')\geq c\Vert z-z'\Vert^{2}$ -\end_inset - - para cierto -\begin_inset Formula $c>0$ -\end_inset - - por ser -\begin_inset Formula $B$ -\end_inset - - fuertemente positiva, luego -\begin_inset Formula $z=z'$ -\end_inset - -. - Como -\begin_inset Formula $\langle\cdot,\cdot\rangle$ -\end_inset - - y -\begin_inset Formula $B$ -\end_inset - - son sesquilineales, -\begin_inset Formula $Y$ -\end_inset - - es un espacio vectorial y -\begin_inset Formula $S:Y\to H$ -\end_inset - - que a cada -\begin_inset Formula $y$ -\end_inset - - le asocia el -\begin_inset Formula $z$ -\end_inset - - con -\begin_inset Formula $\langle\cdot,y\rangle=B(\cdot,z)$ -\end_inset - - es lineal. - Entonces, para -\begin_inset Formula $y\in S_{Y}$ -\end_inset - -, -\begin_inset Formula -\[ -c\Vert S(y)\Vert^{2}\leq B(S(y),S(y))=\langle S(y),y\rangle\in\mathbb{R}^{+}, -\] - -\end_inset - -pero por la desigualdad de Cauchy-Schwartz, -\begin_inset Formula $\langle S(y),y\rangle^{2}=|\langle S(y),y\rangle|^{2}\leq\Vert S(y)\Vert^{2}\Vert y\Vert^{2}$ -\end_inset - -, luego -\begin_inset Formula $c\Vert S(y)\Vert^{2}\leq\langle S(y),y\rangle\leq\Vert S(y)\Vert\Vert y\Vert=\Vert S(y)\Vert$ -\end_inset - - y -\begin_inset Formula $\Vert S(y)\Vert\leq\frac{1}{c}$ -\end_inset - -, con lo que -\begin_inset Formula $S$ -\end_inset - - es continua. - Entonces, si -\begin_inset Formula $\{y_{n}\}_{n}\subseteq Y$ -\end_inset - - y existe -\begin_inset Formula $\lim_{n}y_{n}\eqqcolon y\in H$ -\end_inset - -, por continuidad de -\begin_inset Formula $S$ -\end_inset - - y de -\begin_inset Formula $B$ -\end_inset - -, -\begin_inset Formula -\[ -\langle x,y\rangle=\lim_{n}\langle x,y_{n}\rangle=\lim_{n}B(x,S(y_{n}))=B(x,S(y)), -\] - -\end_inset - -luego -\begin_inset Formula $y\in Y$ -\end_inset - - e -\begin_inset Formula $Y$ -\end_inset - - es cerrado. - Entonces, si -\begin_inset Formula $z\in Y^{\bot}$ -\end_inset - -, como -\begin_inset Formula $B(\cdot,z):H\to\mathbb{K}$ -\end_inset - - es continua, por el teorema de Riesz-Fréchet existe -\begin_inset Formula $w\in H$ -\end_inset - - con -\begin_inset Formula $B(\cdot,z)=\langle\cdot,w\rangle$ -\end_inset - -, luego -\begin_inset Formula $w\in Y$ -\end_inset - -, pero entonces -\begin_inset Formula $B(z,z)=\langle z,w\rangle=0$ -\end_inset - - y, por ser -\begin_inset Formula $B$ -\end_inset - - fuertemente positiva, -\begin_inset Formula $z=0$ -\end_inset - -, luego -\begin_inset Formula $Y^{\bot}=0$ -\end_inset - - e -\begin_inset Formula $Y=H$ -\end_inset - -. - Para -\begin_inset Formula $z\in H$ -\end_inset - -, como -\begin_inset Formula $B(\cdot,z)$ -\end_inset - - es continua, existe -\begin_inset Formula $w\in H$ -\end_inset - - con -\begin_inset Formula $B(\cdot z)=\langle\cdot,w\rangle$ -\end_inset - - y por tanto -\begin_inset Formula $z=S(w)$ -\end_inset - -, luego -\begin_inset Formula $S$ -\end_inset - - es suprayectiva. - Si -\begin_inset Formula $S(y)=0$ -\end_inset - -, para -\begin_inset Formula $x\in H$ -\end_inset - -, -\begin_inset Formula $\langle x,y\rangle=B(x,S(y))=0$ -\end_inset - - y por tanto -\begin_inset Formula $y=0$ -\end_inset - -, luego -\begin_inset Formula $S$ -\end_inset - - es inyectiva. - Por tanto -\begin_inset Formula $S$ -\end_inset - - es biyectiva y -\begin_inset Formula $T\coloneqq S^{-1}$ -\end_inset - - cumple -\begin_inset Formula $\langle x,T(y)\rangle=B(x,y)$ -\end_inset - -. - Además, para -\begin_inset Formula $y\in S_{H}$ -\end_inset - -, -\begin_inset Formula $\Vert T(y)\Vert^{2}=\langle T(y),T(y)\rangle=B(T(y),y)\leq M\Vert T(y)\Vert\Vert y\Vert=M\Vert T(y)\Vert$ -\end_inset - -, siendo -\begin_inset Formula $M$ -\end_inset - - una cota de -\begin_inset Formula $B$ -\end_inset - -, de donde -\begin_inset Formula $\Vert T\Vert\leq M$ -\end_inset - - y, como -\begin_inset Formula $\Vert T^{-1}\Vert=\Vert S\Vert\leq\frac{1}{c}$ -\end_inset - -, -\begin_inset Formula $T$ -\end_inset - - es un isomorfismo topológico isométrico. -\end_layout - -\begin_layout Standard -En particular, dado un espacio vectorial -\begin_inset Formula $H$ -\end_inset - - con dos productos escalares -\begin_inset Formula $\langle\cdot,\cdot\rangle_{1}$ -\end_inset - - y -\begin_inset Formula $\langle\cdot,\cdot\rangle_{2}$ -\end_inset - - equivalentes que hacen a -\begin_inset Formula $H$ -\end_inset - - completo, existe un isomorfismo -\begin_inset Formula $T:H\to H$ -\end_inset - - de espacios de Hilbert con -\begin_inset Formula $\langle x,y\rangle_{1}=\langle x,T(y)\rangle_{2}$ -\end_inset - -. -\end_layout - -\begin_layout Standard -Dado un espacio medible -\begin_inset Formula $(\Omega,\Sigma)$ -\end_inset - - con medidas -\begin_inset Formula $\mu$ -\end_inset - - y -\begin_inset Formula $\nu$ -\end_inset - -, -\begin_inset Formula $\nu$ -\end_inset - - es -\series bold -absolutamente continua -\series default - respecto de -\begin_inset Formula $\mu$ -\end_inset - - si -\begin_inset Formula $\forall A\in\Sigma,(\mu(A)=0\implies\nu(A)=0)$ -\end_inset - -, y es -\series bold -finita -\series default - si -\begin_inset Formula $\nu(\Omega)<\infty$ -\end_inset - -. - -\series bold -Teorema de Radon-Nicodym: -\series default - Si -\begin_inset Formula $(\Omega,\Sigma)$ -\end_inset - - es un espacio medible con medidas finitas -\begin_inset Formula $\mu$ -\end_inset - - y -\begin_inset Formula $\nu$ -\end_inset - - siendo -\begin_inset Formula $\nu$ -\end_inset - - absolutamente continua respecto de -\begin_inset Formula $\mu$ -\end_inset - -, existe -\begin_inset Formula $g:\Omega\to[0,+\infty]$ -\end_inset - - -\begin_inset Formula $\mu$ -\end_inset - --integrable tal que -\begin_inset Formula -\[ -\forall A\in\Sigma,\nu(A)=\int_{A}g\dif\mu. -\] - -\end_inset - - -\series bold -Demostración: -\series default - -\begin_inset Formula $\sigma\coloneqq\mu+\nu$ -\end_inset - - es una medida finita en -\begin_inset Formula $X$ -\end_inset - - tal que -\begin_inset Formula $\forall A\in\Sigma,(\sigma(A)=0\iff\mu(A)=0)$ -\end_inset - -, y la función lineal entre espacios de Hilbert -\begin_inset Formula $T:L^{2}(\Omega,\Sigma,\sigma)\to\mathbb{R}$ -\end_inset - - dada por -\begin_inset Formula -\[ -Tu\coloneqq\int_{\Omega}u\dif\mu -\] - -\end_inset - -está bien definida y es continua porque, si -\begin_inset Formula $\Vert u\Vert_{L^{2}(\Omega,\Sigma,\sigma)}=1$ -\end_inset - -, -\begin_inset Formula -\begin{align*} -|Tu| & =\left|\int_{\Omega}u\dif\mu\right|\leq\int_{\Omega}|u|\dif\mu\leq\sqrt{\int_{\Omega}|u|^{2}\dif\mu}+\sqrt{\int_{\Omega}\dif\mu}\leq\\ - & \leq\sqrt{\int_{\Omega}|u|^{2}\dif\mu+\int_{\Omega}|u|^{2}\dif\nu}+\sqrt{\int_{\Omega}\dif\mu+\int_{\Omega}\dif\nu}=1+\sqrt{\sigma(X)}. -\end{align*} - -\end_inset - -Por el teorema de representación de Riesz, existe -\begin_inset Formula $f\in L^{2}(\Omega,\Sigma,\sigma)$ -\end_inset - - tal que, para -\begin_inset Formula $u\in L^{2}(\Omega,\Sigma,\sigma)$ -\end_inset - -, -\begin_inset Formula -\[ -Tu=\int_{\Omega}u\dif\mu=\int_{\Omega}uf\dif\sigma, -\] - -\end_inset - -pero esta igualdad se da para cuando -\begin_inset Formula $u=\chi_{A}$ -\end_inset - - para cualquier -\begin_inset Formula $A\in{\cal F}$ -\end_inset - - y por linealidad para cualquier función -\begin_inset Formula $\Sigma$ -\end_inset - --medible simple, y por el teorema de convergencia dominada también se da - para cualquier función -\begin_inset Formula $\Sigma$ -\end_inset - --medible no negativa en casi todo punto. - Además, para -\begin_inset Formula $A\in\Sigma$ -\end_inset - -, -\begin_inset Formula -\[ -\mu(A)=\int_{\Omega}\chi_{A}f\dif\sigma=\int_{A}f\dif\sigma, -\] - -\end_inset - -de modo que -\begin_inset Formula $f$ -\end_inset - - es -\begin_inset Formula $\Sigma$ -\end_inset - --medible y, haciendo -\begin_inset Formula $A=\{x\mid f(x)\leq0\}$ -\end_inset - - o -\begin_inset Formula $A=\{x\mid f(x)>1\}$ -\end_inset - -, vemos que -\begin_inset Formula $f(\omega)\in(0,1]$ -\end_inset - - para casi todo -\begin_inset Formula $\omega\in\Omega$ -\end_inset - -, de modo que -\begin_inset Formula $\frac{1}{g}$ -\end_inset - - es -\begin_inset Formula $\Sigma$ -\end_inset - --medible no negativa en casi todo punto y, en casi todo punto, -\begin_inset Formula $\frac{1}{f}f=1$ -\end_inset - -, con lo que para -\begin_inset Formula $A\in\Sigma$ -\end_inset - -, -\begin_inset Formula -\[ -\int_{A}\frac{1}{f}\dif\mu=\int_{A}\dif\sigma\implies\nu(A)=\sigma(A)-\mu(A)=\int_{A}\left(\frac{1}{f}-1\right)\dif\mu\eqqcolon\int_{A}g\dif\mu. -\] - -\end_inset - - -\end_layout - -\begin_layout Section -Problemas variacionales cuadráticos -\end_layout - -\begin_layout Standard - -\series bold -Teorema principal de los problemas variacionales cuadráticos: -\series default - Sean -\begin_inset Formula $H$ -\end_inset - - un -\begin_inset Formula $\mathbb{R}$ -\end_inset - --espacio de Hilbert, -\begin_inset Formula $B$ -\end_inset - - una -\begin_inset Formula $H$ -\end_inset - --forma bilineal simétrica, acotada y fuertemente positiva, -\begin_inset Formula $b$ -\end_inset - - una -\begin_inset Formula $H$ -\end_inset - --forma lineal continua y -\begin_inset Formula $F:H\to\mathbb{R}$ -\end_inset - - dada por -\begin_inset Formula -\[ -F(x)\coloneqq\frac{1}{2}B(x,x)-b(x), -\] - -\end_inset - -entonces: -\end_layout - -\begin_layout Enumerate -Para -\begin_inset Formula $w\in H$ -\end_inset - -, -\begin_inset Formula $F$ -\end_inset - - alcanza su mínimo en -\begin_inset Formula $w$ -\end_inset - - si y sólo si -\begin_inset Formula $\forall y\in H,B(w,y)=b(y)$ -\end_inset - -. -\end_layout - -\begin_deeper -\begin_layout Enumerate -\begin_inset Argument item:1 -status open - -\begin_layout Plain Layout -\begin_inset Formula $\implies]$ -\end_inset - - -\end_layout - -\end_inset - -Fijado -\begin_inset Formula $y\in H$ -\end_inset - -, para -\begin_inset Formula $t\in\mathbb{R}$ -\end_inset - - -\begin_inset Formula -\begin{align*} -F(w+ty) & =\frac{1}{2}B(w+ty,w+ty)-b(w+ty)=\\ - & =\frac{1}{2}(B(w,w)+2tB(w,y)+t^{2}B(y,y))-b(w)-tb(y)=\\ - & =F(w)+t(B(w,y)-b(y))+\frac{1}{2}t^{2}B(y,y), -\end{align*} - -\end_inset - -pero por hipótesis -\begin_inset Formula $F(w)\leq F(w+ty)$ -\end_inset - - para todo -\begin_inset Formula $t\in\mathbb{R}$ -\end_inset - -, luego -\begin_inset Formula $\varphi:\mathbb{R}\to\mathbb{R}$ -\end_inset - - dada por -\begin_inset Formula $\varphi(t)\coloneqq F(w+ty)$ -\end_inset - - tiene un mínimo en -\begin_inset Formula $t=0$ -\end_inset - - y -\begin_inset Formula $0=\varphi'(0)=B(w,y)-b(y)$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -\begin_inset Argument item:1 -status open - -\begin_layout Plain Layout -\begin_inset Formula $\impliedby]$ -\end_inset - - -\end_layout - -\end_inset - -Para -\begin_inset Formula $y\in H$ -\end_inset - - y -\begin_inset Formula $t\in\mathbb{R}$ -\end_inset - -, -\begin_inset Formula -\[ -F(w+ty)=F(w)+\cancel{t(B(w,y)-b(y))}^{=0}+\frac{1}{2}t^{2}B(y,y)\geq F(w). -\] - -\end_inset - - -\end_layout - -\end_deeper -\begin_layout Enumerate -Existe un único -\begin_inset Formula $w\in H$ -\end_inset - - en el que -\begin_inset Formula $F$ -\end_inset - - alcanza su mínimo. -\end_layout - -\begin_deeper -\begin_layout Standard -Como -\begin_inset Formula $B$ -\end_inset - - es bilineal, simétrica y fuertemente positiva, es un producto escalar sobre - -\begin_inset Formula $H$ -\end_inset - -, y como existen -\begin_inset Formula $c,M>0$ -\end_inset - - con -\begin_inset Formula $c\Vert x\Vert^{2}\leq B(x,x)\leq M\Vert x\Vert^{2}$ -\end_inset - -, el producto escalar -\begin_inset Formula $B$ -\end_inset - - es equivalente al de -\begin_inset Formula $H$ -\end_inset - -, luego -\begin_inset Formula $b$ -\end_inset - - es continua con el producto escalar -\begin_inset Formula $B$ -\end_inset - - y por el teorema de Riesz-Fréchet existe un único -\begin_inset Formula $w\in H$ -\end_inset - - con -\begin_inset Formula $b=B(\cdot,w)=B(w,\cdot)$ -\end_inset - -, que es la condición del primer apartado. -\end_layout - -\end_deeper -\begin_layout Section -Convolución y aproximación de funciones -\end_layout - -\begin_layout Standard -Dado un abierto -\begin_inset Formula $\Omega\subseteq\mathbb{R}^{n}$ -\end_inset - -, -\begin_inset Formula $f:\mathbb{R}^{n}\to\mathbb{R}$ -\end_inset - - es -\series bold -localmente integrable -\series default - si -\begin_inset Formula $|f|$ -\end_inset - - es integrable en todo compacto -\begin_inset Formula $K\subseteq\Omega$ -\end_inset - -. - Dadas dos funciones localmente integrables -\begin_inset Formula $f,g:\mathbb{R}^{n}\to\mathbb{R}$ -\end_inset - -, definimos su -\series bold -producto de convolución -\series default - como -\begin_inset Formula $(f*g):D\to\mathbb{R}$ -\end_inset - - dada por -\begin_inset Formula -\[ -(f*g)(a)\coloneqq\int_{\mathbb{R}^{n}}f(x)g(a-x)\dif x, -\] - -\end_inset - -donde -\begin_inset Formula $D\coloneqq\{a\in\mathbb{R}^{n}\mid x\mapsto f(x)g(a-x)\text{ integrable}\}$ -\end_inset - -. - Si -\begin_inset Formula $f,g\in L^{2}(\mathbb{R}^{n})$ -\end_inset - -, -\begin_inset Formula $f*g$ -\end_inset - - está definida en todo -\begin_inset Formula $\mathbb{R}^{n}$ -\end_inset - - y es continua y uniformemente acotada con -\begin_inset Formula -\[ -\Vert f*g\Vert_{\infty}\leq\Vert f\Vert_{2}\Vert g\Vert_{2}. -\] - -\end_inset - - -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - -El producto de convolución es conmutativo, y si -\begin_inset Formula $f*g$ -\end_inset - - está definida en casi todo punto, -\begin_inset Formula $\text{sop}(f*g)\subseteq\overline{\text{sop}(f)+\text{sop}(g)}$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Una -\series bold -sucesión de Dirac -\series default - es una sucesión -\begin_inset Formula $(K_{m}:\mathbb{R}^{n}\to\mathbb{R}^{\geq0})_{m}$ -\end_inset - - de funciones continuas con -\begin_inset Formula -\[ -\int_{\mathbb{R}^{n}}K_{n}=1 -\] - -\end_inset - -y tal que -\begin_inset Formula -\[ -\forall\varepsilon,\delta>0,\exists n_{0}:\forall n\geq n_{0},\int_{\mathbb{R}^{n}\setminus B(0,\delta)}K_{n}(x)\dif x<\varepsilon. -\] - -\end_inset - -Por ejemplo, si -\begin_inset Formula $K:\mathbb{R}^{n}\to\mathbb{R}$ -\end_inset - - es continua, no negativa, con soporte compacto e integral 1, entonces -\begin_inset Formula $(x\mapsto m^{n}K(mx))_{m\geq1}$ -\end_inset - - es una sucesión de Dirac. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Las sucesiones de Dirac aproximan la -\series bold -delta de Dirac -\series default -, una -\begin_inset Quotes cld -\end_inset - -función extendida -\begin_inset Quotes crd -\end_inset - - con integral 1 que vale 0 en todo punto salvo en el origen en que el valor - es infinito. -\end_layout - -\begin_layout Standard -Como -\series bold -teorema -\series default -, si -\begin_inset Formula $f:\mathbb{R}^{n}\to\mathbb{R}$ -\end_inset - - es continua y acotada, la sucesión -\begin_inset Formula $(f*K_{m})_{m}$ -\end_inset - - tiende uniformemente a -\begin_inset Formula $f$ -\end_inset - - sobre subconjuntos compactos de -\begin_inset Formula $\mathbb{R}^{n}$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Si -\begin_inset Formula $f:\mathbb{R}^{n}\to\mathbb{R}$ -\end_inset - - es localmente integrable y -\begin_inset Formula $g\in{\cal D}^{k}(\mathbb{R}^{n})$ -\end_inset - -, -\begin_inset Formula $f*g\in{\cal C}^{k}(\mathbb{R}^{n})$ -\end_inset - - y para -\begin_inset Formula $\alpha\in\mathbb{N}^{n}$ -\end_inset - - con -\begin_inset Formula $\sum_{i}\alpha_{i}\leq k$ -\end_inset - - es -\begin_inset Formula -\[ -\frac{\partial^{|\alpha|}(f*g)}{\partial x_{1}^{\alpha_{1}}\cdots\partial x_{n}^{\alpha_{n}}}=f*\left(\frac{\partial^{|\alpha|}g}{\partial x_{1}^{\alpha_{1}}\cdots\partial x_{n}^{\alpha_{n}}}\right), -\] - -\end_inset - -con lo que -\begin_inset Formula $f*g$ -\end_inset - - es una regularización de -\begin_inset Formula $f$ -\end_inset - - a través de una función suave -\begin_inset Formula $g$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Como -\series bold -teorema -\series default -, dado un abierto -\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ -\end_inset - -, -\begin_inset Formula ${\cal D}(G)$ -\end_inset - - es denso en -\begin_inset Formula $(C_{c}(G),\Vert\cdot\Vert_{\infty})$ -\end_inset - - y en -\begin_inset Formula $L^{p}(G)$ -\end_inset - - para todo -\begin_inset Formula $p\in[1,\infty)$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Para -\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ -\end_inset - - abierto y -\begin_inset Formula $f\in L^{2}(G)$ -\end_inset - -, si para todo -\begin_inset Formula $\psi\in{\cal D}(G)$ -\end_inset - - es -\begin_inset Formula -\[ -\int_{G}f\psi=0 -\] - -\end_inset - -entonces -\begin_inset Formula $f=0$ -\end_inset - - en casi todo punto, y en particular, si -\begin_inset Formula $f$ -\end_inset - - es continua, -\begin_inset Formula $f=0$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Section -Principio de Dirichlet -\end_layout - -\begin_layout Standard -Dado un abierto -\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ -\end_inset - -, -\begin_inset Formula $u\in{\cal D}^{2}(G)$ -\end_inset - - es -\series bold -armónica -\series default - en -\begin_inset Formula $G$ -\end_inset - - si -\begin_inset Formula $\triangle u\coloneqq\nabla^{2}u=0$ -\end_inset - - en todo punto de -\begin_inset Formula $G$ -\end_inset - -. - Dada -\begin_inset Formula $g\in{\cal C}(S_{\mathbb{C}})$ -\end_inset - -, el -\series bold -problema de Dirichlet -\series default - consiste en encontrar -\begin_inset Formula $u\in{\cal D}^{2}(\overline{B_{X}})$ -\end_inset - - armónica con -\begin_inset Formula $u|_{S_{\mathbb{C}}}=g$ -\end_inset - -. - Para un abierto -\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ -\end_inset - -, llamamos -\begin_inset Formula ${\cal C}^{m}(\overline{G})$ -\end_inset - - al conjunto de funciones -\begin_inset Formula $u:\overline{G}\to\mathbb{R}$ -\end_inset - - con -\begin_inset Formula $u|_{G}\in{\cal C}^{m}(G)$ -\end_inset - - para las que las derivadas parciales de orden -\begin_inset Formula $m$ -\end_inset - - de -\begin_inset Formula $u$ -\end_inset - - en -\begin_inset Formula $G$ -\end_inset - - admiten prolongación continua a -\begin_inset Formula $\overline{G}$ -\end_inset - -. - Escribimos -\begin_inset Formula $\partial_{j}u\coloneqq\frac{\partial u}{\partial j}$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -begin{samepage} -\end_layout - -\end_inset - -Dados un abierto -\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ -\end_inset - - acotado y no vacío, -\begin_inset Formula $f:G\to\mathbb{R}$ -\end_inset - - y -\begin_inset Formula $g:\partial G\to\mathbb{R}$ -\end_inset - -, el -\series bold -problema de valores frontera para la ecuación de Poisson -\series default - consiste en encontrar -\begin_inset Formula $u:\overline{G}\to\mathbb{R}$ -\end_inset - - tal que -\begin_inset Formula $-\triangle u|_{G}=f$ -\end_inset - - y -\begin_inset Formula $u|_{\partial G}=g$ -\end_inset - -, y el -\series bold -problema generalizado de valores frontera -\series default - consiste en encontrar -\begin_inset Formula $u:\overline{G}\to\mathbb{R}$ -\end_inset - - con -\begin_inset Formula $u|_{\partial G}=g$ -\end_inset - - y -\begin_inset Formula -\[ -\forall v\in{\cal D}(G),\int_{G}\sum_{j=1}^{n}\frac{\partial u}{\partial x_{j}}\frac{\partial v}{\partial x_{j}}\dif x\int_{G}fv. -\] - -\end_inset - - -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -end{samepage} -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Si -\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ -\end_inset - - es un abierto acotado no vacío, -\begin_inset Formula $f\in{\cal C}(\overline{G})$ -\end_inset - - y -\begin_inset Formula $g\in{\cal C}(\partial G)$ -\end_inset - -: -\end_layout - -\begin_layout Enumerate -Una -\begin_inset Formula $w\in{\cal C}^{2}(\overline{G})$ -\end_inset - - es solución del problema de valores frontera para la ecuación de Poisson - y sólo si lo es del problema generalizado de valores frontera. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Enumerate -Si -\begin_inset Formula $w\in{\cal C}^{2}(\overline{G})$ -\end_inset - - es solución del problema variacional consistente en encontrar el mínimo - de -\begin_inset Formula $F:\{u\in{\cal C}^{2}(\overline{G})\mid u|_{\partial G}=g\}\to\mathbb{R}$ -\end_inset - - dada por -\begin_inset Formula -\[ -F(u)\coloneqq\frac{1}{2}\int_{G}\sum_{j=1}^{n}(\partial_{j}u(x))^{2}\dif x-\int_{G}fu, -\] - -\end_inset - -entonces es solución de los dos problemas anteriores. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -El -\series bold -teorema de integración por partes en varias variables -\series default - afirma que, si -\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ -\end_inset - - es un abierto, -\begin_inset Formula $u\in{\cal C}^{1}(G)$ -\end_inset - - y -\begin_inset Formula $v\in{\cal D}(G)$ -\end_inset - -, -\begin_inset Formula -\[ -\int_{G}u\partial_{j}v=-\int_{G}(\partial_{j}u)v. -\] - -\end_inset - - -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Si -\begin_inset Formula $G$ -\end_inset - - es un abierto de -\begin_inset Formula $\mathbb{R}^{n}$ -\end_inset - - y -\begin_inset Formula $u,w\in L^{2}(G)$ -\end_inset - -, -\begin_inset Formula $w$ -\end_inset - - es la -\series bold -derivada generalizada -\begin_inset Formula $j$ -\end_inset - --ésima -\series default - de -\begin_inset Formula $u$ -\end_inset - -, -\begin_inset Formula $w=\partial_{j}u$ -\end_inset - -, si -\begin_inset Formula -\[ -\forall v\in{\cal D}(G),\int_{G}u\partial_{j}v=-\int_{G}wv, -\] - -\end_inset - -y para -\begin_inset Formula $\alpha\in\mathbb{N}^{n}$ -\end_inset - - llamamos -\begin_inset Formula $D^{\alpha}u\coloneqq\partial_{1}^{\alpha_{1}}\cdots\partial_{n}^{\alpha_{n}}u$ -\end_inset - -. - -\end_layout - -\begin_layout Standard -Para -\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ -\end_inset - - abierto, -\begin_inset Formula $k\in\mathbb{N}$ -\end_inset - - y -\begin_inset Formula $p\in[1,\infty)$ -\end_inset - -, llamamos -\series bold -espacio de Sobolev -\series default - a -\begin_inset Formula -\[ -W^{k,p}(G)\coloneqq\{u\in L^{p}(G)\mid\forall\alpha\in\mathbb{N}^{n},(|\alpha|\leq k\implies\exists D^{\alpha}f\in L^{p}(G))\}. -\] - -\end_inset - -Escribimos -\begin_inset Formula $W^{k}(G)\coloneqq W^{k,2}(G)$ -\end_inset - -, y generalmente consideramos el espacio de Sobolev -\begin_inset Formula $W^{1}(G)$ -\end_inset - -. -\end_layout - -\begin_layout Standard -Si -\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ -\end_inset - - es abierto, definimos la relación de equivalencia en -\begin_inset Formula $G\to\mathbb{R}$ -\end_inset - - como -\begin_inset Formula $f\sim g\iff\{x\in G\mid f(x)\neq g(x)\}\text{ es de medida nula}$ -\end_inset - -, y -\begin_inset Formula $\langle\cdot,\cdot\rangle_{1,2}:W^{1}(G)/\sim\to\mathbb{R}$ -\end_inset - - dada por -\begin_inset Formula -\[ -\langle\overline{u},\overline{v}\rangle_{1,2}\coloneqq\int_{G}\left(uv+\sum_{j}(\partial_{j}u)(\partial_{j}v)\right) -\] - -\end_inset - -es un producto escalar en -\begin_inset Formula $W^{1}(G)/\sim$ -\end_inset - - que lo convierte en un espacio de Hilbert. - Identificamos -\begin_inset Formula $W^{1}(G)$ -\end_inset - - con -\begin_inset Formula $W^{1}(G)/\sim$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Llamamos -\begin_inset Formula $H_{0}^{1}(G)$ -\end_inset - - al espacio de Hilbert obtenido como la clausura de -\begin_inset Formula ${\cal D}(G)$ -\end_inset - - en -\begin_inset Formula $W^{1}(G)$ -\end_inset - -, que en general es un subespacio propio de -\begin_inset Formula $W^{1}(G)$ -\end_inset - - pero es igual a -\begin_inset Formula $W^{1}(G)$ -\end_inset - - si -\begin_inset Formula $G=\mathbb{R}^{n}$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Si -\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ -\end_inset - - es un abierto acotado no vacío y -\begin_inset Formula $u\in W^{1}(G)$ -\end_inset - -, -\series bold - -\begin_inset Formula $u$ -\end_inset - - se anula en la frontera de -\begin_inset Formula $G$ -\end_inset - - en sentido generalizado -\series default -, -\begin_inset Formula $u=0$ -\end_inset - - en -\begin_inset Formula $\partial G$ -\end_inset - -, si -\begin_inset Formula $u\in H_{0}^{1}(G)$ -\end_inset - -, y para -\begin_inset Formula $f,g\in W^{1}(G)$ -\end_inset - -, -\series bold - -\begin_inset Formula $f=g$ -\end_inset - - en -\begin_inset Formula $\partial G$ -\end_inset - - en sentido generalizado -\series default - si -\begin_inset Formula $f-g\in H_{0}^{1}(G)$ -\end_inset - -. -\end_layout - -\begin_layout Standard - -\series bold -Desigualdad de Poincaré-Friedrichs: -\series default - Si -\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ -\end_inset - - es un abierto acotado no vacío, existe -\begin_inset Formula $C>0$ -\end_inset - - tal que para -\begin_inset Formula $u\in H_{0}^{1}(G)$ -\end_inset - -, -\begin_inset Formula -\[ -C\int_{G}u^{2}\leq\int_{G}\sum_{j=1}^{n}(\partial_{j}u)^{2}. -\] - -\end_inset - - -\series bold -Demostración: -\series default - Sean -\begin_inset Formula $R\coloneqq\prod_{i}[a_{i},b_{i}]$ -\end_inset - - con -\begin_inset Formula $G\subseteq R$ -\end_inset - - y -\begin_inset Formula $u\in{\cal D}(G)$ -\end_inset - -, y vemos -\begin_inset Formula $u$ -\end_inset - - como una función en -\begin_inset Formula $R$ -\end_inset - - que se anula fuera de -\begin_inset Formula $G$ -\end_inset - - y con valor indefinido en -\begin_inset Formula $\partial G$ -\end_inset - -, para -\begin_inset Formula $x\in R$ -\end_inset - -, por la desigualdad de Cauchy-Schwartz, -\begin_inset Formula -\begin{align*} -(u(x))^{2} & =\left(\int_{a_{n}}^{x_{n}}\partial_{n}u(x_{1},\dots,x_{n-1},t)\dif t\right)^{2}\leq\left(\int_{a_{n}}^{x_{n}}\dif t\right)\left(\int_{a_{n}}^{x_{n}}\partial_{n}u(x_{1},\dots,x_{n-1},t)^{2}\dif t\right)\leq\\ - & \leq(b_{n}-a_{n})\int_{a_{n}}^{b_{n}}\partial_{n}u(x_{1},\dots,x_{n-1},t)^{2}\dif t, -\end{align*} - -\end_inset - -luego -\begin_inset Formula -\begin{align*} -\int_{G}u^{2} & =\int_{R}u^{2}\leq\int_{a_{1}}^{b_{1}}\cdots\int_{a_{n}}^{b_{n}}(b_{n}-a_{n})\int_{a_{n}}^{b_{n}}\partial_{n}u(x_{1},\dots,x_{n-1},t)^{2}\dif t\dif x_{n}\cdots\dif x_{1}=\\ - & =(b_{n}-a_{n})^{2}\int_{a_{1}}^{b_{1}}\cdots\int_{a_{n}}^{b_{n}}\partial_{n}u(x_{1},\dots,x_{n-1},t)^{2}\dif t\dif x_{n-1}\cdots\dif x_{1}=\\ - & =(b_{n}-a_{n})^{2}\int_{R}(\partial_{n}u)^{2}\dif x\leq(b_{n}-a_{n})^{2}\int_{R}\sum_{j}(\partial_{j}u)^{2}\dif x=(b_{n}-a_{n})^{2}\int_{G}\sum_{j}(\partial_{j}u)^{2}\dif x. -\end{align*} - -\end_inset - -Para -\begin_inset Formula $u\in H_{0}^{1}(G)$ -\end_inset - -,existe una sucesión -\begin_inset Formula $\{u_{m}\}_{m}\subseteq{\cal D}(G)$ -\end_inset - - con -\begin_inset Formula $\lim_{m}\Vert u-u_{m}\Vert_{1,2}=0$ -\end_inset - - y por tanto -\begin_inset Formula $\lim_{m}\Vert u-u_{m}\Vert_{2}=\lim_{m}\Vert\partial_{j}u-\partial_{j}u_{m}\Vert_{2}=0$ -\end_inset - -, y tomando límites y usando que la norma -\begin_inset Formula $\Vert\cdot\Vert_{2}\leq\Vert\cdot\Vert_{1,2}$ -\end_inset - - y por tanto es continua en -\begin_inset Formula $W^{1}(G)$ -\end_inset - -, -\begin_inset Formula -\[ -C\int_{G}u^{2}-\int_{G}\sum_{j}(\partial_{j}u)^{2}=C\Vert u\Vert_{2}^{2}-\sum_{j}\Vert\partial_{j}u\Vert_{2}^{2}=\lim_{m}\left(C\Vert u_{m}\Vert_{2}^{2}-\sum_{j}\Vert\partial_{j}u_{m}\Vert_{2}^{2}\right)\leq0. -\] - -\end_inset - - -\end_layout - -\begin_layout Standard - -\series bold -Principio de Dirichlet: -\series default - Sean -\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ -\end_inset - - un abierto acotado no vacío, -\begin_inset Formula $f\in L^{2}(G)$ -\end_inset - - y -\begin_inset Formula $g\in W^{1}(G)$ -\end_inset - -, -\begin_inset Formula $F:\{u\in W^{1}(G)\mid u-g\in H_{0}^{1}(G)\}\to\mathbb{R}$ -\end_inset - - dada por -\begin_inset Formula -\[ -F(u)\coloneqq\frac{1}{2}\int_{G}\sum_{j=1}^{n}(\partial_{j}u)^{2}-\int_{G}fu -\] - -\end_inset - -alcanza su mínimo en un único punto, que es el único -\begin_inset Formula $u\in\text{Dom}f$ -\end_inset - - tal que -\begin_inset Formula -\[ -\forall v\in H_{0}^{1}(G),\int_{G}\sum_{j=1}^{n}(\partial_{j}u)(\partial_{j}v)=\int_{G}fv -\] - -\end_inset - -y la única solución en -\begin_inset Formula $\text{Dom}f$ -\end_inset - - del problema de valores frontera para la ecuación de Poisson -\begin_inset Formula $-\nabla^{2}u=f$ -\end_inset - -. -\end_layout - -\begin_layout Standard - -\series bold -Demostración: -\series default - Para -\begin_inset Formula $u,v\in W^{1}(G)$ -\end_inset - - definimos -\begin_inset Formula -\begin{align*} -B(u,v) & \coloneqq\int_{G}\sum_{j}(\partial_{j}u)(\partial_{j}v), & b_{0}(v) & \coloneqq\int_{G}fv, & b(v) & \coloneqq b_{0}(v)-B(v,g). -\end{align*} - -\end_inset - - -\begin_inset Formula $B$ -\end_inset - - es bilineal y simétrica, y es acotada porque -\begin_inset Formula -\[ -|B(u,v)|=\left|\sum_{j}\int_{G}(\partial_{j}u)(\partial_{j}v)\right|\leq\sum_{j}\left|\int_{G}(\partial_{j}u)(\partial_{j}v)\right|\leq\sum_{j}\Vert\partial_{j}u\Vert_{2}\Vert\partial_{j}v\Vert_{2}\leq n\Vert u\Vert_{1,2}\Vert v\Vert_{1,2}. -\] - -\end_inset - -Por la desigualdad de Poincaré-Friedrichs, existe -\begin_inset Formula $C>0$ -\end_inset - - tal que, para todo -\begin_inset Formula $v\in H$ -\end_inset - -, -\begin_inset Formula -\[ -C\int_{G}v^{2}\leq\int_{G}\sum_{j}(\partial_{j}v)^{2}, -\] - -\end_inset - -luego -\begin_inset Formula -\[ -C\Vert v\Vert_{1,2}^{2}=C\left(\int_{G}v^{2}+\sum_{j}(\partial_{j}v)^{2}\right)\leq(1+C)\int_{G}\sum_{j}(\partial_{j}v)^{2}=(1+C)B(v,v) -\] - -\end_inset - -y -\begin_inset Formula $B$ -\end_inset - - es fuertemente positiva. - Además, -\begin_inset Formula $b_{0}$ -\end_inset - - es lineal y es acotada por la desigualdad de Cauchy-Schwartz, y como además - -\begin_inset Formula $B$ -\end_inset - - es bilineal y acotada, -\begin_inset Formula $b_{0}$ -\end_inset - - es lineal acotada y se dan las condiciones del teorema principal de los - problemas variacionales cuadráticos. - Ahora bien, si -\begin_inset Formula $w\coloneqq u-g\in H_{0}^{1}(G)$ -\end_inset - -, -\begin_inset Formula -\begin{multline*} -\frac{1}{2}B(w,w)-b(w)=\frac{1}{2}\int_{G}\sum_{j}(\partial_{j}(u-g))^{2}-\int_{G}f(u-g)+\int_{G}\sum_{j}(\partial_{j}(u-g))(\partial_{j}(g))=\\ -=\frac{1}{2}\int_{G}\sum_{j}(\partial_{j}(u-g))(\partial_{j}(u+g))-\int_{G}f(u-g)=\\ -=\frac{1}{2}\int_{G}\sum_{j}(\partial_{j}u)^{2}-\int_{G}fu+\frac{1}{2}\int_{G}\sum_{j}(\partial_{j}g)^{2}+\int_{G}fg, -\end{multline*} - -\end_inset - -luego minimizar -\begin_inset Formula $F$ -\end_inset - - equivale a minimizar -\begin_inset Formula $\frac{1}{2}B(w,w)-b(w)$ -\end_inset - -, y además -\begin_inset Formula -\begin{multline*} -B(w,v)=b(v)\iff B(u,v)-B(g,v)=b_{0}(v)-B(v,g)\iff B(u,v)=b_{0}(v)\iff\\ -\iff\int_{G}\sum_{j}(\partial_{j}u)(\partial_{j}v)=\int_{G}fv. -\end{multline*} - -\end_inset - -Para la última parte, si -\begin_inset Formula $u_{0}$ -\end_inset - - cumple esta última fórmula para todo -\begin_inset Formula $v\in H_{0}^{1}(G)$ -\end_inset - -, por integración por partes, -\begin_inset Formula -\[ -0=\int_{G}\sum_{j}(\partial_{j}u_{0})(\partial_{j}v)-\int_{G}fv=-\int_{G}\sum_{j}(\partial_{j}\partial_{j}u_{0})v-\int_{G}fv=-\int_{G}(\nabla^{2}u_{0}+f)v, -\] - -\end_inset - -con lo que -\begin_inset Formula $(\nabla^{2}u_{0}+f)\bot H_{0}^{1}(G)$ -\end_inset - - y, como -\begin_inset Formula ${\cal D}(G)\subseteq H_{0}^{1}(G)$ -\end_inset - - es denso en -\begin_inset Formula $L^{2}(G)$ -\end_inset - -, -\begin_inset Formula $\nabla^{2}u_{0}+f=0$ -\end_inset - -. -\end_layout - -\begin_layout Section -Soluciones débiles -\end_layout - -\begin_layout Standard -Dados -\begin_inset Formula $k,n\in\mathbb{N}$ -\end_inset - - y -\begin_inset Formula $a_{\alpha}\in\mathbb{K}^{n}$ -\end_inset - - para cada -\begin_inset Formula $\alpha\in\mathbb{N}^{n}$ -\end_inset - - con -\begin_inset Formula $|\alpha|<k$ -\end_inset - -, un -\series bold -operador diferencial lineal de coeficientes constantes -\series default - es uno de la forma -\begin_inset Formula -\[ -L\coloneqq\sum_{|\alpha|\leq k}a_{\alpha}\left(\frac{\partial}{\partial x}\right)^{\alpha}\coloneqq\sum_{|\alpha|\leq k}a_{\alpha}\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}}\cdots\partial x_{n}^{\alpha_{n}}}, -\] - -\end_inset - -y su -\series bold -operador adjunto -\series default - es -\begin_inset Formula -\[ -L^{*}\coloneqq\sum_{|\alpha|\leq k}(-1)^{|\alpha|}\overline{a_{\alpha}}\left(\frac{\partial}{\partial x}\right)^{\alpha}. -\] - -\end_inset - -Si -\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ -\end_inset - - es abierto, -\begin_inset Formula $\varphi,\psi\in L^{2}(G)$ -\end_inset - - son de clase -\begin_inset Formula ${\cal C}^{k}$ -\end_inset - - y una de las dos tiene soporte compacto, entonces -\begin_inset Formula $\langle L\psi,\varphi\rangle=\langle\psi,L^{*}\varphi\rangle$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Así, si -\begin_inset Formula $G$ -\end_inset - - es un abierto en -\begin_inset Formula $\mathbb{R}^{n}$ -\end_inset - -, -\begin_inset Formula $f,u\in L^{2}(G)$ -\end_inset - - son de clase -\begin_inset Formula ${\cal C}^{k}$ -\end_inset - - y -\begin_inset Formula $Lu=f$ -\end_inset - -, entonces -\begin_inset Formula $\langle f,\psi\rangle=\langle u,L^{*}\psi\rangle$ -\end_inset - - para todo -\begin_inset Formula $\psi\in{\cal D}(G)$ -\end_inset - -. - Para -\begin_inset Formula $f\in L^{2}(G)$ -\end_inset - -, -\begin_inset Formula $u\in L^{2}(G)$ -\end_inset - - es -\series bold -solución débil -\series default - de la ecuación en derivadas parciales -\begin_inset Formula $Lu=f$ -\end_inset - - si para todo -\begin_inset Formula $\psi\in{\cal D}(G)$ -\end_inset - - es -\begin_inset Formula $\langle f,\psi\rangle=\langle u,L^{*}\psi\rangle$ -\end_inset - -. -\end_layout - -\begin_layout Standard -Si -\begin_inset Formula $L=\od{}{x}$ -\end_inset - - y -\begin_inset Formula $u,f\in L^{2}((0,1))$ -\end_inset - -, -\begin_inset Formula $Lu=f$ -\end_inset - - en sentido débil si y sólo si existe -\begin_inset Formula $F:(0,1)\to\mathbb{R}$ -\end_inset - - absolutamente continua con -\begin_inset Formula $F=u$ -\end_inset - - y -\begin_inset Formula $F'=f$ -\end_inset - - para casi todo -\begin_inset Formula $x\in(0,1)$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -La ecuación de ondas en una dimensión, -\begin_inset Formula -\[ -\left\{ \begin{array}{rlrl} -\frac{\partial^{2}u}{\partial x^{2}}-\frac{\partial^{2}u}{\partial t^{2}} & =0, & t & \in[0,+\infty),\\ -u(x,0) & \equiv f(x), & x & \in[0,\pi],\\ -\frac{\partial u}{\partial t}(x,0) & \equiv0, -\end{array}\right. -\] - -\end_inset - -siendo -\begin_inset Formula $f:[0,\pi]\to\mathbb{R}$ -\end_inset - - una función lineal a trozos, admite soluciones débiles que no son soluciones - ordinarias. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard - -\series bold -Teorema de Malgrange-Ehrenpreis: -\series default - Sean -\begin_inset Formula $G$ -\end_inset - - un abierto acotado de -\begin_inset Formula $\mathbb{R}^{n}$ -\end_inset - - y -\begin_inset Formula $L$ -\end_inset - - un operador en derivadas parciales lineal con coeficientes constantes, - existe un operador lineal continuo -\begin_inset Formula $K:L^{2}(G)\to L^{2}(G)$ -\end_inset - - tal que para todo -\begin_inset Formula $f\in L^{2}(G)$ -\end_inset - -, -\begin_inset Formula $u\coloneqq K(f)$ -\end_inset - - es solución débil de -\begin_inset Formula $Lu=f$ -\end_inset - -. -\end_layout - -\begin_layout Standard - -\series bold -Demostración: -\series default - Definimos -\begin_inset Formula $\langle\varphi,\psi\rangle_{L}\coloneqq\langle L^{*}\varphi,L^{*}\psi\rangle_{2}$ -\end_inset - -, y para ver que es un producto escalar sobre -\begin_inset Formula ${\cal D}(G)$ -\end_inset - - vemos que existe -\begin_inset Formula $C>0$ -\end_inset - - tal que, para -\begin_inset Formula $\psi\in{\cal D}(G)$ -\end_inset - -, -\begin_inset Formula $\Vert\psi\Vert_{2}\leq C\Vert L^{*}\psi\Vert_{2}$ -\end_inset - -. - Si -\begin_inset Formula $L^{*}=\frac{\partial}{\partial x_{1}}$ -\end_inset - -, llamando -\begin_inset Formula $\psi(x)\coloneqq0$ -\end_inset - - para -\begin_inset Formula $x\notin G$ -\end_inset - -, para -\begin_inset Formula $x\in G$ -\end_inset - -, como -\begin_inset Formula $\text{sop}\psi\subseteq G$ -\end_inset - - es compacto, sea -\begin_inset Formula $m\coloneqq\inf_{x\in G}x_{1}$ -\end_inset - -, -\begin_inset Formula -\begin{align*} -\psi(x)^{2} & =\left(\int_{m}^{x_{1}}\frac{\partial\psi}{\partial x_{1}}(t,x_{2},\dots,x_{n})\dif t\right)^{2}\leq\left(\int_{m}^{x_{1}}\left|\frac{\partial\psi}{\partial x_{1}}(t,x_{2},\dots,x_{n})\right|\cdot1\dif t\right)\leq\\ - & \leq\int_{m}^{x_{1}}\dif t\int_{m}^{x_{1}}\left|\frac{\partial\psi}{\partial x_{1}}(t,x_{2},\dots,x_{n})\right|^{2}\dif t\leq d\int_{m}^{x_{1}}\left|\frac{\partial\psi}{\partial x_{1}}(t,x_{2},\dots,x_{n})\right|^{2}, -\end{align*} - -\end_inset - -donde -\begin_inset Formula $d$ -\end_inset - - es el diámetro de -\begin_inset Formula $G$ -\end_inset - -, e integrando de nuevo, -\begin_inset Formula -\begin{align*} -\Vert\psi\Vert_{2}^{2} & =\int_{G}\psi(x)^{2}\dif x\leq d\int_{m}^{x_{1}}\int_{-\infty}^{x_{2}}\cdots\int_{-\infty}^{x_{n}}\int_{m}^{x_{1}}\left|\frac{\partial\psi}{\partial x_{1}}(t,x_{2},\dots,x_{n})\right|^{2}\dif t\dif x_{n}\cdots\dif x_{1}\leq\\ - & \leq d^{2}\int_{G}\left|\frac{\partial\psi}{\partial x_{1}}(x)\right|^{2}\dif x=d^{2}\Vert L^{*}\psi\Vert_{2}^{2}. -\end{align*} - -\end_inset - -Si -\begin_inset Formula $L^{*}=\frac{\partial}{\partial x_{i}}$ -\end_inset - - para otro -\begin_inset Formula $i$ -\end_inset - -, es análogo, y si -\begin_inset Formula $L^{*}=\left(\frac{\partial}{\partial x}\right)^{|\alpha|}$ -\end_inset - -, por inducción, -\begin_inset Formula $\Vert\psi\Vert_{2}\leq d^{|\alpha|}\Vert L^{*}\psi\Vert_{2}$ -\end_inset - -. - Para -\begin_inset Formula $L$ -\end_inset - - arbitrario basta hacer combinaciones lineales. - Visto esto, sean -\begin_inset Formula $H_{0}\coloneqq({\cal D}(G),\langle\cdot,\cdot\rangle_{L})$ -\end_inset - - y -\begin_inset Formula $H$ -\end_inset - - su compleción, -\begin_inset Formula $L^{*}:H_{0}\to L^{2}(G)$ -\end_inset - - es lineal y continuo y por tanto admite una extensión lineal y continua - -\begin_inset Formula $\hat{L}^{*}:H\to L^{2}(G)$ -\end_inset - -. - Sea ahora -\begin_inset Formula $f\in L^{2}(G)$ -\end_inset - - y -\begin_inset Formula $l_{0}:H_{0}\to\mathbb{K}$ -\end_inset - - dada por -\begin_inset Formula $l_{0}(\psi)\coloneqq\langle\psi,f\rangle_{2}$ -\end_inset - -, -\begin_inset Formula -\[ -|l_{0}(\psi)|=|\langle\psi,f\rangle_{2}|\leq\Vert\psi\Vert_{2}\Vert f\Vert_{2}\leq C\Vert f\Vert_{2}\Vert L^{*}\psi\Vert_{2}, -\] - -\end_inset - -donde -\begin_inset Formula $C$ -\end_inset - - es tal que -\begin_inset Formula $\Vert\psi\Vert_{2}\leq C\Vert L^{*}\psi\Vert_{2}$ -\end_inset - - para todo -\begin_inset Formula $C$ -\end_inset - -, de modo que -\begin_inset Formula $l_{0}$ -\end_inset - - es lineal continua por la cota -\begin_inset Formula $C\Vert f\Vert_{2}$ -\end_inset - - y se puede extender a una forma lineal y continua -\begin_inset Formula $l:H\to\mathbb{K}$ -\end_inset - - con -\begin_inset Formula $\Vert l\Vert\leq C\Vert f\Vert_{2}$ -\end_inset - -. - Por el teorema de Riesz, existe un único -\begin_inset Formula $\hat{u}\in H$ -\end_inset - - con -\begin_inset Formula $l(h)\equiv\langle h,\hat{u}\rangle_{L}$ -\end_inset - - para -\begin_inset Formula $h\in H$ -\end_inset - - y además -\begin_inset Formula $\Vert\hat{u}\Vert_{H}=\Vert l\Vert_{H}$ -\end_inset - -, y tomando -\begin_inset Formula $u\coloneqq\hat{L}^{*}\hat{u}$ -\end_inset - -, -\begin_inset Formula $l(h)=\langle\hat{L}^{*}h,\hat{L}^{*}\hat{u}\rangle=\langle\hat{L}^{*}h,u\rangle_{2}$ -\end_inset - -, pero para -\begin_inset Formula $\psi\in{\cal D}(G)$ -\end_inset - -, -\begin_inset Formula $l(\psi)=\langle\psi,f\rangle_{2}$ -\end_inset - - y -\begin_inset Formula $\hat{L}^{*}(\psi)=L^{*}\psi$ -\end_inset - -, con lo que -\begin_inset Formula $\langle L^{*}\psi,u\rangle_{2}=l(\psi)=\langle\psi,f\rangle_{2}$ -\end_inset - -, y basta llamar -\begin_inset Formula $K(f)\coloneqq u$ -\end_inset - -. - Para la continuidad de -\begin_inset Formula $K$ -\end_inset - -, -\begin_inset Formula -\[ -\Vert K(f)\Vert_{2}=\Vert u\Vert_{2}=\Vert\hat{L}^{*}\hat{u}\Vert_{2}=\Vert\hat{u}\Vert_{H}=\Vert l\Vert_{H}=\sup_{\Vert\psi\Vert_{H}=\Vert L^{*}\psi\Vert_{2}=1}|l(\psi)|\leq C\Vert f\Vert_{2}. -\] - -\end_inset - - -\end_layout - -\begin_layout Section -Método de Galerkin -\end_layout - -\begin_layout Standard -Sean -\begin_inset Formula $M_{1}\subseteq M_{2}\subseteq\dots\subseteq M_{n}\subseteq\dots$ -\end_inset - - una sucesión de subespacios cerrados de un espacio de Hilbert -\begin_inset Formula $H$ -\end_inset - - con unión densa en -\begin_inset Formula $H$ -\end_inset - -, -\begin_inset Formula $a:H\times H\to\mathbb{R}$ -\end_inset - - bilineal, simétrica, continua y fuertemente positiva, -\begin_inset Formula $b:H\to\mathbb{R}$ -\end_inset - - lineal continua, -\begin_inset Formula -\[ -J(x)\coloneqq\frac{1}{2}a(x,x)-b(x) -\] - -\end_inset - -para -\begin_inset Formula $x\in H$ -\end_inset - -, -\begin_inset Formula $u\in H$ -\end_inset - - con -\begin_inset Formula $J(u)$ -\end_inset - - mínimo y, para -\begin_inset Formula $n\in\mathbb{N}$ -\end_inset - -, -\begin_inset Formula $u_{n}\in M_{n}$ -\end_inset - - con -\begin_inset Formula $J(u_{n})$ -\end_inset - - mínimo, de modo que -\begin_inset Formula $a(x,u_{n})=b(x)$ -\end_inset - - para todo -\begin_inset Formula $x\in M_{n}$ -\end_inset - - y -\begin_inset Formula $a(x,u)=b(x)$ -\end_inset - - para todo -\begin_inset Formula $x\in H$ -\end_inset - -: -\end_layout - -\begin_layout Enumerate - -\series bold -Teorema de Galerkin-Ritz: -\series default - -\begin_inset Formula $\lim_{n}u_{n}=u$ -\end_inset - -. -\end_layout - -\begin_deeper -\begin_layout Standard -Para -\begin_inset Formula $x\in M_{n}$ -\end_inset - -, -\begin_inset Formula $a(x,u_{n})=b(x)$ -\end_inset - -, y para -\begin_inset Formula $x\in H$ -\end_inset - -, -\begin_inset Formula $a(x,u)=f(x)$ -\end_inset - -, luego -\begin_inset Formula $a(x,u-u_{n})=b(x)-b(x)=0$ -\end_inset - - para -\begin_inset Formula $x\in M_{n}$ -\end_inset - -. - Pero -\begin_inset Formula $a$ -\end_inset - - es un producto escalar equivalente al de -\begin_inset Formula $H$ -\end_inset - -, luego -\begin_inset Formula $u-u_{n}\bot M_{n}$ -\end_inset - - y, si -\begin_inset Formula $P_{n}:H\to M_{n}$ -\end_inset - - es la proyección ortogonal, -\begin_inset Formula $P_{n}(u)=u_{n}$ -\end_inset - -. - Por el teorema de la proyección, -\begin_inset Formula $\Vert u-u_{n}\Vert=\Vert u-P_{n}(u)\Vert=d(u,M_{n})$ -\end_inset - -, pero por la densidad es -\begin_inset Formula $d(u,\bigcup_{n}M_{n})=0$ -\end_inset - -, y para -\begin_inset Formula $\varepsilon>0$ -\end_inset - - existen -\begin_inset Formula $n_{0}\in\mathbb{N}$ -\end_inset - - e -\begin_inset Formula $y\in M_{n_{0}}$ -\end_inset - - con -\begin_inset Formula $\Vert u-y\Vert<\varepsilon$ -\end_inset - -, y como la sucesión es creciente, para -\begin_inset Formula $n\geq n_{0}$ -\end_inset - -, -\begin_inset Formula $\Vert u-u_{n}\Vert=d(u,M_{n})\leq d(u,M_{n_{0}})\leq\Vert u-y\Vert<\varepsilon$ -\end_inset - -, con lo que -\begin_inset Formula $\lim_{n}u_{n}=u$ -\end_inset - -. -\end_layout - -\end_deeper -\begin_layout Enumerate -Dados -\begin_inset Formula $c,d>0$ -\end_inset - - con -\begin_inset Formula $a(x,y)\leq d\Vert x\Vert\Vert y\Vert$ -\end_inset - - y -\begin_inset Formula $c\Vert x\Vert^{2}\leq a(x,x)$ -\end_inset - - para todo -\begin_inset Formula $x,y\in H$ -\end_inset - -, -\begin_inset Formula $c\Vert u\Vert\leq\Vert b\Vert$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Enumerate - -\series bold -Razón de convergencia: -\series default - -\begin_inset Formula $\Vert u-u_{n}\Vert\leq\frac{d}{c}d(u,M_{n})$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate - -\series bold -Estimación del error: -\series default - Si -\begin_inset Formula $\beta\leq J(x)$ -\end_inset - - para todo -\begin_inset Formula $x\in H$ -\end_inset - -, para -\begin_inset Formula $n\in\mathbb{N}$ -\end_inset - - es -\begin_inset Formula $\frac{c}{2}\Vert u-u_{n}\Vert^{2}\leq J(u_{n})-\beta$ -\end_inset - -. -\end_layout - -\begin_layout Standard -El -\series bold -método de Galerkin -\series default - para resolver un problema de esta forma consiste en tomar en el teorema - anterior los -\begin_inset Formula $M_{n}$ -\end_inset - - de dimensión finita y resolver los sistemas de ecuaciones lineales resultantes, - con matriz de coeficientes simétrica y definida positiva de tamaño -\begin_inset Formula $\dim M_{n}$ -\end_inset - -. - Tomando adecuadamente las bases de los -\begin_inset Formula $M_{n}$ -\end_inset - - se puede conseguir que las matrices tengan muchas entradas nulas. -\end_layout - -\begin_layout Section -Bases hilbertianas -\end_layout - -\begin_layout Standard -Sean -\begin_inset Formula $(H_{i})_{i\in I}$ -\end_inset - - una familia de -\begin_inset Formula $\mathbb{K}$ -\end_inset - --espacios de Hilbert, -\begin_inset Formula $H_{0}\coloneqq\prod_{i\in I}H_{i}$ -\end_inset - - y -\begin_inset Formula $\langle\cdot,\cdot\rangle:H_{0}\times H_{0}\to[0,+\infty]$ -\end_inset - - dada por -\begin_inset Formula -\[ -\langle x,y\rangle\coloneqq\sum_{i\in I}\langle x_{i},y_{i}\rangle_{H_{i}}, -\] - -\end_inset - -llamamos -\series bold -suma directa hilbertiana -\series default - o -\series bold -suma -\begin_inset Formula $\ell^{2}$ -\end_inset - - -\series default - de -\begin_inset Formula $\{H_{i}\}_{i\in I}$ -\end_inset - - al espacio de Hilbert -\begin_inset Formula -\[ -\bigoplus_{i\in I}H_{i}\coloneqq\ell^{2}((H_{i})_{i\in I})\coloneqq(\{x\in H_{0}\mid\langle x,x\rangle<\infty\},\langle\cdot,\cdot\rangle). -\] - -\end_inset - - -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Cada -\begin_inset Formula $H_{i}$ -\end_inset - - es isométricamente isomorfo al subespacio de -\begin_inset Formula $H$ -\end_inset - - de los vectores con todas las coordenadas nulas salvo la -\begin_inset Formula $i$ -\end_inset - -, los -\begin_inset Formula $H_{i}$ -\end_inset - - son mutuamente ortogonales en -\begin_inset Formula $H$ -\end_inset - -, -\begin_inset Formula $H$ -\end_inset - - es la clausura lineal cerrada de los -\begin_inset Formula $H_{i}$ -\end_inset - - y cada -\begin_inset Formula $x\in H$ -\end_inset - - se puede expresar de forma única como -\begin_inset Formula $\sum_{i\in I}x_{i}$ -\end_inset - - con cada -\begin_inset Formula $x_{i}\in H_{i}$ -\end_inset - -. -\end_layout - -\begin_layout Standard -Si -\begin_inset Formula $H$ -\end_inset - - es un -\begin_inset Formula $\mathbb{K}$ -\end_inset - --espacio de Hilbert y -\begin_inset Formula $(H_{i})_{i\in I}$ -\end_inset - - es una familia de subespacios cerrados de -\begin_inset Formula $H$ -\end_inset - - mutuamente ortogonales con -\begin_inset Formula $H=\overline{\text{span}\{H_{i}\}_{i\in I}}$ -\end_inset - -, entonces -\begin_inset Formula $H$ -\end_inset - - es isométricamente isomorfo a -\begin_inset Formula $\bigoplus_{i\in I}H_{i}$ -\end_inset - -, e identificamos -\begin_inset Formula $H$ -\end_inset - - con -\begin_inset Formula $\bigoplus_{i\in I}H_{i}$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard - -\series bold -Desigualdad de Bessel: -\series default - Sean -\begin_inset Formula $H$ -\end_inset - - un espacio prehilbertiano y -\begin_inset Formula $\{e_{i}\}_{i\in I}\subseteq H$ -\end_inset - - una familia ortonormal, para -\begin_inset Formula $x\in H$ -\end_inset - -, -\begin_inset Formula -\[ -\sum_{i\in I}|\langle x,e_{i}\rangle|^{2}\leq\Vert x\Vert^{2}. -\] - -\end_inset - - -\end_layout - -\begin_layout Standard -Para un conjunto -\begin_inset Formula $I$ -\end_inset - - arbitrario, llamamos -\begin_inset Formula $\ell^{2}(I)\coloneqq\bigoplus_{i\in I}\mathbb{K}$ -\end_inset - -. -\end_layout - -\begin_layout Standard - -\series bold -Teorema de la base hilbertiana: -\series default - Sean -\begin_inset Formula $H$ -\end_inset - - un espacio de Hilbert y -\begin_inset Formula $\{e_{i}\}_{i\in I}\subseteq H$ -\end_inset - - una familia ortonormal, -\begin_inset Formula $\{e_{i}\}_{i\in I}$ -\end_inset - - es ortonormal maximal (por inclusión) si y sólo si -\begin_inset Formula $\forall x\in H,(\forall i\in I,\langle x,e_{i}\rangle=0\implies x=0)$ -\end_inset - -, si y sólo si es un conjunto total, si y sólo si -\begin_inset Formula $\hat{}:H\to\ell^{2}(I)$ -\end_inset - - dada por -\begin_inset Formula $\hat{x}\coloneqq(\langle x,e_{i}\rangle)_{i\in I}$ -\end_inset - - es inyectiva, si y sólo si todo -\begin_inset Formula $x\in H$ -\end_inset - - admite un -\series bold -desarrollo de Fourier -\series default - -\begin_inset Formula $x=\sum_{i\in I}\langle x,e_{i}\rangle e_{i}$ -\end_inset - -, si y sólo si -\begin_inset Formula $\forall x,y\in H,\langle x,y\rangle=\sum_{i\in I}\langle x,e_{i}\rangle\overline{\langle y,e_{i}\rangle}$ -\end_inset - -, si y sólo si todo -\begin_inset Formula $x\in H$ -\end_inset - - cumple la -\series bold -identidad de Parseval -\series default -, -\begin_inset Formula $\Vert x\Vert^{2}=\sum_{i\in I}|\langle x,e_{i}\rangle|^{2}$ -\end_inset - -, y entonces decimos que -\begin_inset Formula $(e_{i})_{i\in I}$ -\end_inset - - es una -\series bold -base hilbertiana -\series default - de -\begin_inset Formula $H$ -\end_inset - - o un -\series bold -sistema ortonormal completo -\series default -. -\end_layout - -\begin_layout Description -\begin_inset Formula $1\implies2]$ -\end_inset - - Entonces -\begin_inset Formula $x\bot\{e_{i}\}_{i\in I}$ -\end_inset - -, por lo que si -\begin_inset Formula $x\neq0$ -\end_inset - -, -\begin_inset Formula $\{e_{i}\}_{i\in I}\cup\{x\}$ -\end_inset - - sería ortogonal. -\begin_inset Formula $\#$ -\end_inset - - -\end_layout - -\begin_layout Description -\begin_inset Formula $2\iff3]$ -\end_inset - - Sabemos que un -\begin_inset Formula $S\subseteq H$ -\end_inset - - es total si y sólo si -\begin_inset Formula $S^{\bot}=0$ -\end_inset - -. -\end_layout - -\begin_layout Description -\begin_inset Formula $2\iff4]$ -\end_inset - - Por ser -\begin_inset Formula $\hat{}$ -\end_inset - - lineal. -\end_layout - -\begin_layout Description -\begin_inset Formula $4\implies5]$ -\end_inset - - -\begin_inset Formula $\widehat{\sum_{i}\langle x,e_{i}\rangle e_{i}}=\sum_{i}\langle x,e_{i}\rangle\hat{e}_{i}=\sum_{i}\langle x,e_{i}\rangle e_{i}=\hat{x}$ -\end_inset - -, y por inyectividad -\begin_inset Formula $x=\sum_{i\in I}\langle x,e_{i}\rangle e_{i}$ -\end_inset - -. -\end_layout - -\begin_layout Description -\begin_inset Formula $5\implies6]$ -\end_inset - - -\begin_inset Formula $\langle x,y\rangle=\sum_{i,j\in I}\langle\langle x,e_{i}\rangle e_{i},\langle y,e_{j}\rangle e_{j}\rangle=\sum_{i,j\in I}\langle x,e_{i}\rangle\overline{\langle y,e_{j}\rangle}\langle e_{i},e_{j}\rangle=\sum_{i\in I}\langle x,e_{i}\rangle\overline{\langle y,e_{j}\rangle}$ -\end_inset - -. -\end_layout - -\begin_layout Description -\begin_inset Formula $6\implies7]$ -\end_inset - - Basta tomar -\begin_inset Formula $x=y$ -\end_inset - -. -\end_layout - -\begin_layout Description -\begin_inset Formula $7\implies1]$ -\end_inset - - Si fuera -\begin_inset Formula $\{e_{i}\}_{i}\subsetneq M\subseteq H$ -\end_inset - - con -\begin_inset Formula $M$ -\end_inset - - ortonormal, para -\begin_inset Formula $x\in M\setminus\{e_{i}\}_{i}$ -\end_inset - -, -\begin_inset Formula $1=\Vert x\Vert^{2}=\sum_{i\in I}|\langle x,e_{i}\rangle|^{2}=0\#$ -\end_inset - -. -\end_layout - -\begin_layout Standard - -\series bold -Primer teorema de Riesz-Fischer: -\series default - Si -\begin_inset Formula $H$ -\end_inset - - es un espacio prehilbertiano con una familia ortonormal -\begin_inset Formula $\{e_{i}\}_{i\in I}$ -\end_inset - - y -\begin_inset Formula $\hat{}:H\to\mathbb{K}^{I}$ -\end_inset - - viene dada por -\begin_inset Formula $\hat{x}\coloneqq(\langle x,e_{i}\rangle)_{i\in I}$ -\end_inset - -, -\begin_inset Formula $\hat{}$ -\end_inset - - es lineal y continua con imagen contenida en -\begin_inset Formula $\ell^{2}(I)$ -\end_inset - - e igual a -\begin_inset Formula $\ell^{2}(I)$ -\end_inset - - si -\begin_inset Formula $H$ -\end_inset - - es de Hilbert. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Si -\begin_inset Formula $H$ -\end_inset - - es un espacio de Hilbert, todo espacio ortonormal de vectores en -\begin_inset Formula $H$ -\end_inset - - se puede completar a una base hilbertiana de -\begin_inset Formula $H$ -\end_inset - -, y en particular todo espacio de Hilbert posee una base hilbertiana y es - isométricamente isomorfo a un -\begin_inset Formula $\ell^{2}(I)$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Los espacios de Hilbert -\begin_inset Formula $\ell^{2}(I)$ -\end_inset - - y -\begin_inset Formula $\ell^{2}(J)$ -\end_inset - - son topológicamente isomorfos si y sólo si -\begin_inset Formula $|I|=|J|$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Llamamos -\series bold -dimensión hilbertiana -\series default - de un espacio de Hilbert al cardinal de cualquier base hilbertiana. - -\series bold -Segundo teorema de Riesz-Fischer: -\series default - Si -\begin_inset Formula $H$ -\end_inset - - es de dimensión infinita, -\begin_inset Formula $\dim H=\aleph_{0}\coloneqq|\mathbb{N}|$ -\end_inset - - si y sólo si -\begin_inset Formula $H\cong\ell^{2}$ -\end_inset - -, si y sólo si -\begin_inset Formula $H$ -\end_inset - - es separable. -\end_layout - -\begin_layout Description -\begin_inset Formula $1\iff2]$ -\end_inset - - Por lo anterior. -\end_layout - -\begin_layout Description -\begin_inset Formula $2\implies3]$ -\end_inset - - Visto. -\end_layout - -\begin_layout Description -\begin_inset Formula $3\implies2]$ -\end_inset - - Dado -\begin_inset Formula $\{x_{n}\}_{n\in\mathbb{N}}\subseteq H$ -\end_inset - - denso, como -\begin_inset Formula $H$ -\end_inset - - es de dimensión infinita, existe una subsucesión -\begin_inset Formula $(x_{n_{k}})_{k}$ -\end_inset - - linealmente independiente de -\begin_inset Formula $(x_{n})_{n}$ -\end_inset - - con -\begin_inset Formula $\text{span}\{x_{n}\}_{n}=\text{span}\{x_{n_{k}}\}_{k}$ -\end_inset - -, luego -\begin_inset Formula $\overline{\text{span}\{x_{n_{k}}\}_{k}}=H$ -\end_inset - - y el proceso de ortonormalización de Gram-Schmidt nos da una base hilbertiana - numerable de -\begin_inset Formula $H$ -\end_inset - -. -\end_layout - -\begin_layout Standard -Así, si -\begin_inset Formula $Z\leq_{\mathbb{K}}\ell^{2}$ -\end_inset - - es cerrado de dimensión infinita, -\begin_inset Formula $Z\cong\ell^{2}$ -\end_inset - -. -\end_layout - -\begin_layout Section -Aproximaciones por polinomios -\end_layout - -\begin_layout Standard -Si -\begin_inset Formula $I\subseteq\mathbb{R}$ -\end_inset - - es un intervalo cerrado, llamamos -\begin_inset Formula ${\cal C}(I)$ -\end_inset - - al conjunto de funciones -\begin_inset Formula $I\to\mathbb{R}$ -\end_inset - - continuas en el interior de -\begin_inset Formula $I$ -\end_inset - -. -\end_layout - -\begin_layout Standard - -\series bold -Teorema de Korovkin: -\series default - Sean -\begin_inset Formula $p_{0},p_{1},p_{2}:[a,b]\subseteq\mathbb{R}\to\mathbb{R}$ -\end_inset - - dadas por -\begin_inset Formula $p_{k}(t)\coloneqq t^{k}$ -\end_inset - - y -\begin_inset Formula $(P_{n}:{\cal C}([a,b])\to{\cal C}([a,b]))_{n}$ -\end_inset - - una sucesión de funciones lineales positivas ( -\begin_inset Formula $\forall f\in{\cal C}([a,b]),(f\geq0\implies P_{n}(f)\geq0)$ -\end_inset - -) con -\begin_inset Formula $\lim_{n}\Vert P_{n}(p_{k})-p_{k}\Vert_{\infty}=0$ -\end_inset - - para -\begin_inset Formula $k\in\{0,1,2\}$ -\end_inset - -, entonces, para -\begin_inset Formula $f\in{\cal C}([a,b])$ -\end_inset - -, -\begin_inset Formula $\lim_{n}\Vert P_{n}(f)-f\Vert_{\infty}=0$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard - -\series bold -Teorema de Weierstrass: -\series default - El conjunto de polinomios en una variable es denso -\begin_inset Formula $({\cal C}([a,b]),\Vert\cdot\Vert_{\infty})$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Así, para -\begin_inset Formula $f\in{\cal C}([a,b])$ -\end_inset - -, se puede encontrar una sucesión de polinomios que converja uniformemente - a -\begin_inset Formula $f$ -\end_inset - -. - Hacerlo con polinomios de interpolación por nodos prefijados no es una - buena estrategia ya que para toda secuencia de nodos de interpolación en - -\begin_inset Formula $[a,b]$ -\end_inset - -, existe -\begin_inset Formula $f\in{\cal C}([a,b])$ -\end_inset - - para la que los polinomios de interpolación en dichos nodos no converge - uniformemente a -\begin_inset Formula $f$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - Si se hace con nodos equidistantes se da el fenómeno de Runge. -\end_layout - -\begin_layout Standard - -\series bold -Teorema de Čebyšev: -\series default - Para -\begin_inset Formula $f\in{\cal C}([a,b])$ -\end_inset - - y -\begin_inset Formula $n\in\mathbb{N}$ -\end_inset - -, si -\begin_inset Formula $K_{n}\subseteq\mathbb{K}[X]$ -\end_inset - - es el conjunto de polinomio de grado máximo -\begin_inset Formula $n$ -\end_inset - -, -\begin_inset Formula $p:K_{n}\mapsto\Vert f-p\Vert_{\infty}$ -\end_inset - - tiene un único mínimo -\begin_inset Formula $p_{n}$ -\end_inset - -, y -\begin_inset Formula $(p_{n})_{n}$ -\end_inset - - converge uniformemente a -\begin_inset Formula $f$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Un -\series bold -polinomio trigonométrico real -\series default - es una función -\begin_inset Formula $p:\mathbb{R}\to\mathbb{R}$ -\end_inset - - de la forma -\begin_inset Formula -\[ -p(x)\coloneqq\sum_{n=0}^{m}(a_{n}\cos(nx)+b_{n}\sin(nx)) -\] - -\end_inset - -para ciertos -\begin_inset Formula $a_{n},b_{n}\in\mathbb{R}$ -\end_inset - -. - -\series bold -Teorema de Weierstrass: -\series default - Si -\begin_inset Formula $f:[-\pi,\pi]\to\mathbb{R}$ -\end_inset - - es continua con -\begin_inset Formula $f(-\pi)=f(\pi)$ -\end_inset - -, para cada -\begin_inset Formula $\varepsilon>0$ -\end_inset - - existe un polinomio trigonométrico real -\begin_inset Formula $p$ -\end_inset - - con -\begin_inset Formula $\Vert f-p\Vert_{\infty}<\varepsilon$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Para -\begin_inset Formula $f:[-\pi,\pi]\to\mathbb{C}$ -\end_inset - - integrable y -\begin_inset Formula $r\in\mathbb{Z}$ -\end_inset - -, llamamos -\series bold - -\begin_inset Formula $r$ -\end_inset - --ésimo coeficiente de Fourier -\series default - de -\begin_inset Formula $f$ -\end_inset - - a -\begin_inset Formula -\[ -\hat{f}(r)\coloneqq\frac{1}{2\pi}\int_{-\pi}^{\pi}f(t)\text{e}^{-\text{i}rt}\dif t, -\] - -\end_inset - -y -\series bold -serie de Fourier -\series default - de -\begin_inset Formula $f$ -\end_inset - - a la serie formal -\begin_inset Formula -\[ -\sum_{r\in\mathbb{Z}}\hat{f}(r)\text{e}^{-\text{i}rt}. -\] - -\end_inset - - -\end_layout - -\begin_layout Standard -Para -\begin_inset Formula $f:[-\pi,\pi]\to\mathbb{R}$ -\end_inset - - integrable y -\begin_inset Formula $n\in\mathbb{N}^{*}$ -\end_inset - -, llamando -\begin_inset Formula -\begin{align*} -a_{0} & \coloneqq\frac{1}{2\pi}\int_{-\pi}^{\pi}f, & a_{n} & \coloneqq\frac{1}{\pi}\int_{-\pi}^{\pi}f(t)\cos(nt)\dif t, & b_{n} & \coloneqq\frac{1}{\pi}\int_{-\pi}^{\pi}f(t)\sin(nt)\dif t, -\end{align*} - -\end_inset - -la -\series bold -serie de Fourier real -\series default - de -\begin_inset Formula $f$ -\end_inset - - es -\begin_inset Formula -\[ -\sum_{n=0}^{\infty}a_{n}\cos(nt)+\sum_{n=1}^{\infty}b_{n}\sin(nt). -\] - -\end_inset - - -\end_layout - -\begin_layout Standard -Como -\series bold -teorema -\series default -, sean -\begin_inset Formula $([-\pi,\pi],\Sigma,\mu)$ -\end_inset - - es el espacio de medida usual en -\begin_inset Formula $[-\pi,\pi]$ -\end_inset - -, -\begin_inset Formula $M_{\mathbb{R}}\coloneqq L_{\mathbb{R}}^{2}([-\pi,\pi],\Sigma,\frac{\mu}{\pi})$ -\end_inset - - y -\begin_inset Formula $M_{\mathbb{C}}\coloneqq L_{\mathbb{C}}^{2}([-\pi,\pi],\Sigma,\frac{\mu}{2\pi})$ -\end_inset - -: -\end_layout - -\begin_layout Enumerate -El -\series bold -sistema trigonométrico -\series default - -\begin_inset Formula $(\text{e}^{\text{i}rt})_{r\in\mathbb{Z}}$ -\end_inset - - es una base hilbertiana de -\begin_inset Formula $M_{\mathbb{C}}$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $(\cos(nt))_{n\in\mathbb{N}}\star(\sin(nt))_{n\in\mathbb{N}^{*}}$ -\end_inset - - es una base hilbertiana de -\begin_inset Formula $M_{\mathbb{R}}$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Enumerate -Para -\begin_inset Formula $f\in M_{\mathbb{C}}$ -\end_inset - -, -\begin_inset Formula $f$ -\end_inset - - coincide con su serie de Fourier en -\begin_inset Formula $\Vert\cdot\Vert_{2}$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Enumerate -Para -\begin_inset Formula $f\in M_{\mathbb{R}}$ -\end_inset - -, -\begin_inset Formula $f$ -\end_inset - - coincide con su serie de Fourier real en -\begin_inset Formula $\Vert\cdot\Vert_{2}$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Enumerate -\begin_inset Formula ${\cal F}:M_{\mathbb{C}}\to\ell^{2}(\mathbb{Z})$ -\end_inset - - que asigna a cada función su familia de coeficientes de Fourier -\begin_inset Formula $(\hat{f}(n))_{n\in\mathbb{Z}}$ -\end_inset - - es un isomorfismo de espacios de Hilbert. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Un -\series bold -peso -\series default - en un intervalo cerrado -\begin_inset Formula $I\subseteq\mathbb{R}$ -\end_inset - - es una -\begin_inset Formula $p\in{\cal C}(I)$ -\end_inset - - estrictamente positiva tal que -\begin_inset Formula -\[ -\forall n\in\mathbb{N},\int_{I}|t|^{n}p(t)\dif t<\infty. -\] - -\end_inset - -Entonces -\begin_inset Formula $\langle\cdot,\cdot\rangle:{\cal C}(I)\times{\cal C}(I)\to[-\infty,+\infty]$ -\end_inset - - dada por -\begin_inset Formula -\[ -\langle f,g\rangle\coloneqq\int_{I}f\overline{g}p -\] - -\end_inset - -es un producto escalar en -\begin_inset Formula $H_{p}\coloneqq\{f\in{\cal C}(I)\mid\langle f,f\rangle<\infty\}$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Llamamos -\series bold -sucesión de polinomios ortonormales -\series default - asociada a -\begin_inset Formula $\langle\cdot,\cdot\rangle$ -\end_inset - - o al peso -\begin_inset Formula $p$ -\end_inset - - en -\begin_inset Formula $I$ -\end_inset - - a una sucesión -\begin_inset Formula $\{P_{n}\}_{n\in\mathbb{N}}\subseteq H_{p}$ -\end_inset - - de polinomios con -\begin_inset Formula $\text{span}\{1,t,\dots,t^{n}\}=\text{span}\{P_{0},P_{1},\dots,P_{n}\}$ -\end_inset - - para cada -\begin_inset Formula $n\in\mathbb{N}$ -\end_inset - -, y entonces, para -\begin_inset Formula $n\in\mathbb{N}$ -\end_inset - -: -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $P_{n}$ -\end_inset - - es un polinomio de grado -\begin_inset Formula $n$ -\end_inset - - con coeficientes reales. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $P_{n}$ -\end_inset - - es ortogonal en -\begin_inset Formula $H_{p}$ -\end_inset - - al subespacio de polinomios de grado menor que -\begin_inset Formula $n$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $P_{n}$ -\end_inset - - tiene -\begin_inset Formula $n$ -\end_inset - - raíces distintas en -\begin_inset Formula $(a,b)$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Ejemplos: -\end_layout - -\begin_layout Enumerate - -\series bold -Polinomios de Legendre. -\series default - -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\begin_inset Formula -\begin{align*} -I & =[-1,1], & p(t) & =1, & P_{n}(t) & =\frac{\sqrt{\frac{2n+1}{2}}}{2^{n}n!}\od[n]{(t^{2}-1)^{n}}{t}. -\end{align*} - -\end_inset - - -\end_layout - -\begin_layout Enumerate - -\series bold -Polinomios de Laguerre. -\series default - -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\series bold - -\begin_inset Formula -\begin{align*} -I & =[0,\infty), & p(t) & =\text{e}^{-t}, & P_{n}(t) & =\frac{\text{e}^{t}}{n!}\od[n]{\text{e}^{-t}t^{n}}{t}. -\end{align*} - -\end_inset - - -\end_layout - -\begin_layout Enumerate - -\series bold -Polinomios de Hermite. -\series default - -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\begin_inset Formula -\begin{align*} -I & =(-\infty,\infty), & p(t) & =\text{e}^{-t^{2}}, & P_{n}(t) & =\frac{\text{e}^{t^{2}}}{\sqrt[4]{\pi}\sqrt{2^{n}n!}}\od[n]{\text{e}^{-t^{2}}}{t}. -\end{align*} - -\end_inset - - -\end_layout - -\begin_layout Enumerate - -\series bold -Polinomios de Čebyšev. -\series default - -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\begin_inset Formula -\begin{align*} -I & =[-1,1], & p(t) & =\frac{1}{\sqrt{1-t^{2}}}, & P_{n}(t) & =\cos(n\arccos t), -\end{align*} - -\end_inset - -siendo -\begin_inset Formula $\arccos:[-1,1]\to[0,\pi]$ -\end_inset - -. -\end_layout - -\begin_layout Standard -Una sucesión de polinomios ortonormales asociada a un peso -\begin_inset Formula $p$ -\end_inset - - en un intervalo compacto es total en -\begin_inset Formula $H_{p}$ -\end_inset - -, y en particular los polinomios de Legendre forman una base hilbertiana - en -\begin_inset Formula $L^{2}([-1,1]).$ -\end_inset - - -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Si -\begin_inset Formula $p$ -\end_inset - - es un peso en -\begin_inset Formula $[a,b]$ -\end_inset - - y -\begin_inset Formula $a\leq t_{1}<\dots<t_{n}\leq b$ -\end_inset - -, se tiene una -\series bold -fórmula de cuadratura gaussiana -\series default -, -\begin_inset Formula -\[ -\int_{a}^{b}fp\approx\sum_{k=1}^{n}A_{k}f(t_{k}) -\] - -\end_inset - -para ciertos -\begin_inset Formula $A_{1},\dots,A_{n}\in\mathbb{R}$ -\end_inset - -, y se alcanza la igualdad si -\begin_inset Formula $f$ -\end_inset - - es un polinomio de grado menor que -\begin_inset Formula $n$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard - -\series bold -Teorema de Gauss: -\series default - Dados un peso -\begin_inset Formula $p$ -\end_inset - - en -\begin_inset Formula $[a,b]$ -\end_inset - - con una sucesión de polinomios ortonormales -\begin_inset Formula $(P_{n})_{n}$ -\end_inset - -, -\begin_inset Formula $n\in\mathbb{N}^{*}$ -\end_inset - -, -\begin_inset Formula $a<t_{1}<\dots<t_{n}<b$ -\end_inset - - y -\begin_inset Formula $A_{1},\dots,A_{n}\in\mathbb{R}$ -\end_inset - -, si -\begin_inset Formula -\[ -\int_{a}^{b}fp=\sum_{k=1}^{n}A_{k}f(t_{k}) -\] - -\end_inset - -para todo polinomio -\begin_inset Formula $f$ -\end_inset - - de grado menor que -\begin_inset Formula $n$ -\end_inset - -, esta fórmula se para polinomios de grado menor que -\begin_inset Formula $2n$ -\end_inset - - si y sólo si -\begin_inset Formula $t_{1},\dots,t_{n}$ -\end_inset - - son los ceros de -\begin_inset Formula $P_{n}$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard - -\series bold -Teorema de Stieltjes: -\series default - Sean -\begin_inset Formula $p$ -\end_inset - - un peso en -\begin_inset Formula $[a,b]$ -\end_inset - - con una sucesión de polinomios ortonormales -\begin_inset Formula $(P_{n})_{n}$ -\end_inset - - y, para -\begin_inset Formula $n\in\mathbb{N}$ -\end_inset - -, -\begin_inset Formula $t_{n1}<\dots<t_{nn}$ -\end_inset - - los ceros de -\begin_inset Formula $P_{n}$ -\end_inset - - y -\begin_inset Formula $A_{n1},\dots,A_{nn}\in\mathbb{R}$ -\end_inset - - los correspondientes coeficientes en la fórmula de cuadratura gaussiana, - para -\begin_inset Formula $f\in{\cal C}([a,b])$ -\end_inset - -, -\begin_inset Formula -\[ -\int_{a}^{b}fp=\lim_{n}\sum_{k=1}^{n}A_{nk}f(t_{nk}). -\] - -\end_inset - - -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Section -El espacio de Bergman -\end_layout - -\begin_layout Standard -Llamamos -\begin_inset Formula $D(a,r)\coloneqq B(a,r)\subseteq\mathbb{C}$ -\end_inset - -. - Si -\begin_inset Formula $\Omega\subseteq\mathbb{C}$ -\end_inset - - es abierto, -\begin_inset Formula ${\cal H}(\Omega)$ -\end_inset - - es el conjunto de las funciones holomorfas en -\begin_inset Formula $\Omega$ -\end_inset - -, y para -\begin_inset Formula $f\in{\cal H}(\Omega)$ -\end_inset - - y -\begin_inset Formula $\overline{D(a,r)}\subseteq\Omega$ -\end_inset - -, la serie -\begin_inset Formula $\sum_{n\in\mathbb{N}}a_{n}(z-a)^{n}$ -\end_inset - - con -\begin_inset Formula $z\in D(a,r)$ -\end_inset - - converge uniformemente a -\begin_inset Formula $f$ -\end_inset - - en compactos de -\begin_inset Formula $D(a,r)$ -\end_inset - - para ciertos -\begin_inset Formula $a_{n}\in\mathbb{C}$ -\end_inset - -. -\end_layout - -\begin_layout Standard -Si -\begin_inset Formula $\Omega\subseteq\mathbb{C}$ -\end_inset - - es abierto, llamamos -\begin_inset Formula ${\cal T}_{\text{K}}$ -\end_inset - - a la topología en -\begin_inset Formula ${\cal H}(\Omega)$ -\end_inset - - de convergencia uniforme sobre compactos, y -\series bold -espacio de Bergman -\series default - en el abierto -\begin_inset Formula $\Omega\subseteq\mathbb{C}$ -\end_inset - - a -\begin_inset Formula -\[ -A^{2}(\Omega)\coloneqq\left\{ f\in{\cal H}(\Omega)\;\middle|\;\int_{\Omega}|f|^{2}<\infty\right\} , -\] - -\end_inset - -un subespacio cerrado y separable de -\begin_inset Formula $L^{2}(\Omega)$ -\end_inset - - que es pues un espacio de Hilbert numerable con -\begin_inset Formula $\langle\cdot,\cdot\rangle_{2}$ -\end_inset - -, y en el que la topología inducida por -\begin_inset Formula $L^{2}(\Omega)$ -\end_inset - - es más fina que la inducida por -\begin_inset Formula ${\cal T}_{\text{K}}$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Si -\begin_inset Formula $\Omega\subseteq\mathbb{C}$ -\end_inset - - es abierto, -\begin_inset Formula $(\omega_{n})_{n}$ -\end_inset - - es base hilbertiana de -\begin_inset Formula $A^{2}(\Omega)$ -\end_inset - - y -\begin_inset Formula $f\in A^{2}(\Omega)$ -\end_inset - -, el desarrollo en serie de Fourier de -\begin_inset Formula $f$ -\end_inset - -, -\begin_inset Formula $\sum_{n}\langle f,\omega_{n}\rangle\omega_{n}$ -\end_inset - -, converge uniformemente a -\begin_inset Formula $f$ -\end_inset - - en compactos de -\begin_inset Formula $\Omega$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Si -\begin_inset Formula $\psi_{n}(z)\coloneqq(z-a)^{n}$ -\end_inset - -, -\begin_inset Formula $(\frac{\psi_{n}}{\Vert\psi_{n}\Vert})_{n}$ -\end_inset - - es una base hilbertiana de -\begin_inset Formula $A^{2}(D(a,r))$ -\end_inset - -, y el desarrollo en serie de potencias es el desarrollo en serie de Fourier - sobre esta base. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Como -\series bold -teorema -\series default -, si -\begin_inset Formula $\Omega\subsetneq\mathbb{C}$ -\end_inset - - es un abierto simplemente conexo y -\begin_inset Formula $f:\Omega\to D(0,1)$ -\end_inset - - es un isomorfismo, -\begin_inset Formula -\[ -\left(z\mapsto\sqrt{\frac{n}{\pi}}(f(z))^{n-1}\dot{f}(z)\right)_{n} -\] - -\end_inset - -es base hilbertiana de -\begin_inset Formula $A^{2}(\Omega)$ -\end_inset - -, y en particular para -\begin_inset Formula $R>0$ -\end_inset - -, -\begin_inset Formula -\[ -\left(z\mapsto\sqrt{\frac{n}{\pi}}R^{-n}z^{n-1}\right)_{n} -\] - -\end_inset - - es base hilbertiana de -\begin_inset Formula $A^{2}(D(0,R))$ -\end_inset - -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - -\end_inset - - -\end_layout - -\end_body -\end_document @@ -82,98 +82,139 @@ \begin_body \begin_layout Standard -Algunos operadores acotados en espacios de Hilbert: +David Hilbert (1862–1943) fue un influyente matemático alemán que formuló + la teoría de los espacios de Hilbert. + En 1900 publicó una lista de 23 problemas que marcarían en buena medida + el progreso matemático en el siglo XX, y presentó 10 de ellos en el +\emph on +\lang english +International Congress of Mathematicians +\emph default +\lang spanish + de París de 1900. + Fue editor jefe de +\emph on +\lang ngerman +Mathematische Annalen +\emph default +\lang spanish +, una revista matemática muy prestigiosa por casi 150 años, y tuvo discípulos + como +\lang ngerman +Alfréd Haar, Erhard Schmidt, Hugo Steihaus, Hermann Weyl o Ernst Zermelo +\lang spanish +. \end_layout -\begin_layout Enumerate -Sean -\begin_inset Formula $G$ +\begin_layout Standard +Dado un +\begin_inset Formula $\mathbb{K}$ \end_inset - y +-espacio vectorial \begin_inset Formula $H$ \end_inset - espacios prehilbertianos y -\begin_inset Formula $G$ +, +\begin_inset Formula $\langle\cdot,\cdot\rangle:H\times H\to\mathbb{K}$ \end_inset - de dimensión finita con base -\begin_inset Formula $(e_{i})_{i}$ + es una +\series bold +forma hermitiana +\series default + si para +\begin_inset Formula $a,b\in\mathbb{K}$ \end_inset -, todo homomorfismo -\begin_inset Formula $T:G\to H$ + y +\begin_inset Formula $x,y,z\in H$ \end_inset - es acotado con -\begin_inset Formula -\[ -\Vert T\Vert\leq\sqrt{\sum_{i}\Vert Te_{i}\Vert^{2}}. -\] + se tiene +\begin_inset Formula $\langle ax+by,z\rangle=a\langle x,z\rangle+b\langle y,z\rangle$ +\end_inset + y +\begin_inset Formula $\langle x,y\rangle=\overline{\langle y,x\rangle}$ \end_inset +, y es +\series bold +definida positiva +\series default + si para +\begin_inset Formula $x\in H\setminus0$ +\end_inset -\begin_inset Note Note -status open + es +\begin_inset Formula $\langle x,x\rangle\in\mathbb{R}^{+}$ +\end_inset -\begin_layout Plain Layout -nproof +. + Un +\series bold +producto escalar +\series default + es una forma hermitiana definida positiva, y un +\series bold +espacio prehilbertiano +\series default + es par formado por un espacio vectorial y un producto escalar sobre este. \end_layout +\begin_layout Standard +Dado un espacio prehilbertiano +\begin_inset Formula $(H,\langle\cdot,\cdot\rangle)$ \end_inset - +: \end_layout \begin_layout Enumerate -Sean -\begin_inset Formula $G$ -\end_inset - - y -\begin_inset Formula $H$ -\end_inset +\series bold +Desigualdad de Cauchy-Schwartz: +\series default -\begin_inset Formula $\mathbb{K}$ +\begin_inset Formula $\forall x,y\in H,|\langle x,y\rangle|^{2}\leq\langle x,x\rangle\langle y,y\rangle$ \end_inset --espacios de Hilbert de dimensión -\begin_inset Formula $\aleph_{0}$ +, con igualdad si y sólo si +\begin_inset Formula $x$ \end_inset - con bases ortonormales -\begin_inset Formula $(e_{n})_{n}$ + e +\begin_inset Formula $y$ \end_inset - y -\begin_inset Formula $(f_{n})_{n}$ -\end_inset + son linealmente dependientes. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout - y -\begin_inset Formula $\{a_{n}\}_{n}\subseteq\mathbb{K}$ \end_inset - una sucesión acotada, el -\series bold -operador diagonal -\series default - -\begin_inset Formula $T:G\to H$ + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $H$ \end_inset - dado por -\begin_inset Formula -\[ -T(x)\coloneqq\sum_{n=1}^{\infty}a_{n}\langle x,e_{n}\rangle f_{n} -\] + es un espacio normado con la norma +\begin_inset Formula $\Vert x\Vert\coloneqq\sqrt{\langle x,x\rangle}$ +\end_inset +, y para +\begin_inset Formula $x,y\in H$ \end_inset -es acotado con -\begin_inset Formula $\Vert T\Vert=\sup_{n}|a_{n}|$ +, +\begin_inset Formula $\Vert x+y\Vert=\Vert x\Vert+\Vert y\Vert\iff x=0\lor y=0\lor\exists a>0:x=ay$ \end_inset . @@ -190,28 +231,60 @@ nproof \end_layout \begin_layout Enumerate -Si -\begin_inset Formula $g\in L^{\infty}([a,b])$ +Para +\begin_inset Formula $a,b\in\mathbb{K}$ \end_inset -, el -\series bold -operador multiplicación por -\begin_inset Formula $g$ + y +\begin_inset Formula $x,y,z\in H$ \end_inset +, +\begin_inset Formula $\langle x,ay+bz\rangle=\overline{a}\langle x,y\rangle+\overline{b}\langle x,z\rangle$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $x,y\in H$ +\end_inset -\series default , -\begin_inset Formula $T:L^{2}([a,b])\to L^{2}([a,b])$ +\begin_inset Formula $\Vert x+y\Vert^{2}=\Vert x\Vert^{2}+\Vert y\Vert^{2}+2\text{Re}\langle x,y\rangle$ \end_inset - dado por -\begin_inset Formula $Tf\coloneqq gf$ +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\Vert x+y\Vert^{2}=\langle x+y,x+y\rangle=\langle x,x\rangle+\langle x,y\rangle+\overline{\langle x,y\rangle}+\langle y,y\rangle$ \end_inset -, es acotado con -\begin_inset Formula $\Vert T\Vert=\Vert g\Vert_{\infty}$ +. +\end_layout + +\end_deeper +\begin_layout Standard + +\series bold +Identidades de polarización: +\series default + Si +\begin_inset Formula $H$ +\end_inset + + es un espacio prehilbertiano y +\begin_inset Formula $x,y\in H$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\langle x,y\rangle=\frac{1}{4}(\Vert x+y\Vert^{2}-\Vert x-y\Vert^{2}+\text{i}\Vert x+\text{i}y\Vert^{2}-\text{i}\Vert x-\text{i}y\Vert^{2})$ \end_inset . @@ -228,171 +301,207 @@ nproof \end_layout \begin_layout Enumerate -Sean -\begin_inset Formula $G$ -\end_inset - - y +Si \begin_inset Formula $H$ \end_inset - -\begin_inset Formula $\mathbb{K}$ + se define sobre +\begin_inset Formula $\mathbb{R}$ \end_inset --espacios de Hilbert de dimensión -\begin_inset Formula $\aleph_{0}$ +, +\begin_inset Formula $\langle x,y\rangle=\frac{1}{4}(\Vert x+y\Vert^{2}-\Vert x-y\Vert^{2})$ \end_inset - con bases ortonormales respectivas -\begin_inset Formula $(u_{n})_{n}$ +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de von Neumann: +\series default + Un espacio normado +\begin_inset Formula $(X,\Vert\cdot\Vert)$ \end_inset - y -\begin_inset Formula $(v_{n})_{n}$ + admite un producto escalar +\begin_inset Formula $\langle\cdot,\cdot\rangle$ \end_inset - y -\begin_inset Formula $(a_{ij})\in\mathbb{K}^{\mathbb{N}\times\mathbb{N}}$ + en +\begin_inset Formula $X$ \end_inset - una matriz infinita con -\begin_inset Formula $\sum_{i,j}|a_{ij}|^{2}<\infty$ + con +\begin_inset Formula $\langle x,x\rangle\equiv\Vert x\Vert^{2}$ \end_inset -, -\begin_inset Formula $T:G\to H$ + si y sólo si +\begin_inset Formula $\Vert\cdot\Vert$ \end_inset - dado por + verifica la +\series bold +ley del paralelogramo: +\series default + \begin_inset Formula \[ -T(x)\coloneqq\sum_{i,j}a_{ij}\langle x,u_{i}\rangle v_{j} +\forall x,y\in H,\Vert x+y\Vert^{2}+\Vert x-y\Vert^{2}=2(\Vert x\Vert^{2}+\Vert y\Vert^{2}). \] \end_inset -es un operador acotado con -\begin_inset Formula $\Vert T\Vert\leq\sqrt{\sum_{i,j}|a_{ij}|^{2}}$ -\end_inset -. -\begin_inset Note Note +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 status open \begin_layout Plain Layout -nproof -\end_layout - +\begin_inset Formula $\implies]$ \end_inset \end_layout -\begin_layout Enumerate -Si -\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ -\end_inset - -, el -\series bold -operador integral con núcleo -\begin_inset Formula $k$ \end_inset - -\series default -, -\begin_inset Formula $K:L^{2}([a,b])\to L^{2}([a,b])$ +En general +\begin_inset Formula $\langle x,y+z\rangle=\overline{\langle y+z,x\rangle}=\overline{\langle y,x\rangle}+\overline{\langle z,x\rangle}=\langle x,y\rangle+\langle x,z\rangle$ \end_inset - dado por +, de donde \begin_inset Formula -\[ -K(f)(t)\coloneqq\int_{a}^{b}k(t,s)f(s)\dif s, -\] +\begin{multline*} +\Vert x+y\Vert^{2}+\Vert x-y\Vert^{2}=\langle x+y,x+y\rangle+\langle x-y,x-y\rangle=\\ +=\langle x,x\rangle+\langle x,y\rangle+\langle y,x\rangle+\langle y,y\rangle+\langle x,x\rangle-\langle x,y\rangle-\langle y,x\rangle+\langle y,y\rangle=2(\Vert x\Vert^{2}+\Vert y\Vert^{2}). +\end{multline*} \end_inset -es acotado con -\begin_inset Formula $\Vert K\Vert\leq\sqrt{\iint_{[a,b]\times[a,b]}|k|^{2}}$ -\end_inset -. -\begin_inset Note Note +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 status open \begin_layout Plain Layout -nproof -\end_layout - +\begin_inset Formula $\impliedby]$ \end_inset \end_layout -\begin_layout Enumerate -Una matriz infinita -\begin_inset Formula $(a_{ij})\in\mathbb{K}^{\mathbb{N}\times\mathbb{N}}$ \end_inset - satisface el -\series bold -test de Schur -\series default - si existen -\begin_inset Formula $C,D\in\mathbb{R}$ +Definimos +\begin_inset Formula $\langle\cdot,\cdot\rangle$ \end_inset - tales que + según la identidad de polarización, y queremos ver que es un producto escalar + cuya norma es la inicial. + Se tiene \begin_inset Formula \begin{align*} -\forall i\in\mathbb{N},\sum_{j}|a_{ij}| & \leq C, & \forall j\in\mathbb{N}, & \sum_{i}|a_{ij}|\leq D. +\langle x,x\rangle & =\frac{1}{4}\left(\Vert2x\Vert^{2}-\Vert x-x\Vert^{2}+\text{i}\Vert x+\text{i}x\Vert^{2}-\text{i}\Vert x-\text{i}x\Vert^{2}\right)=\\ + & =\frac{1}{4}\left(4\Vert x\Vert^{2}+\text{i}|1+\text{i}|^{2}\Vert x\Vert^{2}-\text{i}|1-\text{i}|^{2}\Vert x\Vert^{2}\right)=\Vert x\Vert^{2}, \end{align*} \end_inset -Entonces, si -\begin_inset Formula $G$ -\end_inset +y +\begin_inset Formula +\begin{align*} +4\langle x,y\rangle & =\Vert x+y\Vert^{2}-\Vert x-y\Vert^{2}+\text{i}\Vert x+\text{i}y\Vert^{2}-\text{i}\Vert x-\text{i}y\Vert^{2}\\ + & =\Vert y+x\Vert^{2}-\Vert y-x\Vert^{2}+\text{i}\Vert y-\text{i}x\Vert-\text{i}\Vert y+\text{i}x\Vert^{2}=4\overline{\langle y,x\rangle}\\ + & =\Vert-x-y\Vert^{2}-\Vert-x+y\Vert^{2}+\text{i}\Vert-x-\text{i}y\Vert^{2}-\text{i}\Vert-x+\text{i}y\Vert^{2}=-4\langle-x,y\rangle\\ + & =\Vert\text{i}x+\text{i}y\Vert^{2}-\Vert\text{i}x-\text{i}y\Vert^{2}+\text{i}\Vert\text{i}x-y\Vert^{2}-\text{i}\Vert\text{i}x+y\Vert^{2}=4\frac{\langle\text{i}x,y\rangle}{\text{i}}. +\end{align*} - y -\begin_inset Formula $H$ \end_inset - son -\begin_inset Formula $\mathbb{K}$ +Para ver que +\begin_inset Formula $\langle x+z,y\rangle=\langle x,y\rangle+\langle z,y\rangle$ \end_inset --espacios de Hilbert de dimensión -\begin_inset Formula $\aleph_{0}$ -\end_inset +, +\begin_inset Formula +\begin{multline*} +\Vert x+z+y\Vert^{2}-\Vert x+z-y\Vert^{2}=\left\Vert \left(x+\frac{y}{2}\right)+\left(z+\frac{y}{2}\right)\right\Vert ^{2}-\left\Vert \left(x+\frac{y}{2}\right)-\left(z+\frac{y}{2}\right)\right\Vert ^{2}=\\ +=2\left\Vert x+\frac{y}{2}\right\Vert ^{2}+2\left\Vert z+\frac{y}{2}\right\Vert ^{2}\cancel{-\Vert x-z\Vert^{2}}-2\left\Vert x-\frac{y}{2}\right\Vert ^{2}-2\left\Vert z-\frac{y}{2}\right\Vert ^{2}\cancel{+\Vert x-z\Vert^{2}}, +\end{multline*} - con bases ortonormales respectivas -\begin_inset Formula $(u_{n})_{n}$ \end_inset - y -\begin_inset Formula $(v_{n})_{n}$ -\end_inset +de donde +\begin_inset Formula +\begin{eqnarray*} +4\langle x+z,y\rangle & = & \Vert x+z+y\Vert^{2}-\Vert x+z-y\Vert^{2}+\text{i}\Vert x+z+\text{i}y\Vert^{2}-\text{i}\Vert x+z-\text{i}y\Vert^{2}\\ + & = & 2\left(\left\Vert x+\frac{y}{2}\right\Vert ^{2}+\left\Vert z+\frac{y}{2}\right\Vert ^{2}-\left\Vert x-\frac{y}{2}\right\Vert ^{2}-\left\Vert z-\frac{y}{2}\right\Vert \right)\\ + & & +2\text{i}\left(\left\Vert x+\text{i}\frac{y}{2}\right\Vert ^{2}+\left\Vert z+\text{i}\frac{z}{2}\right\Vert ^{2}-\left\Vert x-\text{i}\frac{y}{2}\right\Vert ^{2}-\left\Vert z-\text{i}\frac{y}{2}\right\Vert ^{2}\right)\\ + & = & 8\left\langle x,\frac{y}{2}\right\rangle +8\left\langle z,\frac{y}{2}\right\rangle , +\end{eqnarray*} -, -\begin_inset Formula $T:G\to H$ \end_inset - dada por +y por tanto \begin_inset Formula \[ -T(x)\coloneqq\sum_{i,j}a_{ij}\langle x,u_{i}\rangle v_{j} +\langle x+z,y\rangle=2\left\langle x,\frac{y}{2}\right\rangle +2\left\langle z,\frac{y}{2}\right\rangle =\langle x,y\rangle+\langle z,y\rangle, \] \end_inset -es un operador acotado con -\begin_inset Formula $\Vert T\Vert\leq\sqrt{CD}$ +donde en la segunda igualdad hemos usado la primera igualdad con +\begin_inset Formula $z=0$ +\end_inset + + o +\begin_inset Formula $x=0$ \end_inset . + Usando esto y que +\begin_inset Formula $\langle-x,y\rangle$ +\end_inset + + es fácil ver que +\begin_inset Formula $\langle ax,y\rangle=a\langle x,y\rangle$ +\end_inset + + para +\begin_inset Formula $a\in\mathbb{Q}$ +\end_inset + +; para +\begin_inset Formula $a\in\mathbb{R}$ +\end_inset + + se usa la continuidad de la norma y por tanto del producto escalar, y para + +\begin_inset Formula $a\in\mathbb{C}$ +\end_inset + + se usa +\begin_inset Formula $\langle\text{i}x,y\rangle=\text{i}\langle x,y\rangle$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $(\ell^{\infty},\Vert\cdot\Vert_{\infty})$ +\end_inset + + y +\begin_inset Formula $({\cal C}([a,b]),\Vert\cdot\Vert_{1})$ +\end_inset + + son espacios normados no prehilbertianos. \begin_inset Note Note status open @@ -405,40 +514,32 @@ nproof \end_layout -\begin_layout Enumerate -Sean -\begin_inset Formula $k:[a,b]\times[a,b]\to\mathbb{K}$ -\end_inset - - medible y -\begin_inset Formula $C,D\in\mathbb{R}$ +\begin_layout Standard +Dos espacios prehilbertianos +\begin_inset Formula $(H_{1},\langle\cdot,\cdot\rangle_{1})$ \end_inset - tales que -\begin_inset Formula -\begin{align*} -\forall t\in[a,b],\int_{a}^{b}|k(t,s)|\dif s & \leq C, & \forall s\in[a,b], & \int_{a}^{b}|k(t,s)|\dif t\leq D, -\end{align*} - + y +\begin_inset Formula $(H_{2},\langle\cdot,\cdot\rangle_{2})$ \end_inset -entonces -\begin_inset Formula $K:L^{2}([a,b])\to L^{2}([a,b])$ + son +\series bold +equivalentes +\series default + si existe un isomorfismo algebraico +\begin_inset Formula $T:H_{1}\to H_{2}$ \end_inset - dada por -\begin_inset Formula -\[ -K(f)(t)\coloneqq\int_{a}^{b}k(t,s)f(s)\dif s -\] - + con +\begin_inset Formula $\langle x,y\rangle_{1}=\langle T(x),T(y)\rangle_{2}$ \end_inset -es un operador acotado con -\begin_inset Formula $\Vert K\Vert\leq\sqrt{CD}$ + para todo +\begin_inset Formula $x,y\in H_{1}$ \end_inset -. +, si y sólo si existe un isomorfismo isométrico entre los espacios normados. \begin_inset Note Note status open @@ -456,91 +557,105 @@ Si \begin_inset Formula $H$ \end_inset - es un espacio de Hilbert de dimensión -\begin_inset Formula $\aleph_{0}$ + es un espacio prehilbertiano, +\begin_inset Formula $x,y\in H$ \end_inset - con base ortonormal -\begin_inset Formula $(e_{n})_{n}$ + son +\series bold +ortogonales +\series default +, +\begin_inset Formula $x\bot y$ \end_inset -, para -\begin_inset Formula $T\in L(H)$ +, si +\begin_inset Formula $\langle x,y\rangle=0$ \end_inset - y +. + Decimos que \begin_inset Formula $x\in H$ \end_inset -, -\begin_inset Formula -\[ -T(x)=\sum_{i,j}\langle x,e_{j}\rangle\langle Te_{j},e_{i}\rangle e_{i}, -\] + es +\series bold +ortogonal +\series default + a +\begin_inset Formula $M\subseteq H$ +\end_inset +, +\begin_inset Formula $x\bot M$ \end_inset -con lo que -\begin_inset Formula $T$ +, si +\begin_inset Formula $\forall y\in M,x\bot y$ \end_inset - admite una representación matricial -\begin_inset Formula $(\langle Te_{j},e_{i}\rangle)_{i,j}\in\mathbb{K}^{\mathbb{N}\times\mathbb{N}}$ +, y llamamos +\begin_inset Formula $M^{\bot}\coloneqq\{x\in H:x\bot M\}$ \end_inset . -\end_layout - -\begin_layout Standard -\begin_inset Formula $T\in L(X,Y)$ + Una familia +\begin_inset Formula $\{x_{i}\}_{i\in I}\subseteq H$ \end_inset es \series bold -de rango finito +ortogonal \series default si -\begin_inset Formula $\dim\text{Im}T<\infty$ +\begin_inset Formula $\forall i,j\in I,(i\neq j\implies x_{i}\bot x_{j})$ \end_inset -. - Dados espacios de Hilbert -\begin_inset Formula $G$ +, y es +\series bold +ortonormal +\series default + si además +\begin_inset Formula $\forall i,\Vert x_{i}\Vert=1$ \end_inset - y -\begin_inset Formula $H$ -\end_inset +. + Entonces: +\end_layout - y -\begin_inset Formula $T\in L(G,H)$ +\begin_layout Enumerate + +\series bold +Teorema de Pitágoras: +\series default + Si +\begin_inset Formula $x\bot y$ \end_inset , -\begin_inset Formula $T$ +\begin_inset Formula $\Vert x+y\Vert^{2}=\Vert x\Vert^{2}+\Vert y\Vert^{2}$ \end_inset - es de rango finito si y sólo si viene dada por -\begin_inset Formula $T(x)=\sum_{i=1}^{n}\langle x,u_{i}\rangle v_{i}$ -\end_inset +. +\begin_inset Note Note +status open - para ciertos -\begin_inset Formula $u_{1},\dots,u_{n}\in G$ -\end_inset +\begin_layout Plain Layout +nproof +\end_layout - y -\begin_inset Formula $v_{1},\dots,v_{n}\in H$ \end_inset -, en cuyo caso los -\begin_inset Formula $(v_{i})_{i}$ -\end_inset - pueden tomarse de forma que sean una base de -\begin_inset Formula $\text{Im}T$ +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $(x_{i})_{i\in I}$ \end_inset -. + es una familia ortogonal de elementos no nulos, es una familia linealmente + independiente. \begin_inset Note Note status open @@ -553,102 +668,90 @@ nproof \end_layout -\begin_layout Section -Inversión de operadores -\end_layout - -\begin_layout Standard +\begin_layout Enumerate Si -\begin_inset Formula $X$ +\begin_inset Formula $M\subseteq H$ \end_inset - e -\begin_inset Formula $Y$ +, +\begin_inset Formula $M^{\bot}$ \end_inset - son -\begin_inset Formula $\mathbb{K}$ + es un subespacio cerrado de +\begin_inset Formula $H$ \end_inset --espacios normados, -\begin_inset Formula $T\in{\cal L}(X,Y)$ -\end_inset +. +\begin_inset Note Note +status open - y -\begin_inset Formula $S\in{\cal L}(Y,X)$ -\end_inset +\begin_layout Plain Layout +nproof +\end_layout - cumplen -\begin_inset Formula $ST=1_{X}$ \end_inset - entonces -\begin_inset Formula $S$ -\end_inset - es el +\end_layout + +\begin_layout Standard + \series bold -inverso por la izquierda +Lema de Gram-Schmidt: \series default - de -\begin_inset Formula $T$ + Sean +\begin_inset Formula $H$ \end_inset - y -\begin_inset Formula $T$ + prehilbertiano, +\begin_inset Formula $\{x_{n}\}_{n}\subseteq H$ \end_inset - es el -\series bold -inverso por la derecha -\series default - de -\begin_inset Formula $S$ + una familia contable linealmente independiente y +\begin_inset Formula $(u_{n})_{n}$ \end_inset -, y -\begin_inset Formula $T\in{\cal L}(X,Y)$ + e +\begin_inset Formula $(y_{n})_{n}$ \end_inset - es -\series bold -invertible -\series default - si existe -\begin_inset Formula $T^{-1}\in{\cal L}(Y,X)$ + dadas por +\begin_inset Formula $u_{n}\coloneqq\frac{y_{n}}{\Vert y_{n}\Vert}$ \end_inset - inverso de -\begin_inset Formula $T$ +, +\begin_inset Formula $y_{0}\coloneqq x_{0}$ \end_inset - por la izquierda y por la derecha. - Llamamos -\begin_inset Formula ${\cal L}(X)\coloneqq\text{End}_{\mathbb{K}}X={\cal L}(X,X)$ + y para +\begin_inset Formula $n\geq1$ \end_inset - e +, \begin_inset Formula \[ -\text{Isom}X\coloneqq\text{Isom}_{\mathbb{K}}(X)\coloneqq\{T\in{\cal L}(X)\mid T\text{ invertible}\}. +y_{n}\coloneqq x_{n}-\sum_{j<n}\langle x_{n},u_{j}\rangle u_{j}, \] \end_inset -\end_layout +\begin_inset Formula $(u_{n})_{n}$ +\end_inset -\begin_layout Standard -Si -\begin_inset Formula $X$ + es una sucesión ortonormal en +\begin_inset Formula $H$ \end_inset - es de dimensión finita, -\begin_inset Formula $T\in{\cal L}(X)$ + y, para cada +\begin_inset Formula $n$ +\end_inset + +, +\begin_inset Formula $\text{span}\{u_{1},\dots,u_{n}\}=\text{span}\{x_{1},\dots,x_{n}\}$ \end_inset - tiene inverso por la izquierda si y sólo si lo tiene por la derecha, si - y sólo si es invertible. +. \begin_inset Note Note status open @@ -658,129 +761,98 @@ nproof \end_inset - Esto no es cierto en general en dimensión infinita; por ejemplo, el operador - -\series bold -desplazamiento a derecha -\series default -, -\begin_inset Formula $S_{\text{r}}\in\ell^{2}$ -\end_inset - dado por -\begin_inset Formula $S_{\text{r}}(x_{1},\dots,x_{n},\dots)\coloneqq(0,x_{1},\dots,x_{n},\dots)$ -\end_inset +\end_layout -, tiene como inverso por la izquierda el -\series bold -desplazamiento a izquierda -\series default -, -\begin_inset Formula $S_{\text{l}}\in\ell^{2}$ +\begin_layout Standard +Si +\begin_inset Formula $M$ \end_inset - dado por -\begin_inset Formula $S_{\text{l}}(x_{1},\dots,x_{n},\dots)\coloneqq(x_{2},\dots,x_{n},\dots)$ + es un subespacio de dimensión finita del espacio prehilbertiano +\begin_inset Formula $H$ \end_inset -, pero no tiene inverso por la derecha. +: \end_layout -\begin_layout Standard -Sea -\begin_inset Formula $T\in\text{End}_{\mathbb{K}}X$ +\begin_layout Enumerate +\begin_inset Formula $M$ \end_inset -, -\begin_inset Formula $\lambda\in\mathbb{K}$ -\end_inset + tiene una base algebraica formada por vectores ortonormales. +\begin_inset Note Note +status open - es un -\series bold -valor regular -\series default - de -\begin_inset Formula $T$ -\end_inset +\begin_layout Plain Layout +nproof +\end_layout - si -\begin_inset Formula $T-\lambda1_{X}$ \end_inset - es invertible, un -\series bold -valor espectral -\series default - en otro caso, y un -\series bold -valor propio -\series default - si -\begin_inset Formula $\ker(T-\lambda1_{X})\neq0$ -\end_inset -, en cuyo caso llamamos -\series bold -subespacio propio -\series default - de -\begin_inset Formula $T$ +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $M$ \end_inset - correspondiente al valor propio -\begin_inset Formula $\lambda$ + es equivalente a +\begin_inset Formula $\mathbb{K}^{\dim M}$ \end_inset - a -\begin_inset Formula $\ker(T-\lambda1_{X})$ +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + \end_inset - y + +\end_layout + +\begin_layout Standard +Un \series bold -valores propios +espacio de Hilbert \series default - de -\begin_inset Formula $T$ + es un espacio prehilbertiano completo. + Dado un espacio de medida +\begin_inset Formula $(\Omega,\Sigma,\mu)$ \end_inset - correspondientes al valor propio -\begin_inset Formula $\lambda$ +, +\begin_inset Formula $L^{2}(\Omega,\Sigma,\mu)$ \end_inset - a los elementos no nulos de este subespacio. - Llamamos -\series bold -resolvente -\series default - de -\begin_inset Formula $T$ + es un espacio de Hilbert con +\begin_inset Formula +\[ +\langle f,g\rangle\coloneqq\int_{\Omega}f\overline{g}\dif\mu, +\] + \end_inset - al conjunto de sus valores regulares, -\series bold -espectro -\series default - de -\begin_inset Formula $T$ +y en particular lo son +\begin_inset Formula $\ell^{2}$ \end_inset -, -\begin_inset Formula $\sigma(T)$ + con +\begin_inset Formula $\langle x,y\rangle\coloneqq\sum_{n}x_{n}\overline{y_{n}}$ \end_inset -, al conjunto de sus valores espectrales y -\series bold -espectro puntual -\series default - de -\begin_inset Formula $T$ + y +\begin_inset Formula $\ell_{n}^{2}$ \end_inset -, -\begin_inset Formula $\sigma_{\text{p}}(T)\subseteq\sigma(T)$ + con +\begin_inset Formula $\langle x,y\rangle\coloneqq\sum_{i}x_{i}\overline{y_{i}}$ \end_inset -, al conjunto de sus valores propios. +. \begin_inset Note Note status open @@ -794,12 +866,15 @@ nproof \end_layout \begin_layout Standard -Si -\begin_inset Formula $X$ +Son espacios prehilbertianos no completos: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $c_{00}$ \end_inset - es de dimensión finita, -\begin_inset Formula $\sigma_{\text{p}}(T)=\sigma(T)$ + con el producto escalar de +\begin_inset Formula $\ell^{2}$ \end_inset . @@ -812,12 +887,23 @@ nproof \end_inset - Sin embargo, -\begin_inset Formula $0\in\sigma(S_{\text{r}})$ + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $C([a,b])$ +\end_inset + + con el producto escalar de +\begin_inset Formula $L^{2}([a,b])$ +\end_inset + + con la medida de Lebesgue, y entonces +\begin_inset Formula $C([a,b])$ \end_inset - pero -\begin_inset Formula $\sigma_{\text{p}}(S_{\text{r}})=\emptyset$ + es denso en +\begin_inset Formula $L^{2}([a,b])$ \end_inset . @@ -833,33 +919,90 @@ nproof \end_layout +\begin_layout Section +Mejor aproximación +\end_layout + \begin_layout Standard -Como +Si +\begin_inset Formula $X$ +\end_inset + + es un espacio vectorial, +\begin_inset Formula $A\subseteq X$ +\end_inset + + es \series bold -teorema +convexo \series default -, si + si +\begin_inset Formula $\forall\lambda\in[0,1]$ +\end_inset + +, +\begin_inset Formula $\lambda A+(1-\lambda)A\subseteq A$ +\end_inset + +. + Si \begin_inset Formula $X$ \end_inset - es un espacio de Banach y -\begin_inset Formula $T\in{\cal L}(X)$ + es normado, +\begin_inset Formula $S\subseteq X$ \end_inset - cumple -\begin_inset Formula $\Vert T\Vert<1$ + no vacío y +\begin_inset Formula $x\in X$ \end_inset -, -\begin_inset Formula $1_{X}-T$ +, un +\begin_inset Formula $y\in S$ +\end_inset + + es un +\series bold +vector de mejor aproximación +\series default + de +\begin_inset Formula $x$ \end_inset - es invertible con inverso -\begin_inset Formula $\sum_{n\in\mathbb{N}}T^{n}$ + a +\begin_inset Formula $S$ \end_inset - y -\begin_inset Formula $\Vert(1_{X}-T)^{-1}\Vert\leq\frac{1}{1-\Vert T\Vert}$ + si +\begin_inset Formula $\Vert x-y\Vert=\min_{z\in S}\Vert x-z\Vert$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de mejor aproximación: +\series default + Si +\begin_inset Formula $H$ +\end_inset + + es un espacio prehilbertiano y +\begin_inset Formula $C\subseteq H$ +\end_inset + + es no vacío, convexo y completo, para cada +\begin_inset Formula $x\in H$ +\end_inset + + existe una mejor aproximación de +\begin_inset Formula $x$ +\end_inset + + a +\begin_inset Formula $C$ \end_inset . @@ -867,42 +1010,77 @@ teorema \series bold Demostración: \series default + Podemos suponer por traslación que +\begin_inset Formula $x=0$ +\end_inset + +, y llamamos +\begin_inset Formula $\alpha\coloneqq\inf_{z\in C}\Vert z\Vert$ +\end_inset + +. + Para la existencia tomamos una sucesión +\begin_inset Formula $\{y_{n}\}_{n}\subseteq C$ +\end_inset + + con +\begin_inset Formula $\lim_{n}\Vert y_{n}\Vert=\alpha$ +\end_inset + + y probamos que es de Cauchy, pues entonces por completitud existe +\begin_inset Formula $y\coloneqq\lim_{n}y_{n}\in C$ +\end_inset + + y por continuidad de la norma es +\begin_inset Formula $\Vert y\Vert=\alpha$ +\end_inset + +. Para -\begin_inset Formula $n\in\mathbb{N}$ +\begin_inset Formula $\varepsilon>0$ \end_inset -, -\begin_inset Formula $\sum_{k=0}^{n}\Vert T^{k}\Vert\leq\sum_{k=0}^{n}\Vert T\Vert^{k}\leq\sum_{k\in\mathbb{N}}\Vert T\Vert^{n}=\frac{1}{1-\Vert T\Vert}$ + existe +\begin_inset Formula $n_{0}$ \end_inset -, con lo que -\begin_inset Formula $\sum_{n}\Vert T^{n}\Vert$ + tal que si +\begin_inset Formula $n\geq n_{0}$ \end_inset - converge y, por ser -\begin_inset Formula $X$ + es +\begin_inset Formula $\Vert y_{n}\Vert^{2}<\alpha^{2}+\varepsilon$ \end_inset - de Banach, -\begin_inset Formula $S\coloneqq\sum_{n}T^{n}$ +, y por la ley del paralelogramo es +\begin_inset Formula +\[ +\left\Vert \frac{y_{n}-y_{m}}{2}\right\Vert ^{2}=\frac{1}{2}(\Vert y_{n}\Vert^{2}+\Vert y_{m}\Vert^{2})-\left\Vert \frac{y_{n}+y_{m}}{2}\right\Vert ^{2}\leq\frac{1}{2}(\alpha^{2}+\varepsilon+\alpha^{2}+\varepsilon)-\alpha^{2}=\varepsilon, +\] + \end_inset - también, pero -\begin_inset Formula $S(1_{X}-T)=S-ST=T^{0}=1_{X}$ +pues por convexidad +\begin_inset Formula $\frac{y_{n}+y_{m}}{2}\in S$ \end_inset - y análogamente -\begin_inset Formula $(1_{X}-T)S=1_{X}$ + y por tanto su norma es mayor o igual a +\begin_inset Formula $\alpha$ \end_inset -, luego -\begin_inset Formula $S=(1_{X}-T)^{-1}$ +. + Para la unicidad, si +\begin_inset Formula $y,z\in C$ \end_inset -, y finalmente + cumplen +\begin_inset Formula $\Vert y\Vert=\Vert z\Vert=\alpha$ +\end_inset + +, por un argumento como el anterior, \begin_inset Formula \[ -\Vert(1_{X}-T)^{-1}\Vert=\left\Vert \sum_{n}T^{n}\right\Vert \leq\sum_{n}\Vert T\Vert^{n}=\frac{1}{1-\Vert T\Vert}. +\left\Vert \frac{y-z}{2}\right\Vert ^{2}=\frac{1}{2}(\Vert y\Vert^{2}+\Vert z\Vert^{2})-\left\Vert \frac{y+z}{2}\right\Vert ^{2}\leq\frac{1}{2}(\alpha^{2}+\alpha^{2})-\alpha^{2}=0. \] \end_inset @@ -911,674 +1089,880 @@ Demostración: \end_layout \begin_layout Standard - +Como \series bold -Teorema de von Neumann: +teorema \series default - Sean -\begin_inset Formula $X$ +, si +\begin_inset Formula $Y$ +\end_inset + + es un subespacio de un espacio prehilbertiano +\begin_inset Formula $H$ \end_inset - es un espacio de Banach, -\begin_inset Formula $T\in{\cal L}(X)$ + y +\begin_inset Formula $x\in H$ \end_inset - invertible y -\begin_inset Formula $S\in{\cal L}(X)$ +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $y\in Y$ \end_inset - tal que -\begin_inset Formula $\Vert T-S\Vert<\frac{1}{\Vert T^{-1}\Vert}$ + es de mejor aproximación de +\begin_inset Formula $x$ \end_inset -, entonces -\begin_inset Formula $S$ + a +\begin_inset Formula $Y$ \end_inset - es invertible con -\begin_inset Formula -\begin{align*} -S^{-1} & =\sum_{n\in\mathbb{N}}(T^{-1}(T-S))^{n}T^{-1}, & \left\Vert T^{-1}-S^{-1}\right\Vert & \leq\frac{\Vert T^{-1}\Vert^{2}\Vert T-S\Vert}{1-\Vert T^{-1}\Vert\Vert T-S\Vert}. -\end{align*} + si y sólo si +\begin_inset Formula $x-y\bot Y$ +\end_inset + +. +\end_layout +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ \end_inset -\series bold -Demostración: -\series default - -\begin_inset Formula $\Vert T^{-1}(T-S)\Vert=\Vert T-S\Vert\Vert T^{-1}\Vert<1$ +\end_layout + +\end_inset + +Para +\begin_inset Formula $z\in Y$ \end_inset -, luego por el teorema anterior -\begin_inset Formula $1_{X}-T^{-1}(T-S)=T^{-1}S$ + y +\begin_inset Formula $a\in\mathbb{K}$ +\end_inset + +, como +\begin_inset Formula $y-az\in Y$ \end_inset - es invertible con +, \begin_inset Formula \[ -(T^{-1}S)^{-1}=\sum_{n}(T^{-1}(T-S))^{n}, +\Vert x-y\Vert^{2}\leq\Vert x-y+az\Vert^{2}=\Vert x-y\Vert^{2}+2\text{Re}(a\langle z,x-y\rangle)+|a|^{2}\Vert z\Vert^{2}, \] \end_inset luego -\begin_inset Formula $S=T(T^{-1}S)$ +\begin_inset Formula $0\leq2\text{Re}(a\langle z,x-y\rangle)+|a|^{2}\Vert z\Vert^{2}$ \end_inset - es invertible con inversa -\begin_inset Formula $(T^{-1}S)^{-1}T^{-1}$ + y, haciendo +\begin_inset Formula $a=t\langle x-y,z\rangle$ \end_inset - y -\begin_inset Formula -\begin{align*} -\Vert T^{-1}-S^{-1}\Vert & =\Vert T^{-1}-(T^{-1}S)^{-1}T^{-1}\Vert=\Vert(1_{X}-(T^{-1}S)^{-1})T^{-1}\Vert\leq\\ - & \leq\left\Vert \left(1_{X}-\sum_{n}(T^{-1}(T-S))^{n}\right)T^{-1}\right\Vert =\left\Vert \sum_{n\geq1}(T^{-1}(T-S))^{n}T^{-1}\right\Vert \leq\\ - & \leq\sum_{n\geq1}\Vert(T^{-1}(T-S))^{n}\Vert\Vert T^{-1}\Vert\leq\frac{\Vert T^{-1}\Vert^{2}\Vert T-S\Vert}{1-\Vert T^{-1}\Vert\Vert T-S\Vert}. -\end{align*} + con +\begin_inset Formula $t\in\mathbb{R}$ +\end_inset +, +\begin_inset Formula $0\leq2t|\langle x-y,z\rangle|^{2}+t^{2}|\langle x-y,z\rangle|^{2}\Vert z\Vert^{2}$ \end_inset +. + Si hubiera +\begin_inset Formula $z\in Y$ +\end_inset -\end_layout + con +\begin_inset Formula $\langle x-y,z\rangle\neq0$ +\end_inset -\begin_layout Standard -Así, si -\begin_inset Formula $X$ +, +\begin_inset Formula $0\leq2t+t^{2}\Vert z\Vert^{2}$ \end_inset - es un espacio de Banach, -\begin_inset Formula $\text{Isom}X$ + para todo +\begin_inset Formula $t\in\mathbb{R}$ \end_inset - es un abierto de -\begin_inset Formula ${\cal L}(X)$ +, pero si +\begin_inset Formula $\Vert z\Vert^{2}=0$ \end_inset - y -\begin_inset Formula $\cdot^{-1}:\text{Isom}X\to\text{Isom}X$ +, esto es negativo cuando +\begin_inset Formula $t<0$ +\end_inset + +, y si +\begin_inset Formula $\Vert z\Vert^{2}>0$ +\end_inset + +, es negativo al menos cuando +\begin_inset Formula $t=-\frac{1}{\Vert z\Vert^{2}}\#$ +\end_inset + +, luego +\begin_inset Formula $x-y\bot z$ \end_inset - es continua con la norma de -\begin_inset Formula ${\cal L}(X)$ + y +\begin_inset Formula $x-y\bot Y$ \end_inset . \end_layout -\begin_layout Standard -\begin_inset ERT +\begin_layout Enumerate +\begin_inset Argument item:1 status open \begin_layout Plain Layout - - -\backslash -begin{reminder}{FVC} -\end_layout - +\begin_inset Formula $\impliedby]$ \end_inset \end_layout -\begin_layout Standard +\end_inset -\series bold -Teorema de Liouville: -\series default - Toda función [...][compleja holomorfa y] acotada es constante. -\end_layout +Para +\begin_inset Formula $z\in Y$ +\end_inset -\begin_layout Standard -\begin_inset ERT -status open +, por el teorema de Pitágoras, +\begin_inset Formula +\[ +\Vert x-z\Vert^{2}=\Vert x-y+y-z\Vert^{2}=\Vert x-y\Vert^{2}+\Vert y-z\Vert^{2}\geq\Vert x-y\Vert^{2}. +\] -\begin_layout Plain Layout +\end_inset -\backslash -end{reminder} \end_layout +\end_deeper +\begin_layout Enumerate +Si existe una mejor aproximación de +\begin_inset Formula $x$ \end_inset + a +\begin_inset Formula $Y$ +\end_inset +, es única. \end_layout +\begin_deeper \begin_layout Standard +Sean +\begin_inset Formula $y,z\in Y$ +\end_inset -\series bold -Teorema de Gelfand: -\series default - Si -\begin_inset Formula $_{\mathbb{C}}X$ + de mejor aproximación, como +\begin_inset Formula $x-y,x-z\in Y^{\bot}$ \end_inset - es de Banach y -\begin_inset Formula $T\in{\cal L}(X)$ +, su diferencia +\begin_inset Formula $y-z\in Y^{\bot}\cap Y$ \end_inset -, -\begin_inset Formula $\sigma(T)$ +, luego +\begin_inset Formula $\langle y-z,y-z\rangle=0$ \end_inset - es compacto no vacío contenido en -\begin_inset Formula $B(0,\Vert T\Vert)$ + e +\begin_inset Formula $y=z$ \end_inset . - -\series bold -Demostración: -\series default - Si -\begin_inset Formula $\lambda\in\mathbb{C}\setminus B[0,\Vert T\Vert]$ +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $Y$ \end_inset -, -\begin_inset Formula $\frac{\Vert T\Vert}{|\lambda|}<1$ + es completo, hay vector de mejor aproximación. +\end_layout + +\begin_deeper +\begin_layout Standard +Por el teorema anterior (los subespacios son convexos). +\end_layout + +\end_deeper +\begin_layout Section +Determinante de Gram +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $H$ \end_inset -, luego -\begin_inset Formula $\lambda1_{X}-T=\lambda(1_{X}-\frac{T}{\lambda})$ + prehilbertiano y +\begin_inset Formula $M\leq H$ \end_inset - es invertible y -\begin_inset Formula $\lambda\notin\sigma(T)$ + de dimensión finita con base ortonormal +\begin_inset Formula $(e_{i})_{i}$ \end_inset . - La función -\begin_inset Formula $\psi:\mathbb{C}\to{\cal L}(X)$ -\end_inset +\end_layout - dada por -\begin_inset Formula $\psi(\lambda)\coloneqq\lambda1_{X}-T$ +\begin_layout Enumerate +Para +\begin_inset Formula $x\in H$ \end_inset - es continua y por tanto -\begin_inset Formula $\mathbb{C}\setminus\sigma(T)=\psi^{-1}(\text{Isom}X)$ + existe un único vector de aproximación de +\begin_inset Formula $x$ \end_inset - es abierto, con lo que -\begin_inset Formula $\sigma(T)$ + a +\begin_inset Formula $M$ \end_inset - es cerrado acotado y por tanto compacto. - Si fuera vacío, podemos definir -\begin_inset Formula $\phi:\mathbb{C}\to\text{Isom}X$ -\end_inset + dado por +\begin_inset Formula +\[ +\sum_{i}\langle x,e_{i}\rangle e_{i}. +\] - como -\begin_inset Formula $\phi(\lambda)\coloneqq(\lambda1_{X}-T)^{-1}$ \end_inset -, que es continua, pero para -\begin_inset Formula $\lambda,h\in\mathbb{C}$ + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $d(x,M)^{2}=\Vert x\Vert^{2}-\sum_{i}|\langle x,e_{i}\rangle|^{2}$ \end_inset -, -\begin_inset Formula -\begin{multline*} -\frac{\phi(\lambda+h)-\phi(\lambda)}{h}=\frac{((\lambda+h)1_{X}-T)^{-1}(\lambda1_{X}-T)^{-1}((\lambda1_{X}-T)-((\lambda+h)1_{X}-T))}{h}=\\ -=-((\lambda+h)1_{X}-T)^{-1}(\lambda1_{X}-T)^{-1}, -\end{multline*} +. +\end_layout +\begin_layout Standard +Llamamos +\series bold +determinante de Gram +\series default + de +\begin_inset Formula $(x_{i})_{i=1}^{n}$ \end_inset -de donde + a \begin_inset Formula \[ -\dot{\phi}(\lambda)=\lim_{h\to0}\frac{\phi(\lambda+h)-\phi(\lambda)}{h}=\lim_{h\to0}(-((\lambda+h)1_{X}-T)^{-1}(\lambda1_{X}-T)^{-1})=-((\lambda1_{X}-T)^{-1})^{2}, +G(x_{1},\dots,G_{n})\coloneqq\det(\langle x_{j},x_{i}\rangle)_{1\leq i\leq n}^{1\leq j\leq n}. \] \end_inset -con lo que -\begin_inset Formula $\phi$ +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $H$ +\end_inset + + es prehilbertiano, +\begin_inset Formula $M\leq H$ +\end_inset + + de dimensión finita con base +\begin_inset Formula $(b_{i})_{i}$ +\end_inset + + y +\begin_inset Formula $x\in H$ +\end_inset + +, el vector de mejor aproximación de +\begin_inset Formula $x$ \end_inset - es holomorfa y -\begin_inset Formula $\dot{\phi}\neq0$ + a +\begin_inset Formula $M$ \end_inset -, pero + es \begin_inset Formula \[ -\Vert\phi(\lambda)\Vert=\Vert(\lambda1_{X}-T)^{-1}\Vert=\frac{1}{|\lambda|}\left\Vert \left(1_{X}-\frac{T}{\lambda}\right)^{-1}\right\Vert =\frac{1}{|\lambda|}\left\Vert \sum_{n\in\mathbb{N}}\frac{T^{n}}{\lambda^{n}}\right\Vert \leq\frac{1}{|\lambda|}\frac{1}{1-\frac{\Vert T\Vert}{|\lambda|}}=\frac{1}{|\lambda|-\Vert T\Vert}, +\frac{-1}{G(b_{1},\dots,b_{n})}\begin{vmatrix}\langle x_{1},x_{1}\rangle & \langle x_{2},x_{1}\rangle & \cdots & \langle x_{n},x_{1}\rangle & \langle x,x_{1}\rangle\\ +\langle x_{1},x_{2}\rangle & \langle x_{2},x_{2}\rangle & \cdots & \langle x_{n},x_{2}\rangle & \langle x,x_{2}\rangle\\ +\vdots & \vdots & \ddots & \vdots & \vdots\\ +\langle x_{1},x_{n}\rangle & \langle x_{2},x_{n}\rangle & \cdots & \langle x_{n},x_{n}\rangle & \langle x,x_{n}\rangle\\ +x_{1} & x_{2} & \cdots & x_{n} & 0 +\end{vmatrix}, \] \end_inset -con lo que -\begin_inset Formula $\lim_{|\lambda|\to\infty}\Vert\phi(\lambda)\Vert=\infty$ -\end_inset +y +\begin_inset Formula +\[ +d(x,M)=\sqrt{\frac{G(x_{1},\dots,x_{n},x)}{G(x_{1},\dots,x_{n})}}. +\] - y por tanto, como -\begin_inset Formula $\phi$ \end_inset - es continua, es acotada y, por el teorema de Liouville -\begin_inset Foot + +\begin_inset Note Note status open \begin_layout Plain Layout -Que todavía no hemos visto que se de para espacios vectoriales infinitos - pero suponemos que se cumple. +nproof \end_layout \end_inset -, -\begin_inset Formula $\phi$ + +\end_layout + +\begin_layout Standard +Algunas aplicaciones: +\end_layout + +\begin_layout Enumerate + +\series bold +Resolución de sistemas sobre-dimensionados por mínimos cuadrados. + +\series default + Tenemos un fenómeno experimental que se puede modelar como una función + lineal +\begin_inset Formula $y(x)=a_{1}x_{1}+\dots+a_{n}x_{n}$ \end_inset - es constante y -\begin_inset Formula $\dot{\phi}=0\#$ +, pero no conocemos los +\begin_inset Formula $a_{i}$ \end_inset . -\end_layout + Hacemos +\begin_inset Formula $m$ +\end_inset -\begin_layout Standard -Dados -\begin_inset Formula $(a_{ij})\in\mathbb{K}^{\mathbb{N}\times\mathbb{N}}$ + experimentos fijando un +\begin_inset Formula $x_{i}$ \end_inset - con -\begin_inset Formula $\sum_{i,j}|a_{ij}|^{2}<1$ + en cada uno y midiendo +\begin_inset Formula $y_{i}\coloneqq y(x_{i})$ \end_inset - e -\begin_inset Formula $y\in\ell^{2}$ + para plantear un sistema de +\begin_inset Formula $m$ \end_inset -, el sistema -\begin_inset Formula -\begin{align*} -x_{k}-\sum_{j\in\mathbb{N}}a_{kj}x_{j} & =y_{k}, & k & \in\mathbb{N}, -\end{align*} + ecuaciones. + Solo hacen falta +\begin_inset Formula $n$ +\end_inset + experimentos cuidando que los +\begin_inset Formula $x_{i}$ \end_inset -tiene solución única -\begin_inset Formula $z\in\ell^{2}$ + sean linealmente independientes, pero en general conviene hacer más, +\begin_inset Formula $m>n$ \end_inset -, y para -\begin_inset Formula $n\in\mathbb{N}$ +. + Como las mediciones son aproximadas, el sistema puede ser incompatible, + por lo que se eligen los +\begin_inset Formula $a_{i}\in\mathbb{R}$ \end_inset -, el sistema truncado + de forma que se minimice \begin_inset Formula -\begin{align*} -x_{k}-\sum_{j\in\mathbb{N}_{n}}a_{kj}x_{j} & =y_{k}, & k & \in\mathbb{N}_{n} -\end{align*} +\[ +\sum_{i\in\mathbb{N}_{m}}\left(y_{i}-\sum_{j\in\mathbb{N}_{n}}a_{j}x_{ij}\right)^{2}=\left\Vert y-\sum_{j\in\mathbb{N}_{n}}a_{j}X_{j}\right\Vert ^{2}, +\] \end_inset -tiene una única solución -\begin_inset Formula $z_{n}\in\mathbb{K}^{n}$ +donde +\begin_inset Formula $X_{j}\coloneqq(x_{1j},\dots,x_{mj})$ \end_inset - de modo que, si -\begin_inset Formula $J_{n}:\mathbb{K}^{n}\to\ell^{2}$ +. + Si +\begin_inset Formula $X_{1},\dots,X_{n}$ \end_inset - es la inclusión canónica de -\begin_inset Formula $\mathbb{K}^{n}$ + son linealmente independientes, sea +\begin_inset Formula $M\coloneqq\text{span}\{X_{1},\dots,X_{n}\}<\mathbb{R}^{m}$ \end_inset - en las -\begin_inset Formula $n$ +, buscamos el vector +\begin_inset Formula $Z\in M$ \end_inset - primeras coordenadas, -\begin_inset Formula $\lim_{n}J_{n}(z_{n})=z$ + de mejor aproximación de +\begin_inset Formula $y$ \end_inset -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout + en +\begin_inset Formula $M$ +\end_inset + que, expresado respecto de la base +\begin_inset Formula $(X_{1},\dots,X_{n})$ \end_inset +, nos dará el vector +\begin_inset Formula $(a_{1},\dots,a_{n})$ +\end_inset + buscado. \end_layout -\begin_layout Standard -Sean -\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +\begin_layout Enumerate + +\series bold +Ajustes polinómicos por mínimos cuadrados. + +\series default + Queremos modelar un fenómeno experimental como una función polinómica +\begin_inset Formula $f:[a,b]\to\mathbb{R}$ +\end_inset + +, y tenemos +\begin_inset Formula $k$ +\end_inset + + observaciones de la forma +\begin_inset Formula $f(t_{i})=y_{i}$ \end_inset con -\begin_inset Formula $\Vert k\Vert_{2}<1$ +\begin_inset Formula $t_{1}<\dots<t_{k}$ \end_inset - y -\begin_inset Formula $g\in L^{2}([a,b])$ +. + Existe un polinomio de grado máximo +\begin_inset Formula $k-1$ \end_inset -, la ecuación -\begin_inset Formula -\begin{align*} -f(t)-\int_{a}^{b}k(t,s)f(s)\dif s & =g(t), & t & \in[a,b], -\end{align*} + que cumple esto, pero muchas veces +\begin_inset Formula $k$ +\end_inset + + es muy grande y esto complica los cálculos y puede llevar al +\emph on +\lang english +overfitting +\emph default +\lang spanish + o fenómeno de Runge. + Entonces buscamos un polinomio +\begin_inset Formula $f$ +\end_inset + de grado máximo +\begin_inset Formula $n$ +\end_inset + + bastante menor que +\begin_inset Formula $k-1$ \end_inset -tiene solución única que es de la forma + que minimice \begin_inset Formula \[ -g(t)+\int_{a}^{b}\tilde{k}(t,s)g(s)\dif s +\sum_{i\in\mathbb{N}_{k}}|y_{i}-f(t_{i})|^{2}=\left\Vert y-\sum_{j=0}^{n}f_{j}t^{j}\right\Vert ^{2}, \] \end_inset -para cierto -\begin_inset Formula $\tilde{k}\in L^{2}([a,b]\times[a,b])$ +donde +\begin_inset Formula $t^{j}\coloneqq(t_{1}^{j},\dots,t_{k}^{j})$ \end_inset . -\begin_inset Note Note -status open + Para ello, como para +\begin_inset Formula $k\geq2$ +\end_inset -\begin_layout Plain Layout -nproof -\end_layout + los +\begin_inset Formula $t^{j}$ +\end_inset + + son linealmente independientes, consideramos +\begin_inset Formula $M\coloneqq\text{span}\{1,t,t^{2},\dots,t^{n}\}<\mathbb{R}^{n+1}$ +\end_inset + + y buscamos la mejor aproximación de +\begin_inset Formula $y$ +\end_inset + a +\begin_inset Formula $M$ \end_inset +. +\end_layout +\begin_layout Section +Teorema de la proyección \end_layout \begin_layout Standard -Si -\begin_inset Formula $K$ -\end_inset - es el operador integral con núcleo -\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +\series bold +Teorema de la proyección: +\series default + Si +\begin_inset Formula $H$ \end_inset -, -\begin_inset Formula $\Vert k\Vert_{2}<1$ + es un espacio de Hilbert con un subespacio cerrado +\begin_inset Formula $M$ \end_inset y -\begin_inset Formula -\[ -\forall t\in[a,b],\int_{a}^{b}|k(t,s)|^{2}\dif s\leq C, -\] - +\begin_inset Formula $P_{M}:H\to M$ \end_inset -para -\begin_inset Formula $g\in L^{2}([a,b])$ + la +\series bold +proyección ortogonal +\series default + de +\begin_inset Formula $H$ \end_inset -, la serie -\begin_inset Formula $\sum_{n}K^{n}g$ + sobre +\begin_inset Formula $M$ \end_inset - converge en -\begin_inset Formula $L^{2}([a,b])$ + que asigna a cada +\begin_inset Formula $x\in H$ \end_inset - y converge absoluta y uniformemente en -\begin_inset Formula $[a,b]$ + la mejor aproximación de +\begin_inset Formula $x$ \end_inset -. -\begin_inset Note Note -status open + a +\begin_inset Formula $M$ +\end_inset -\begin_layout Plain Layout -nproof +: \end_layout +\begin_layout Enumerate +\begin_inset Formula $H$ \end_inset - -\end_layout - -\begin_layout Standard -Con todo esto, para -\begin_inset Formula $g\in L^{2}([0,1])$ + es suma directa topológica de +\begin_inset Formula $M$ \end_inset y -\begin_inset Formula $\lambda\in\mathbb{R}\setminus\{1\}$ +\begin_inset Formula $M^{\bot}$ \end_inset -, la ecuación integral -\begin_inset Formula -\[ -f(t)-\lambda\int_{0}^{1}\text{e}^{t-s}f(s)\dif s=g(t) -\] +, +\begin_inset Formula $P_{M}$ +\end_inset + es la proyección canónica y, si +\begin_inset Formula $P_{M^{\bot}}:H\to M^{\bot}$ \end_inset -tiene solución única -\begin_inset Formula -\[ -f(t)=g(t)+\frac{\lambda}{1-\lambda}\int_{0}^{1}\text{e}^{t-s}g(s)\dif s. -\] + es la otra proyección canónica, si +\begin_inset Formula $M\neq0$ +\end_inset +, +\begin_inset Formula $\Vert P_{M}\Vert=1$ \end_inset +, y si +\begin_inset Formula $M^{\bot}\neq0$ +\end_inset -\end_layout +, +\begin_inset Formula $\Vert P_{M^{\bot}}\Vert=1$ +\end_inset -\begin_layout Section -Operador adjunto +. \end_layout +\begin_deeper \begin_layout Standard -Si -\begin_inset Formula $G$ +Por la definición de producto escalar, +\begin_inset Formula $M^{\bot}\leq H$ \end_inset - y -\begin_inset Formula $H$ +. + Claramente +\begin_inset Formula $M\cap M^{\bot}=0$ \end_inset - son espacios de Hilbert y -\begin_inset Formula $T\in L(G,H)$ +, y para +\begin_inset Formula $x\in M$ \end_inset -: -\end_layout - -\begin_layout Enumerate -\begin_inset Formula -\[ -\Vert T\Vert=\sup_{x,y\in\overline{B_{G}}}|\langle Tx,y\rangle|=\sup_{x,y\in B_{G}}|\langle Tx,y\rangle|. -\] - +, como +\begin_inset Formula $y\coloneqq P_{M}(x)$ \end_inset + cumple +\begin_inset Formula $x-y\bot M$ +\end_inset -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout +, +\begin_inset Formula $x=y+z$ +\end_inset + con +\begin_inset Formula $y\in M$ \end_inset + y +\begin_inset Formula $z\coloneqq x-y\in M^{\bot}$ +\end_inset -\end_layout +, luego +\begin_inset Formula $M+M^{\bot}=H$ +\end_inset -\begin_layout Enumerate -Existe un único -\begin_inset Formula $T^{*}\in L(H,G)$ + y +\begin_inset Formula $H$ \end_inset - tal que -\begin_inset Formula $\forall x\in G,\forall y\in H,\langle Tx,y\rangle\equiv\langle x,T^{*}y\rangle$ + es suma directa algebraica de +\begin_inset Formula $M$ \end_inset -, el -\series bold -adjunto -\series default - de -\begin_inset Formula $T$ + y +\begin_inset Formula $M^{\bot}$ \end_inset . -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout + +\begin_inset Formula $P_{M}$ +\end_inset + es la proyección canónica porque, si +\begin_inset Formula $y\in M$ \end_inset + y +\begin_inset Formula $z\in M^{\bot}$ +\end_inset -\end_layout +, +\begin_inset Formula $(y+z)-y=z\bot M$ +\end_inset -\begin_layout Enumerate -\begin_inset Formula $\Vert T\Vert=\Vert T^{*}\Vert$ +, y por unicidad de la mejor aproximación, +\begin_inset Formula $P_{M}(y+z)=y$ \end_inset . -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout + +\begin_inset Formula $P_{M}$ +\end_inset + y +\begin_inset Formula $P_{M^{\bot}}$ \end_inset + son lineales por ser proyecciones canónicas, y para +\begin_inset Formula $x=y+z\in S_{H}$ +\end_inset -\end_layout + con +\begin_inset Formula $y\in M$ +\end_inset -\begin_layout Standard -Sean -\begin_inset Formula $G$ + y +\begin_inset Formula $z\in M^{\bot}$ \end_inset , -\begin_inset Formula $H$ +\begin_inset Formula $\Vert x\Vert^{2}=\Vert y\Vert^{2}+\Vert z\Vert^{2}=\Vert P_{M}(x)\Vert^{2}+\Vert P_{M^{\bot}}(x)\Vert^{2}$ \end_inset y -\begin_inset Formula $J$ +\begin_inset Formula $\Vert P_{M}(x)\Vert,\Vert P_{M^{\bot}}(x)\Vert\leq\Vert x\Vert=1$ \end_inset - -\begin_inset Formula $\mathbb{K}$ +, lo que prueba la continuidad y por tanto que +\begin_inset Formula $M$ \end_inset --espacios de Hilbert, -\begin_inset Formula $A,B\in L(G,H)$ + es topológica. + Además, si +\begin_inset Formula $M\neq0$ \end_inset -, -\begin_inset Formula $C\in L(H,J)$ +, existe +\begin_inset Formula $y\in S_{M}$ \end_inset y -\begin_inset Formula $\alpha\in\mathbb{K}$ +\begin_inset Formula $\Vert P_{M}(y)\Vert=\Vert y\Vert=1$ \end_inset -: -\end_layout +, luego +\begin_inset Formula $\Vert P_{M}\Vert=1$ +\end_inset -\begin_layout Enumerate -\begin_inset Formula $(A+B)^{*}=A^{*}+B^{*}$ +, y análogamente para +\begin_inset Formula $M^{\bot}$ \end_inset . -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof \end_layout +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $P_{M}(H)=M$ \end_inset +, +\begin_inset Formula $\ker P_{M}=M^{\bot}$ +\end_inset + + y +\begin_inset Formula $P_{M^{\bot}}=1_{H}-P_{M}$ +\end_inset +. \end_layout \begin_layout Enumerate -\begin_inset Formula $(\alpha A)^{*}=\overline{\alpha}A^{*}$ +Para +\begin_inset Formula $x,y\in H$ \end_inset -. -\begin_inset Note Note -status open +, +\begin_inset Formula $\langle P_{M}(x),y\rangle=\langle x,P_{M}(y)\rangle$ +\end_inset -\begin_layout Plain Layout -nproof + y +\begin_inset Formula $\langle P_{M^{\bot}}(x),y\rangle=\langle x,P_{M^{\bot}}(y)\rangle$ +\end_inset + +. \end_layout +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula $x=x_{1}+x_{2}$ +\end_inset + + e +\begin_inset Formula $y=y_{1}+y_{2}$ +\end_inset + + con +\begin_inset Formula $x_{1},y_{1}\in M$ +\end_inset + + y +\begin_inset Formula $x_{2},y_{2}\in M^{\bot}$ +\end_inset + +, +\begin_inset Formula $\langle P_{M}(x),y\rangle=\langle x_{1},y_{1}+y_{2}\rangle=\langle x_{1},y_{1}\rangle=\langle x_{1}+x_{2},y_{1}\rangle=\langle x,P_{M}(y)\rangle$ \end_inset +, y para +\begin_inset Formula $P_{M^{\bot}}$ +\end_inset + es análogo. \end_layout +\end_deeper \begin_layout Enumerate -\begin_inset Formula $A^{**}=A$ +\begin_inset Formula $M^{\bot\bot}=M$ \end_inset . -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof \end_layout +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula $x\in M$ \end_inset +, para +\begin_inset Formula $y\in M^{\bot}$ +\end_inset -\end_layout +, +\begin_inset Formula $\langle y,x\rangle=\overline{\langle x,y\rangle}=0$ +\end_inset -\begin_layout Enumerate -\begin_inset Formula $(AC)^{*}=C^{*}A^{*}$ +, luego +\begin_inset Formula $x\in M^{\bot\bot}$ \end_inset . -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout + Si +\begin_inset Formula $x\in M^{\bot\bot}\subseteq H$ +\end_inset +, sean +\begin_inset Formula $y\in M$ \end_inset + y +\begin_inset Formula $z\in M^{\bot}$ +\end_inset -\end_layout + con +\begin_inset Formula $x=y+z$ +\end_inset -\begin_layout Enumerate -Si -\begin_inset Formula $A$ +, +\begin_inset Formula $0=\langle x,z\rangle=\langle y,z\rangle+\langle z,z\rangle=\langle z,z\rangle=\Vert z\Vert^{2}$ \end_inset - es invertible, también lo es -\begin_inset Formula $A^{*}$ +, luego +\begin_inset Formula $z=0$ \end_inset y -\begin_inset Formula $(A^{*})^{-1}=(A^{-1})^{*}$ +\begin_inset Formula $x\in M$ \end_inset . +\end_layout + +\end_deeper +\begin_layout Standard +Esto no es cierto si +\begin_inset Formula $M$ +\end_inset + + no es cerrado ni si +\begin_inset Formula $H$ +\end_inset + + no es completo. \begin_inset Note Note status open @@ -1591,11 +1975,9 @@ nproof \end_layout -\begin_layout Enumerate -\begin_inset Formula $\Vert AA^{*}\Vert=\Vert A^{*}A\Vert=\Vert A\Vert^{2}$ -\end_inset - -. +\begin_layout Standard +Un espacio normado es de Hilbert si y sólo si cada subespacio cerrado tiene + un complementario topológico. \begin_inset Note Note status open @@ -1608,168 +1990,206 @@ nproof \end_layout -\begin_layout Enumerate -\begin_inset Formula $\ker A=(\text{Im}A^{*})^{\bot}$ +\begin_layout Standard +Si +\begin_inset Formula $H$ \end_inset - y -\begin_inset Formula $\ker A^{*}=(\text{Im}A)^{\bot}.$ + es un espacio de Hilbert, +\begin_inset Formula $S\subseteq H$ \end_inset + es total si y sólo si +\begin_inset Formula $S^{\bot}=0$ +\end_inset -\begin_inset Note Note -status open +. +\end_layout -\begin_layout Plain Layout -nproof +\begin_layout Section +Dual de un espacio de Hilbert \end_layout +\begin_layout Standard + +\series bold +Teorema de Riesz-Fréchet: +\series default + Dados un espacio de Hilbert +\begin_inset Formula $H$ \end_inset + y un operador +\begin_inset Formula $f:H\to\mathbb{K}$ +\end_inset -\end_layout +, +\begin_inset Formula $f$ +\end_inset -\begin_layout Enumerate -\begin_inset Formula $(\ker A)^{\bot}=\overline{\text{Im}A^{*}}$ + es acotado si y sólo si existe +\begin_inset Formula $y\in H$ \end_inset - y -\begin_inset Formula $(\ker A^{*})^{\bot}=\overline{\text{Im}A}$ + con +\begin_inset Formula $f=\langle\cdot,y\rangle$ +\end_inset + +, en cuyo caso +\begin_inset Formula $y$ +\end_inset + + es único y +\begin_inset Formula $\Vert f\Vert=\Vert y\Vert$ \end_inset . -\begin_inset Note Note +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 status open \begin_layout Plain Layout -nproof -\end_layout - +\begin_inset Formula $\implies]$ \end_inset \end_layout -\begin_layout Standard -Ejemplos: -\end_layout +\end_inset -\begin_layout Enumerate -En -\begin_inset Formula $\ell^{2}$ +Para la unicidad, si +\begin_inset Formula $f(x)=\langle x,y\rangle=\langle x,z\rangle$ \end_inset -, el adjunto de -\begin_inset Formula $S_{\text{r}}$ + para todo +\begin_inset Formula $x\in H$ \end_inset - es -\begin_inset Formula $S_{\text{l}}$ +, +\begin_inset Formula $\langle x,y-z\rangle=0$ \end_inset - y viceversa. -\begin_inset Note Note -status open +, luego +\begin_inset Formula $y-z\bot H$ +\end_inset -\begin_layout Plain Layout -nproof -\end_layout + y, como +\begin_inset Formula $H^{\bot}=0$ +\end_inset +, +\begin_inset Formula $y=z$ \end_inset +. + Para la existencia, si +\begin_inset Formula $f=0$ +\end_inset -\end_layout + tomamos +\begin_inset Formula $y=0$ +\end_inset -\begin_layout Enumerate -Si -\begin_inset Formula $H$ +, y en otro caso, +\begin_inset Formula $Y\coloneqq\ker f$ \end_inset - es un espacio de Hilbert y -\begin_inset Formula $K\in{\cal L}(H)$ + es un subespacio cerrado de +\begin_inset Formula $H$ \end_inset - es un operador de rango finito dado por -\begin_inset Formula $K(x)=\sum_{i=1}^{n}\langle x,u_{i}\rangle v_{i}$ + y por tanto +\begin_inset Formula $H=Y\oplus Y^{\bot}$ \end_inset -, su adjunto es de rango finito dado por -\begin_inset Formula $K^{*}(x)=\sum_{i=1}^{n}\langle x,v_{i}\rangle u_{i}$ +, con +\begin_inset Formula $\dim Y^{\bot}=\dim\text{Im}f=1$ \end_inset . -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout + Sea entonces +\begin_inset Formula $z\in Y^{\bot}$ +\end_inset + unitario, la proyección ortogonal de un +\begin_inset Formula $x\in H$ \end_inset + sobre +\begin_inset Formula $Y^{\bot}$ +\end_inset -\end_layout + es +\begin_inset Formula $\langle x,z\rangle z$ +\end_inset -\begin_layout Enumerate -Si -\begin_inset Formula $H$ +, luego +\begin_inset Formula $x-\langle x,z\rangle z\in Y$ \end_inset - es un espacio de Hilbert con base -\begin_inset Formula $(e_{i})_{i\in I}$ + y +\begin_inset Formula +\[ +f(x)=f(x-\langle x,z\rangle z+\langle x,z\rangle z)=f(\langle x,z\rangle z)=\langle x,z\rangle f(z)=\langle x,\overline{f(z)}z\rangle\eqqcolon\langle x,y\rangle. +\] + \end_inset - y -\begin_inset Formula $A\in{\cal L}(H)$ +Para +\begin_inset Formula $x\in S_{H}$ \end_inset - es un operador diagonal con -\begin_inset Formula $A(e_{i})\coloneqq\lambda_{i}e_{i}$ +, por la desigualdad de Cauchy-Schwartz, +\begin_inset Formula $\Vert f(x)\Vert^{2}=|\langle x,y\rangle|^{2}\leq\langle x,x\rangle\langle y,y\rangle=\Vert y\Vert^{2}$ \end_inset - para ciertos -\begin_inset Formula $\lambda_{i}$ +, luego +\begin_inset Formula $\Vert f\Vert\leq\Vert y\Vert$ \end_inset -, entonces -\begin_inset Formula $A^{*}$ +, pero +\begin_inset Formula $f(\frac{y}{\Vert y\Vert})=\frac{f(y)}{\Vert y\Vert}=\frac{\Vert y\Vert^{2}}{\Vert y\Vert}=\Vert y\Vert$ \end_inset - es un operador diagonal con -\begin_inset Formula $A^{*}(e_{i})=\overline{\lambda_{i}}e_{i}$ +, luego +\begin_inset Formula $\Vert f\Vert=\Vert y\Vert$ \end_inset . -\begin_inset Note Note +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 status open \begin_layout Plain Layout -nproof -\end_layout - +\begin_inset Formula $\impliedby]$ \end_inset \end_layout -\begin_layout Enumerate -Si -\begin_inset Formula $K\in{\cal L}(L^{2}([a,b]))$ \end_inset - es el operador multiplicación por -\begin_inset Formula $g\in L^{\infty}([a,b])$ -\end_inset -, -\begin_inset Formula $K^{*}$ +\begin_inset Formula $f\coloneqq\langle\cdot,y\rangle$ \end_inset - es el operador multiplicación por -\begin_inset Formula $\overline{g}$ + es lineal, y es continua por el argumento anterior que prueba que +\begin_inset Formula $\Vert f\Vert=\Vert y\Vert$ \end_inset . +\end_layout + +\begin_layout Standard +El teorema no es válido si +\begin_inset Formula $H$ +\end_inset + + no es completo. \begin_inset Note Note status open @@ -1782,32 +2202,35 @@ nproof \end_layout -\begin_layout Enumerate -Si +\begin_layout Standard +Sean \begin_inset Formula $H$ \end_inset - es un espacio de Hilbert separable con base hilbertiana -\begin_inset Formula $(e_{n})_{n\in I}$ + un espacio de Hilbert y +\begin_inset Formula $T:H^{*}\to H$ \end_inset - y -\begin_inset Formula $A\in{\cal L}(H)$ + que a cada +\begin_inset Formula $f$ \end_inset - se expresa en dicha base como -\begin_inset Formula $(a_{ij})\in\mathbb{K}^{I\times I}$ + le asocia el +\begin_inset Formula $y$ \end_inset -, -\begin_inset Formula $A^{*}$ + con +\begin_inset Formula $f=\langle\cdot,y\rangle$ \end_inset - se expresa en dicha base como -\begin_inset Formula $(\overline{a_{ji}})\in\mathbb{K}^{I\times I}$ +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $T$ \end_inset -. + es biyectiva, isométrica y lineal conjugada. \begin_inset Note Note status open @@ -1821,20 +2244,11 @@ nproof \end_layout \begin_layout Enumerate -Si -\begin_inset Formula $K\in{\cal L}(L^{2}([a,b]))$ +\begin_inset Formula $H^{*}$ \end_inset - es el operador integral con núcleo -\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ -\end_inset - -, -\begin_inset Formula $K^{*}$ -\end_inset - - es el operador integral con núcleo -\begin_inset Formula $k^{*}(t,s)\coloneqq\overline{k(s,t)}$ + es un espacio de Hilbert con el producto escalar +\begin_inset Formula $\langle f,g\rangle^{*}\coloneqq\langle T(g),T(f)\rangle$ \end_inset . @@ -1851,23 +2265,14 @@ nproof \end_layout \begin_layout Enumerate -Si -\begin_inset Formula $H$ +\begin_inset Formula $J:H\to H^{**}$ \end_inset - es un espacio de Hilbert, -\begin_inset Formula $M\leq H$ -\end_inset - - es cerrado e -\begin_inset Formula $\iota:M\hookrightarrow H$ -\end_inset - - es la inclusión, -\begin_inset Formula $\iota^{*}:H\to M$ + dada por +\begin_inset Formula $J(x)(f)\coloneqq f(x)$ \end_inset - es la proyección ortogonal. + es un isomorfismo algebraico isométrico. \begin_inset Note Note status open @@ -1881,63 +2286,103 @@ nproof \end_layout \begin_layout Standard -En general el adjunto no existe en espacios prehilbertianos. - Por ejemplo, -\begin_inset Formula $T:c_{00}\to c_{00}$ +Dado un un +\begin_inset Formula $\mathbb{K}$ \end_inset - dado por -\begin_inset Formula $T(x)\coloneqq\sum_{n\geq1}\frac{x_{n}}{n}(1,0,\dots)$ +-espacio vectorial +\begin_inset Formula $X$ \end_inset - no tiene adjunto en -\begin_inset Formula $(c_{00},\langle\cdot,\cdot\rangle_{2})$ +, +\begin_inset Formula $B:X\times X\to\mathbb{K}$ \end_inset -. -\begin_inset Note Note -status open + es +\series bold +bilineal +\series default + si las +\begin_inset Formula $B(\cdot,y)$ +\end_inset -\begin_layout Plain Layout -nproof -\end_layout + y +\begin_inset Formula $B(x,\cdot)$ +\end_inset + son lineales, +\series bold +sesquilineal +\series default + si las +\begin_inset Formula $B(\cdot,y)$ \end_inset + son lineales y las +\begin_inset Formula $B(x,\cdot)$ +\end_inset -\end_layout + son lineales conjugadas, +\series bold +simétrica +\series default + si +\begin_inset Formula $B(x,y)\equiv B(y,x)$ +\end_inset -\begin_layout Standard -Si -\begin_inset Formula $H$ + y +\series bold +positiva +\series default + si +\begin_inset Formula $\forall x\in X,B(x,x)\geq0$ \end_inset - es un espacio de Hilbert, -\begin_inset Formula $A\in{\cal L}(H)$ +. + Si además +\begin_inset Formula $X$ +\end_inset + + es normado, +\begin_inset Formula $B$ \end_inset es \series bold -autoadjunto +acotada \series default - o + si +\begin_inset Formula $\exists M>0:\forall x,y\in X,|B(x,y)|\leq M\Vert x\Vert\Vert y\Vert$ +\end_inset + +, y es \series bold -hermitiano +fuertemente positiva \series default si -\begin_inset Formula $A^{*}=A$ +\begin_inset Formula $\exists c>0:\forall x\in X,B(x,x)\geq c\Vert x\Vert^{2}$ \end_inset . - Si -\begin_inset Formula $A,B\in{\cal L}(H)$ + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $B$ \end_inset - son autoadjuntos: -\end_layout + es bilineal o sesquilineal, es acotada si y sólo si es continua, y para + todo +\begin_inset Formula $x$ +\end_inset -\begin_layout Enumerate -\begin_inset Formula $\Vert A\Vert=\sup_{x\in\overline{B_{H}}}|\langle Ax,x\rangle|=\sup_{x\in S_{H}}|\langle Ax,x\rangle|$ + e +\begin_inset Formula $y$ +\end_inset + + es +\begin_inset Formula $2B(x,x)+2B(y,y)=B(x+y,x+y)+B(x-y,x-y)$ \end_inset . @@ -1953,593 +2398,843 @@ nproof \end_layout -\begin_layout Enumerate -Los valores propios de -\begin_inset Formula $A$ +\begin_layout Standard + +\series bold +Teorema de Lax-Milgram: +\series default + Sean +\begin_inset Formula $H$ \end_inset - son reales. -\begin_inset Note Note -status open + un espacio de Hilbert y +\begin_inset Formula $B$ +\end_inset -\begin_layout Plain Layout -nproof -\end_layout + una +\begin_inset Formula $H$ +\end_inset +-forma sesquilineal acotada y fuertemente positiva, existe un único isomorfismo + de espacios de Hilbert +\begin_inset Formula $T:H\to H$ \end_inset + tal que +\begin_inset Formula $\forall x,y\in H,B(x,y)=\langle x,T(y)\rangle$ +\end_inset -\end_layout +. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula +\[ +Y\coloneqq\{y\in H\mid\exists z\in H:\langle\cdot,y\rangle=B(\cdot,z)\}, +\] -\begin_layout Enumerate -\begin_inset Formula $\forall x\in H,\langle Ax,x\rangle=0\implies A=0$ \end_inset -. -\begin_inset Note Note -status open -\begin_layout Plain Layout -nproof -\end_layout +\begin_inset Formula $0\in Y$ +\end_inset + tomando +\begin_inset Formula $z=0$ \end_inset + y +\begin_inset Formula $z$ +\end_inset -\end_layout + está unívocamente determinado por +\begin_inset Formula $y$ +\end_inset -\begin_layout Enumerate -\begin_inset Formula $H=\ker A\oplus\overline{\text{Im}A}$ +, ya que si +\begin_inset Formula $\langle\cdot,y\rangle=B(\cdot,z)=B(\cdot,z')$ \end_inset -. -\begin_inset Note Note -status open + entonces +\begin_inset Formula $B(\cdot,z-z')=0$ +\end_inset -\begin_layout Plain Layout -nproof -\end_layout + y en particular +\begin_inset Formula $0=B(z-z',z-z')\geq c\Vert z-z'\Vert^{2}$ +\end_inset + para cierto +\begin_inset Formula $c>0$ \end_inset + por ser +\begin_inset Formula $B$ +\end_inset -\end_layout + fuertemente positiva, luego +\begin_inset Formula $z=z'$ +\end_inset -\begin_layout Enumerate -\begin_inset Formula $A+B$ +. + Como +\begin_inset Formula $\langle\cdot,\cdot\rangle$ \end_inset - es autoadjunto, y -\begin_inset Formula $AB$ + y +\begin_inset Formula $B$ \end_inset - lo es si y sólo si -\begin_inset Formula $AB=BA$ + son sesquilineales, +\begin_inset Formula $Y$ \end_inset -. -\begin_inset Note Note -status open + es un espacio vectorial y +\begin_inset Formula $S:Y\to H$ +\end_inset -\begin_layout Plain Layout -nproof -\end_layout + que a cada +\begin_inset Formula $y$ +\end_inset + le asocia el +\begin_inset Formula $z$ \end_inset + con +\begin_inset Formula $\langle\cdot,y\rangle=B(\cdot,z)$ +\end_inset -\end_layout + es lineal. + Entonces, para +\begin_inset Formula $y\in S_{Y}$ +\end_inset + +, +\begin_inset Formula +\[ +c\Vert S(y)\Vert^{2}\leq B(S(y),S(y))=\langle S(y),y\rangle\in\mathbb{R}^{+}, +\] -\begin_layout Standard -Si -\begin_inset Formula $_{\mathbb{C}}H$ \end_inset - es un espacio de Hilbert y -\begin_inset Formula $A\in{\cal L}(H)$ +pero por la desigualdad de Cauchy-Schwartz, +\begin_inset Formula $\langle S(y),y\rangle^{2}=|\langle S(y),y\rangle|^{2}\leq\Vert S(y)\Vert^{2}\Vert y\Vert^{2}$ \end_inset -: -\end_layout +, luego +\begin_inset Formula $c\Vert S(y)\Vert^{2}\leq\langle S(y),y\rangle\leq\Vert S(y)\Vert\Vert y\Vert=\Vert S(y)\Vert$ +\end_inset -\begin_layout Enumerate -\begin_inset Formula $A$ + y +\begin_inset Formula $\Vert S(y)\Vert\leq\frac{1}{c}$ \end_inset - es autoadjunto si y sólo si -\begin_inset Formula $\forall x\in H,\langle Ax,x\rangle\in\mathbb{R}$ +, con lo que +\begin_inset Formula $S$ \end_inset -. -\begin_inset Note Note -status open + es continua. + Entonces, si +\begin_inset Formula $\{y_{n}\}_{n}\subseteq Y$ +\end_inset -\begin_layout Plain Layout -nproof -\end_layout + y existe +\begin_inset Formula $\lim_{n}y_{n}\eqqcolon y\in H$ +\end_inset +, por continuidad de +\begin_inset Formula $S$ \end_inset + y de +\begin_inset Formula $B$ +\end_inset -\end_layout +, +\begin_inset Formula +\[ +\langle x,y\rangle=\lim_{n}\langle x,y_{n}\rangle=\lim_{n}B(x,S(y_{n}))=B(x,S(y)), +\] -\begin_layout Enumerate +\end_inset -\backslash -Existen únicos -\begin_inset Formula $\text{Re}A,\text{Im}A\in{\cal L}(H)$ +luego +\begin_inset Formula $y\in Y$ \end_inset - autoadjuntos, la -\series bold -parte real -\series default - y la -\series bold -imaginaria -\series default - de -\begin_inset Formula $A$ + e +\begin_inset Formula $Y$ \end_inset -, con -\begin_inset Formula $A=\text{Re}A+\text{i}\text{Im}A$ + es cerrado. + Entonces, si +\begin_inset Formula $z\in Y^{\bot}$ \end_inset -. -\begin_inset Note Note -status open +, como +\begin_inset Formula $B(\cdot,z):H\to\mathbb{K}$ +\end_inset -\begin_layout Plain Layout -nproof -\end_layout + es continua, por el teorema de Riesz-Fréchet existe +\begin_inset Formula $w\in H$ +\end_inset + con +\begin_inset Formula $B(\cdot,z)=\langle\cdot,w\rangle$ \end_inset +, luego +\begin_inset Formula $w\in Y$ +\end_inset -\end_layout +, pero entonces +\begin_inset Formula $B(z,z)=\langle z,w\rangle=0$ +\end_inset -\begin_layout Enumerate -\begin_inset Formula $\llbracket A\rrbracket\coloneqq\sup_{x\in S_{H}}|\langle Ax,x\rangle|$ + y, por ser +\begin_inset Formula $B$ \end_inset - es una norma en -\begin_inset Formula ${\cal L}(H)$ + fuertemente positiva, +\begin_inset Formula $z=0$ \end_inset - equivalente a la usual. -\end_layout +, luego +\begin_inset Formula $Y^{\bot}=0$ +\end_inset -\begin_layout Standard -Si -\begin_inset Formula $H$ + e +\begin_inset Formula $Y=H$ \end_inset - es un espacio de Hilbert con base -\begin_inset Formula $(e_{i})_{i\in I}$ +. + Para +\begin_inset Formula $z\in H$ \end_inset -: -\end_layout +, como +\begin_inset Formula $B(\cdot,z)$ +\end_inset -\begin_layout Enumerate -El operador diagonal -\begin_inset Formula $T\in{\cal L}(H)$ + es continua, existe +\begin_inset Formula $w\in H$ \end_inset con -\begin_inset Formula $T(e_{i})\eqqcolon\lambda_{i}e_{i}$ +\begin_inset Formula $B(\cdot z)=\langle\cdot,w\rangle$ \end_inset - es autoadjunto si y sólo si -\begin_inset Formula $\{\lambda_{i}\}_{i\in I}\subseteq\mathbb{R}$ + y por tanto +\begin_inset Formula $z=S(w)$ \end_inset -. -\end_layout - -\begin_layout Enumerate -Si -\begin_inset Formula $H$ +, luego +\begin_inset Formula $S$ \end_inset - es separable y -\begin_inset Formula $A\in{\cal L}(H)$ + es suprayectiva. + Si +\begin_inset Formula $S(y)=0$ \end_inset - se representa respecto a la base como la matriz -\begin_inset Formula $(a_{ij})\in\mathbb{K}^{I\times I}$ +, para +\begin_inset Formula $x\in H$ \end_inset , -\begin_inset Formula $A$ +\begin_inset Formula $\langle x,y\rangle=B(x,S(y))=0$ \end_inset - es autoadjunto si y sólo si -\begin_inset Formula $\forall i,j\in I,a_{ij}=\overline{a_{ji}}$ + y por tanto +\begin_inset Formula $y=0$ \end_inset -. -\end_layout - -\begin_layout Enumerate -El operador multiplicación por -\begin_inset Formula $g\in L^{\infty}([a,b])$ +, luego +\begin_inset Formula $S$ \end_inset - en -\begin_inset Formula $L^{2}([a,b])$ + es inyectiva. + Por tanto +\begin_inset Formula $S$ \end_inset - es autoadjunto si y sólo si -\begin_inset Formula $g(t)$ + es biyectiva y +\begin_inset Formula $T\coloneqq S^{-1}$ \end_inset - es real para casi todo -\begin_inset Formula $t\in[a,b]$ + cumple +\begin_inset Formula $\langle x,T(y)\rangle=B(x,y)$ \end_inset . -\end_layout + Además, para +\begin_inset Formula $y\in S_{H}$ +\end_inset -\begin_layout Enumerate -El operador integral con núcleo -\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +, +\begin_inset Formula $\Vert T(y)\Vert^{2}=\langle T(y),T(y)\rangle=B(T(y),y)\leq M\Vert T(y)\Vert\Vert y\Vert=M\Vert T(y)\Vert$ \end_inset - en -\begin_inset Formula $L^{2}([a,b])$ +, siendo +\begin_inset Formula $M$ \end_inset - es autoadjunto si y sólo si -\begin_inset Formula $k(t,s)=\overline{k(s,t)}$ + una cota de +\begin_inset Formula $B$ \end_inset - para casi todo -\begin_inset Formula $(s,t)\in[a,b]\times[a,b]$ +, de donde +\begin_inset Formula $\Vert T\Vert\leq M$ \end_inset -. + y, como +\begin_inset Formula $\Vert T^{-1}\Vert=\Vert S\Vert\leq\frac{1}{c}$ +\end_inset + +, +\begin_inset Formula $T$ +\end_inset + + es un isomorfismo topológico isométrico. \end_layout -\begin_layout Enumerate -Una proyección ortogonal -\begin_inset Formula $P:H\to H$ +\begin_layout Standard +En particular, dado un espacio vectorial +\begin_inset Formula $H$ \end_inset - sobre un subespacio cerrado es autoadjunto. -\begin_inset Note Note -status open + con dos productos escalares +\begin_inset Formula $\langle\cdot,\cdot\rangle_{1}$ +\end_inset -\begin_layout Plain Layout -nproof -\end_layout + y +\begin_inset Formula $\langle\cdot,\cdot\rangle_{2}$ +\end_inset + equivalentes que hacen a +\begin_inset Formula $H$ \end_inset + completo, existe un isomorfismo +\begin_inset Formula $T:H\to H$ +\end_inset + de espacios de Hilbert con +\begin_inset Formula $\langle x,y\rangle_{1}=\langle x,T(y)\rangle_{2}$ +\end_inset + +. \end_layout \begin_layout Standard -Si -\begin_inset Formula $H$ +Dado un espacio medible +\begin_inset Formula $(\Omega,\Sigma)$ \end_inset - es un espacio de Hilbert, -\begin_inset Formula $A\in{\cal L}(H)$ + con medidas +\begin_inset Formula $\mu$ +\end_inset + + y +\begin_inset Formula $\nu$ +\end_inset + +, +\begin_inset Formula $\nu$ \end_inset es \series bold -normal +absolutamente continua \series default - si -\begin_inset Formula $AA^{*}=A^{*}A$ + respecto de +\begin_inset Formula $\mu$ \end_inset -, si y sólo si -\begin_inset Formula $\forall x,y\in H,\langle Ax,Ay\rangle=\langle A^{*}x,A^{*}y\rangle$ + si +\begin_inset Formula $\forall A\in\Sigma,(\mu(A)=0\implies\nu(A)=0)$ \end_inset -, si y sólo si -\begin_inset Formula $\forall x\in H,\Vert Ax\Vert=\Vert A^{*}x\Vert$ +, y es +\series bold +finita +\series default + si +\begin_inset Formula $\nu(\Omega)<\infty$ \end_inset . -\begin_inset Note Note -status open + +\series bold +Teorema de Radon-Nicodym: +\series default + Si +\begin_inset Formula $(\Omega,\Sigma)$ +\end_inset -\begin_layout Plain Layout -nproof -\end_layout + es un espacio medible con medidas finitas +\begin_inset Formula $\mu$ +\end_inset + y +\begin_inset Formula $\nu$ \end_inset + siendo +\begin_inset Formula $\nu$ +\end_inset -\end_layout + absolutamente continua respecto de +\begin_inset Formula $\mu$ +\end_inset -\begin_layout Enumerate -Si -\begin_inset Formula $H$ +, existe +\begin_inset Formula $g:\Omega\to[0,+\infty]$ \end_inset - es un espacio de Hilbert complejo, -\begin_inset Formula $A\in{\cal L}(H)$ + +\begin_inset Formula $\mu$ \end_inset - es normal si y sólo si -\begin_inset Formula $\text{Re}A\circ\text{Im}A=\text{Im}A\circ\text{Re}A$ +-integrable tal que +\begin_inset Formula +\[ +\forall A\in\Sigma,\nu(A)=\int_{A}g\dif\mu. +\] + \end_inset -. -\begin_inset Note Note -status open -\begin_layout Plain Layout -nproof -\end_layout +\series bold +Demostración: +\series default + +\begin_inset Formula $\sigma\coloneqq\mu+\nu$ +\end_inset + es una medida finita en +\begin_inset Formula $X$ \end_inset + tal que +\begin_inset Formula $\forall A\in\Sigma,(\sigma(A)=0\iff\mu(A)=0)$ +\end_inset -\end_layout +, y la función lineal entre espacios de Hilbert +\begin_inset Formula $T:L^{2}(\Omega,\Sigma,\sigma)\to\mathbb{R}$ +\end_inset -\begin_layout Enumerate -Todo operador diagonal es normal. -\end_layout + dada por +\begin_inset Formula +\[ +Tu\coloneqq\int_{\Omega}u\dif\mu +\] -\begin_layout Enumerate -El operador integral sobre -\begin_inset Formula $L^{2}([a,b])$ \end_inset - con núcleo -\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +está bien definida y es continua porque, si +\begin_inset Formula $\Vert u\Vert_{L^{2}(\Omega,\Sigma,\sigma)}=1$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +|Tu| & =\left|\int_{\Omega}u\dif\mu\right|\leq\int_{\Omega}|u|\dif\mu\leq\sqrt{\int_{\Omega}|u|^{2}\dif\mu}+\sqrt{\int_{\Omega}\dif\mu}\leq\\ + & \leq\sqrt{\int_{\Omega}|u|^{2}\dif\mu+\int_{\Omega}|u|^{2}\dif\nu}+\sqrt{\int_{\Omega}\dif\mu+\int_{\Omega}\dif\nu}=1+\sqrt{\sigma(X)}. +\end{align*} + +\end_inset + +Por el teorema de representación de Riesz, existe +\begin_inset Formula $f\in L^{2}(\Omega,\Sigma,\sigma)$ +\end_inset + + tal que, para +\begin_inset Formula $u\in L^{2}(\Omega,\Sigma,\sigma)$ \end_inset - es normal si y sólo si +, \begin_inset Formula \[ -\int_{a}^{b}\overline{k(s,t)}k(s,x)\dif s=\int_{a}^{b}k(t,s)\overline{k(x,s)}\dif s +Tu=\int_{\Omega}u\dif\mu=\int_{\Omega}uf\dif\sigma, \] \end_inset -para casi todo -\begin_inset Formula $(t,x)\in[a,b]\times[a,b]$ +pero esta igualdad se da para cuando +\begin_inset Formula $u=\chi_{A}$ \end_inset -. -\begin_inset Note Note -status open + para cualquier +\begin_inset Formula $A\in{\cal F}$ +\end_inset -\begin_layout Plain Layout -nproof -\end_layout + y por linealidad para cualquier función +\begin_inset Formula $\Sigma$ +\end_inset + +-medible simple, y por el teorema de convergencia dominada también se da + para cualquier función +\begin_inset Formula $\Sigma$ +\end_inset + +-medible no negativa en casi todo punto. + Además, para +\begin_inset Formula $A\in\Sigma$ +\end_inset + +, +\begin_inset Formula +\[ +\mu(A)=\int_{\Omega}\chi_{A}f\dif\sigma=\int_{A}f\dif\sigma, +\] + +\end_inset + +de modo que +\begin_inset Formula $f$ +\end_inset + + es +\begin_inset Formula $\Sigma$ +\end_inset + +-medible y, haciendo +\begin_inset Formula $A=\{x\mid f(x)\leq0\}$ +\end_inset + + o +\begin_inset Formula $A=\{x\mid f(x)>1\}$ +\end_inset + +, vemos que +\begin_inset Formula $f(\omega)\in(0,1]$ +\end_inset + + para casi todo +\begin_inset Formula $\omega\in\Omega$ +\end_inset + +, de modo que +\begin_inset Formula $\frac{1}{g}$ +\end_inset + + es +\begin_inset Formula $\Sigma$ +\end_inset + +-medible no negativa en casi todo punto y, en casi todo punto, +\begin_inset Formula $\frac{1}{f}f=1$ +\end_inset + +, con lo que para +\begin_inset Formula $A\in\Sigma$ +\end_inset + +, +\begin_inset Formula +\[ +\int_{A}\frac{1}{f}\dif\mu=\int_{A}\dif\sigma\implies\nu(A)=\sigma(A)-\mu(A)=\int_{A}\left(\frac{1}{f}-1\right)\dif\mu\eqqcolon\int_{A}g\dif\mu. +\] \end_inset \end_layout +\begin_layout Section +Problemas variacionales cuadráticos +\end_layout + \begin_layout Standard -Una + \series bold -proyección +Teorema principal de los problemas variacionales cuadráticos: \series default - en un espacio normado -\begin_inset Formula $X$ + Sean +\begin_inset Formula $H$ \end_inset - es un operador -\begin_inset Formula $X\to X$ + un +\begin_inset Formula $\mathbb{R}$ \end_inset - idempotente. - Si -\begin_inset Formula $H$ +-espacio de Hilbert, +\begin_inset Formula $B$ \end_inset - es un espacio de Hilbert y -\begin_inset Formula $P$ + una +\begin_inset Formula $H$ \end_inset - es una proyección continua no nula en -\begin_inset Formula $X$ +-forma bilineal simétrica, acotada y fuertemente positiva, +\begin_inset Formula $b$ \end_inset -, -\begin_inset Formula $P$ + una +\begin_inset Formula $H$ \end_inset - es una proyección ortogonal si y sólo si -\begin_inset Formula $\Vert P\Vert=1$ +-forma lineal continua y +\begin_inset Formula $F:H\to\mathbb{R}$ \end_inset -, si y sólo si -\begin_inset Formula $\text{Im}P=(\ker P)^{\bot}$ + dada por +\begin_inset Formula +\[ +F(x)\coloneqq\frac{1}{2}B(x,x)-b(x), +\] + \end_inset -, si y sólo si -\begin_inset Formula $\ker P=(\text{Im}P)^{\bot}$ +entonces: +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $w\in H$ \end_inset -, si y sólo si -\begin_inset Formula $P$ +, +\begin_inset Formula $F$ \end_inset - es autoadjunto, si y sólo si es normal, si y sólo si -\begin_inset Formula $\forall x\in H,\langle Px,x\rangle=\Vert Px\Vert^{2}$ + alcanza su mínimo en +\begin_inset Formula $w$ \end_inset -, si y sólo si -\begin_inset Formula $\forall x\in H,\langle Px,x\rangle\geq0$ + si y sólo si +\begin_inset Formula $\forall y\in H,B(w,y)=b(y)$ \end_inset . -\begin_inset Note Note +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 status open \begin_layout Plain Layout -nproof +\begin_inset Formula $\implies]$ +\end_inset + + \end_layout \end_inset +Fijado +\begin_inset Formula $y\in H$ +\end_inset + +, para +\begin_inset Formula $t\in\mathbb{R}$ +\end_inset -\end_layout -\begin_layout Standard -Existen proyecciones no ortogonales, como -\begin_inset Formula $p:\mathbb{R}^{2}\to\mathbb{R}^{2}$ +\begin_inset Formula +\begin{align*} +F(w+ty) & =\frac{1}{2}B(w+ty,w+ty)-b(w+ty)=\\ + & =\frac{1}{2}(B(w,w)+2tB(w,y)+t^{2}B(y,y))-b(w)-tb(y)=\\ + & =F(w)+t(B(w,y)-b(y))+\frac{1}{2}t^{2}B(y,y), +\end{align*} + +\end_inset + +pero por hipótesis +\begin_inset Formula $F(w)\leq F(w+ty)$ +\end_inset + + para todo +\begin_inset Formula $t\in\mathbb{R}$ +\end_inset + +, luego +\begin_inset Formula $\varphi:\mathbb{R}\to\mathbb{R}$ \end_inset dada por -\begin_inset Formula $p(x,y)\coloneqq(x+y,0)$ +\begin_inset Formula $\varphi(t)\coloneqq F(w+ty)$ +\end_inset + + tiene un mínimo en +\begin_inset Formula $t=0$ +\end_inset + + y +\begin_inset Formula $0=\varphi'(0)=B(w,y)-b(y)$ \end_inset . \end_layout -\begin_layout Standard -Si -\begin_inset Formula $H$ +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ \end_inset - es un -\begin_inset Formula $\mathbb{K}$ + +\end_layout + \end_inset --espacio de Hilbert, -\begin_inset Formula $T\in{\cal L}(H)$ +Para +\begin_inset Formula $y\in H$ \end_inset y -\begin_inset Formula $\lambda\in\mathbb{K}$ +\begin_inset Formula $t\in\mathbb{R}$ \end_inset , -\begin_inset Formula $\lambda\in\sigma(T)\iff\overline{\lambda}\in\sigma(T^{*})$ +\begin_inset Formula +\[ +F(w+ty)=F(w)+\cancel{t(B(w,y)-b(y))}^{=0}+\frac{1}{2}t^{2}B(y,y)\geq F(w). +\] + \end_inset -. -\begin_inset Note Note -status open -\begin_layout Plain Layout -nproof \end_layout +\end_deeper +\begin_layout Enumerate +Existe un único +\begin_inset Formula $w\in H$ \end_inset + en el que +\begin_inset Formula $F$ +\end_inset + alcanza su mínimo. \end_layout +\begin_deeper \begin_layout Standard -Si -\begin_inset Formula $T\in{\cal L}(H)$ +Como +\begin_inset Formula $B$ \end_inset - es normal: -\end_layout + es bilineal, simétrica y fuertemente positiva, es un producto escalar sobre + +\begin_inset Formula $H$ +\end_inset -\begin_layout Enumerate -\begin_inset Formula $\forall\lambda\in\mathbb{C}$ +, y como existen +\begin_inset Formula $c,M>0$ \end_inset -, -\begin_inset Formula $\ker(T-\lambda1_{H})=\ker(T^{*}-\overline{\lambda}1_{H})$ + con +\begin_inset Formula $c\Vert x\Vert^{2}\leq B(x,x)\leq M\Vert x\Vert^{2}$ \end_inset -. -\end_layout +, el producto escalar +\begin_inset Formula $B$ +\end_inset -\begin_layout Enumerate -\begin_inset Formula $\forall\lambda,\mu\in\mathbb{C},(\lambda\neq\mu\implies\ker(T-\lambda1_{H})\bot\ker(T-\mu1_{H}))$ + es equivalente al de +\begin_inset Formula $H$ \end_inset -. -\end_layout +, luego +\begin_inset Formula $b$ +\end_inset -\begin_layout Enumerate -\begin_inset Formula $\ker(T-\lambda1_{H})$ + es continua con el producto escalar +\begin_inset Formula $B$ \end_inset - y -\begin_inset Formula $\ker(T-\lambda1_{H})^{\bot}$ + y por el teorema de Riesz-Fréchet existe un único +\begin_inset Formula $w\in H$ \end_inset - son -\begin_inset Formula $T$ + con +\begin_inset Formula $b=B(\cdot,w)=B(w,\cdot)$ \end_inset --invariantes. +, que es la condición del primer apartado. \end_layout +\end_deeper \begin_layout Section -Operadores compactos +Convolución y aproximación de funciones \end_layout \begin_layout Standard -Dado un espacio topológico -\begin_inset Formula $X$ +Dado un abierto +\begin_inset Formula $\Omega\subseteq\mathbb{R}^{n}$ \end_inset , -\begin_inset Formula $Y\subseteq X$ +\begin_inset Formula $f:\mathbb{R}^{n}\to\mathbb{R}$ \end_inset es \series bold -relativamente compacto +localmente integrable \series default - en -\begin_inset Formula $X$ + si +\begin_inset Formula $|f|$ \end_inset - si su clausura en -\begin_inset Formula $X$ + es integrable en todo compacto +\begin_inset Formula $K\subseteq\Omega$ \end_inset - es compacta. - Sean -\begin_inset Formula $X$ +. + Dadas dos funciones localmente integrables +\begin_inset Formula $f,g:\mathbb{R}^{n}\to\mathbb{R}$ \end_inset - e -\begin_inset Formula $Y$ +, definimos su +\series bold +producto de convolución +\series default + como +\begin_inset Formula $(f*g):D\to\mathbb{R}$ \end_inset - espacios normados, una función lineal -\begin_inset Formula $T:X\to Y$ -\end_inset + dada por +\begin_inset Formula +\[ +(f*g)(a)\coloneqq\int_{\mathbb{R}^{n}}f(x)g(a-x)\dif x, +\] - es -\series bold -compacta -\series default - si -\begin_inset Formula $T(B_{X})$ \end_inset - es relativamente compacta en -\begin_inset Formula $Y$ +donde +\begin_inset Formula $D\coloneqq\{a\in\mathbb{R}^{n}\mid x\mapsto f(x)g(a-x)\text{ integrable}\}$ \end_inset -, si y sólo si para cada sucesión acotada -\begin_inset Formula $\{x_{n}\}_{n}\subseteq X$ +. + Si +\begin_inset Formula $f,g\in L^{2}(\mathbb{R}^{n})$ \end_inset , -\begin_inset Formula $(Tx_{n})_{n}$ +\begin_inset Formula $f*g$ \end_inset - posee una subsucesión convergente, si y sólo si esto se cumple cuando cada - -\begin_inset Formula $\Vert x_{n}\Vert=1$ + está definida en todo +\begin_inset Formula $\mathbb{R}^{n}$ \end_inset -. + y es continua y uniformemente acotada con +\begin_inset Formula +\[ +\Vert f*g\Vert_{\infty}\leq\Vert f\Vert_{2}\Vert g\Vert_{2}. +\] + +\end_inset + + \begin_inset Note Note status open @@ -2549,11 +3244,15 @@ nproof \end_inset +El producto de convolución es conmutativo, y si +\begin_inset Formula $f*g$ +\end_inset -\end_layout + está definida en casi todo punto, +\begin_inset Formula $\text{sop}(f*g)\subseteq\overline{\text{sop}(f)+\text{sop}(g)}$ +\end_inset -\begin_layout Enumerate -Los operadores de rango finito son compactos. +. \begin_inset Note Note status open @@ -2566,8 +3265,40 @@ nproof \end_layout -\begin_layout Enumerate -El operador identidad en un espacio de dimensión infinita nunca es compacto. +\begin_layout Standard +Una +\series bold +sucesión de Dirac +\series default + es una sucesión +\begin_inset Formula $(K_{m}:\mathbb{R}^{n}\to\mathbb{R}^{\geq0})_{m}$ +\end_inset + + de funciones continuas con +\begin_inset Formula +\[ +\int_{\mathbb{R}^{n}}K_{n}=1 +\] + +\end_inset + +y tal que +\begin_inset Formula +\[ +\forall\varepsilon,\delta>0,\exists n_{0}:\forall n\geq n_{0},\int_{\mathbb{R}^{n}\setminus B(0,\delta)}K_{n}(x)\dif x<\varepsilon. +\] + +\end_inset + +Por ejemplo, si +\begin_inset Formula $K:\mathbb{R}^{n}\to\mathbb{R}$ +\end_inset + + es continua, no negativa, con soporte compacto e integral 1, entonces +\begin_inset Formula $(x\mapsto m^{n}K(mx))_{m\geq1}$ +\end_inset + + es una sucesión de Dirac. \begin_inset Note Note status open @@ -2581,19 +3312,44 @@ nproof \end_layout \begin_layout Standard -Llamamos -\begin_inset Formula ${\cal K}(X,Y)$ +Las sucesiones de Dirac aproximan la +\series bold +delta de Dirac +\series default +, una +\begin_inset Quotes cld \end_inset - al subespacio vectorial de -\begin_inset Formula ${\cal L}(X,Y)$ +función extendida +\begin_inset Quotes crd \end_inset - de los operadores compactos, que es cerrado si -\begin_inset Formula $Y$ + con integral 1 que vale 0 en todo punto salvo en el origen en que el valor + es infinito. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $f:\mathbb{R}^{n}\to\mathbb{R}$ +\end_inset + + es continua y acotada, la sucesión +\begin_inset Formula $(f*K_{m})_{m}$ +\end_inset + + tiende uniformemente a +\begin_inset Formula $f$ +\end_inset + + sobre subconjuntos compactos de +\begin_inset Formula $\mathbb{R}^{n}$ \end_inset - es de Banach. +. \begin_inset Note Note status open @@ -2608,27 +3364,43 @@ nproof \begin_layout Standard Si -\begin_inset Formula $A\in{\cal L}(X,Y)$ +\begin_inset Formula $f:\mathbb{R}^{n}\to\mathbb{R}$ +\end_inset + + es localmente integrable y +\begin_inset Formula $g\in{\cal D}^{k}(\mathbb{R}^{n})$ \end_inset , -\begin_inset Formula $T\in{\cal K}(Y,Z)$ +\begin_inset Formula $f*g\in{\cal C}^{k}(\mathbb{R}^{n})$ \end_inset - y -\begin_inset Formula $B\in{\cal L}(Z,W)$ + y para +\begin_inset Formula $\alpha\in\mathbb{N}^{n}$ \end_inset -, -\begin_inset Formula $BTA\in{\cal K}(X,W)$ + con +\begin_inset Formula $\sum_{i}\alpha_{i}\leq k$ \end_inset -, y en particular -\begin_inset Formula ${\cal K}(X)\coloneqq{\cal K}(X,X)$ + es +\begin_inset Formula +\[ +\frac{\partial^{|\alpha|}(f*g)}{\partial x_{1}^{\alpha_{1}}\cdots\partial x_{n}^{\alpha_{n}}}=f*\left(\frac{\partial^{|\alpha|}g}{\partial x_{1}^{\alpha_{1}}\cdots\partial x_{n}^{\alpha_{n}}}\right), +\] + \end_inset - es un ideal de -\begin_inset Formula ${\cal L}(X)$ +con lo que +\begin_inset Formula $f*g$ +\end_inset + + es una regularización de +\begin_inset Formula $f$ +\end_inset + + a través de una función suave +\begin_inset Formula $g$ \end_inset . @@ -2645,19 +3417,28 @@ nproof \end_layout \begin_layout Standard -Si -\begin_inset Formula $T\in{\cal K}(X,Y)$ +Como +\series bold +teorema +\series default +, dado un abierto +\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ \end_inset -: -\end_layout +, +\begin_inset Formula ${\cal D}(G)$ +\end_inset -\begin_layout Enumerate -\begin_inset Formula $\text{Im}T$ + es denso en +\begin_inset Formula $(C_{c}(G),\Vert\cdot\Vert_{\infty})$ \end_inset - es un subespacio separable de -\begin_inset Formula $Y$ + y en +\begin_inset Formula $L^{p}(G)$ +\end_inset + + para todo +\begin_inset Formula $p\in[1,\infty)$ \end_inset . @@ -2673,33 +3454,37 @@ nproof \end_layout -\begin_layout Enumerate -Si -\begin_inset Formula $Y$ +\begin_layout Standard +Para +\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ \end_inset - es de Hilbert, -\begin_inset Formula $\overline{\text{Im}T}$ + abierto y +\begin_inset Formula $f\in L^{2}(G)$ \end_inset - es de dimensión infinita con base hilbertiana -\begin_inset Formula $(e_{n})_{n\in\mathbb{N}}$ +, si para todo +\begin_inset Formula $\psi\in{\cal D}(G)$ \end_inset - y, para -\begin_inset Formula $n\in\mathbb{N}$ + es +\begin_inset Formula +\[ +\int_{G}f\psi=0 +\] + \end_inset -, -\begin_inset Formula $P_{n}\in{\cal L}(Y)$ +entonces +\begin_inset Formula $f=0$ \end_inset - es la proyección ortogonal sobre -\begin_inset Formula $\text{span}\{e_{i}\}_{i\leq n}$ + en casi todo punto, y en particular, si +\begin_inset Formula $f$ \end_inset -, entonces -\begin_inset Formula $T=\lim_{n}P_{n}T\in{\cal L}(X,Y)$ + es continua, +\begin_inset Formula $f=0$ \end_inset . @@ -2715,110 +3500,163 @@ nproof \end_layout +\begin_layout Section +Principio de Dirichlet +\end_layout + \begin_layout Standard -Así, si -\begin_inset Formula $Y$ +Dado un abierto +\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ \end_inset - es de Hilbert, -\begin_inset Formula ${\cal K}(X,Y)$ +, +\begin_inset Formula $u\in{\cal D}^{2}(G)$ \end_inset - es la clausura en -\begin_inset Formula ${\cal L}(X,Y)$ + es +\series bold +armónica +\series default + en +\begin_inset Formula $G$ \end_inset - del conjunto de operadores acotados de rango finito. - Esto no es cierto cuando -\begin_inset Formula $Y$ + si +\begin_inset Formula $\triangle u\coloneqq\nabla^{2}u=0$ \end_inset - es un espacio de Banach arbitrario. -\begin_inset Note Note -status open + en todo punto de +\begin_inset Formula $G$ +\end_inset -\begin_layout Plain Layout -nproof -\end_layout +. + Dada +\begin_inset Formula $g\in{\cal C}(S_{\mathbb{C}})$ +\end_inset +, el +\series bold +problema de Dirichlet +\series default + consiste en encontrar +\begin_inset Formula $u\in{\cal D}^{2}(\overline{B_{X}})$ \end_inset + armónica con +\begin_inset Formula $u|_{S_{\mathbb{C}}}=g$ +\end_inset -\end_layout +. + Para un abierto +\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ +\end_inset -\begin_layout Standard -Si -\begin_inset Formula $G$ +, llamamos +\begin_inset Formula ${\cal C}^{m}(\overline{G})$ \end_inset - y -\begin_inset Formula $H$ + al conjunto de funciones +\begin_inset Formula $u:\overline{G}\to\mathbb{R}$ \end_inset - son espacios de Hilbert, -\begin_inset Formula $T\in{\cal L}(G,H)$ + con +\begin_inset Formula $u|_{G}\in{\cal C}^{m}(G)$ \end_inset - es compacto si y sólo si lo es -\begin_inset Formula $T^{*}$ + para las que las derivadas parciales de orden +\begin_inset Formula $m$ \end_inset -. -\begin_inset Note Note -status open + de +\begin_inset Formula $u$ +\end_inset -\begin_layout Plain Layout -nproof -\end_layout + en +\begin_inset Formula $G$ +\end_inset + admiten prolongación continua a +\begin_inset Formula $\overline{G}$ \end_inset - +. + Escribimos +\begin_inset Formula $\partial_{j}u\coloneqq\frac{\partial u}{\partial j}$ +\end_inset + +. \end_layout \begin_layout Standard -Con esto: +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{samepage} \end_layout -\begin_layout Enumerate -Si -\begin_inset Formula $(e_{n})_{n\in\mathbb{N}}$ \end_inset - y -\begin_inset Formula $(f_{n})_{n\in\mathbb{N}}$ +Dados un abierto +\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ \end_inset - son bases hilbertianas respectivas de -\begin_inset Formula $G$ + acotado y no vacío, +\begin_inset Formula $f:G\to\mathbb{R}$ \end_inset y -\begin_inset Formula $H$ +\begin_inset Formula $g:\partial G\to\mathbb{R}$ +\end_inset + +, el +\series bold +problema de valores frontera para la ecuación de Poisson +\series default + consiste en encontrar +\begin_inset Formula $u:\overline{G}\to\mathbb{R}$ +\end_inset + + tal que +\begin_inset Formula $-\triangle u|_{G}=f$ \end_inset y -\begin_inset Formula $T:G\to H$ +\begin_inset Formula $u|_{\partial G}=g$ \end_inset - es un operador diagonal dado por -\begin_inset Formula $Te_{n}\coloneqq\lambda_{n}f_{n}$ +, y el +\series bold +problema generalizado de valores frontera +\series default + consiste en encontrar +\begin_inset Formula $u:\overline{G}\to\mathbb{R}$ \end_inset -, -\begin_inset Formula $T$ + con +\begin_inset Formula $u|_{\partial G}=g$ \end_inset - es compacto si y sólo si -\begin_inset Formula $\lim_{n}\lambda_{n}=0$ + y +\begin_inset Formula +\[ +\forall v\in{\cal D}(G),\int_{G}\sum_{j=1}^{n}\frac{\partial u}{\partial x_{j}}\frac{\partial v}{\partial x_{j}}\dif x\int_{G}fv. +\] + \end_inset -. -\begin_inset Note Note + +\begin_inset ERT status open \begin_layout Plain Layout -nproof + + +\backslash +end{samepage} \end_layout \end_inset @@ -2826,16 +3664,29 @@ nproof \end_layout -\begin_layout Enumerate -El operador multiplicación por -\begin_inset Formula $g\in L^{\infty}([a,b])$ +\begin_layout Standard +Si +\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ \end_inset - es compacto si y sólo si -\begin_inset Formula $g=0$ + es un abierto acotado no vacío, +\begin_inset Formula $f\in{\cal C}(\overline{G})$ \end_inset -. + y +\begin_inset Formula $g\in{\cal C}(\partial G)$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Una +\begin_inset Formula $w\in{\cal C}^{2}(\overline{G})$ +\end_inset + + es solución del problema de valores frontera para la ecuación de Poisson + y sólo si lo es del problema generalizado de valores frontera. \begin_inset Note Note status open @@ -2850,42 +3701,61 @@ nproof \begin_layout Enumerate Si -\begin_inset Formula $G$ +\begin_inset Formula $w\in{\cal C}^{2}(\overline{G})$ \end_inset - y -\begin_inset Formula $H$ + es solución del problema variacional consistente en encontrar el mínimo + de +\begin_inset Formula $F:\{u\in{\cal C}^{2}(\overline{G})\mid u|_{\partial G}=g\}\to\mathbb{R}$ \end_inset - son espacios de Hilbert de dimensión -\begin_inset Formula $\aleph_{0}$ -\end_inset + dada por +\begin_inset Formula +\[ +F(u)\coloneqq\frac{1}{2}\int_{G}\sum_{j=1}^{n}(\partial_{j}u(x))^{2}\dif x-\int_{G}fu, +\] - y -\begin_inset Formula $T\in{\cal L}(G,H)$ \end_inset - se representa en ciertas bases de -\begin_inset Formula $G$ +entonces es solución de los dos problemas anteriores. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + \end_inset - y -\begin_inset Formula $H$ + +\end_layout + +\begin_layout Standard +El +\series bold +teorema de integración por partes en varias variables +\series default + afirma que, si +\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ \end_inset - como -\begin_inset Formula $(a_{ij})\in\mathbb{K}^{\mathbb{N}\times\mathbb{N}}$ + es un abierto, +\begin_inset Formula $u\in{\cal C}^{1}(G)$ \end_inset -, si -\begin_inset Formula $\sum_{i,j}|a_{ij}|^{2}<\infty$ + y +\begin_inset Formula $v\in{\cal D}(G)$ \end_inset -, -\begin_inset Formula $T$ +, +\begin_inset Formula +\[ +\int_{G}u\partial_{j}v=-\int_{G}(\partial_{j}u)v. +\] + \end_inset - es compacto. + \begin_inset Note Note status open @@ -2898,75 +3768,131 @@ nproof \end_layout -\begin_layout Enumerate -El operador integral -\begin_inset Formula $K\in{\cal L}(L^{2}([a,b]))$ +\begin_layout Standard +Si +\begin_inset Formula $G$ \end_inset - con núcleo -\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ + es un abierto de +\begin_inset Formula $\mathbb{R}^{n}$ \end_inset - es compacto, -\begin_inset Formula ${\cal C}([a,b])$ + y +\begin_inset Formula $u,w\in L^{2}(G)$ \end_inset - es -\begin_inset Formula $K$ +, +\begin_inset Formula $w$ \end_inset --invariante y -\begin_inset Formula $K|_{{\cal C}([a,b])}:({\cal C}([a,b]),\Vert\cdot\Vert_{\infty})\to({\cal C}([a,b]),\Vert\cdot\Vert_{\infty})$ + es la +\series bold +derivada generalizada +\begin_inset Formula $j$ \end_inset - es compacto. -\begin_inset Note Note -status open +-ésima +\series default + de +\begin_inset Formula $u$ +\end_inset -\begin_layout Plain Layout -nproof -\end_layout +, +\begin_inset Formula $w=\partial_{j}u$ +\end_inset + +, si +\begin_inset Formula +\[ +\forall v\in{\cal D}(G),\int_{G}u\partial_{j}v=-\int_{G}wv, +\] \end_inset +y para +\begin_inset Formula $\alpha\in\mathbb{N}^{n}$ +\end_inset -\end_layout + llamamos +\begin_inset Formula $D^{\alpha}u\coloneqq\partial_{1}^{\alpha_{1}}\cdots\partial_{n}^{\alpha_{n}}u$ +\end_inset -\begin_layout Section -Teorema espectral +. + \end_layout \begin_layout Standard -Como +Para +\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ +\end_inset + + abierto, +\begin_inset Formula $k\in\mathbb{N}$ +\end_inset + + y +\begin_inset Formula $p\in[1,\infty)$ +\end_inset + +, llamamos \series bold -teorema +espacio de Sobolev \series default -, si -\begin_inset Formula $H$ + a +\begin_inset Formula +\[ +W^{k,p}(G)\coloneqq\{u\in L^{p}(G)\mid\forall\alpha\in\mathbb{N}^{n},(|\alpha|\leq k\implies\exists D^{\alpha}f\in L^{p}(G))\}. +\] + \end_inset - es un -\begin_inset Formula $\mathbb{K}$ +Escribimos +\begin_inset Formula $W^{k}(G)\coloneqq W^{k,2}(G)$ \end_inset --espacio de Hilbert de dimensión finita y -\begin_inset Formula $T\in{\cal L}(H)$ +, y generalmente consideramos el espacio de Sobolev +\begin_inset Formula $W^{1}(G)$ \end_inset - es autoadjunto: +. \end_layout -\begin_layout Enumerate +\begin_layout Standard Si -\begin_inset Formula $\lambda_{1},\dots,\lambda_{m}$ +\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ \end_inset - son los distintos valores propios de -\begin_inset Formula $T$ + es abierto, definimos la relación de equivalencia en +\begin_inset Formula $G\to\mathbb{R}$ \end_inset -, -\begin_inset Formula $H=\bigoplus_{k=1}^{m}\ker(T-\lambda_{k}I_{H})$ + como +\begin_inset Formula $f\sim g\iff\{x\in G\mid f(x)\neq g(x)\}\text{ es de medida nula}$ +\end_inset + +, y +\begin_inset Formula $\langle\cdot,\cdot\rangle_{1,2}:W^{1}(G)/\sim\to\mathbb{R}$ +\end_inset + + dada por +\begin_inset Formula +\[ +\langle\overline{u},\overline{v}\rangle_{1,2}\coloneqq\int_{G}\left(uv+\sum_{j}(\partial_{j}u)(\partial_{j}v)\right) +\] + +\end_inset + +es un producto escalar en +\begin_inset Formula $W^{1}(G)/\sim$ +\end_inset + + que lo convierte en un espacio de Hilbert. + Identificamos +\begin_inset Formula $W^{1}(G)$ +\end_inset + + con +\begin_inset Formula $W^{1}(G)/\sim$ \end_inset . @@ -2982,122 +3908,209 @@ nproof \end_layout -\begin_layout Enumerate -Existe una base ortonormal -\begin_inset Formula $(e_{k})_{k}$ +\begin_layout Standard +Llamamos +\begin_inset Formula $H_{0}^{1}(G)$ \end_inset - de -\begin_inset Formula $H$ + al espacio de Hilbert obtenido como la clausura de +\begin_inset Formula ${\cal D}(G)$ \end_inset - formada por vectores propios de -\begin_inset Formula $T$ + en +\begin_inset Formula $W^{1}(G)$ +\end_inset + +, que en general es un subespacio propio de +\begin_inset Formula $W^{1}(G)$ +\end_inset + + pero es igual a +\begin_inset Formula $W^{1}(G)$ +\end_inset + + si +\begin_inset Formula $G=\mathbb{R}^{n}$ \end_inset . +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof \end_layout -\begin_layout Enumerate -Para -\begin_inset Formula $x\in X$ +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ +\end_inset + + es un abierto acotado no vacío y +\begin_inset Formula $u\in W^{1}(G)$ \end_inset , -\begin_inset Formula $Tx=\sum_{k}\mu_{k}\langle x,e_{k}\rangle e_{k}$ +\series bold + +\begin_inset Formula $u$ \end_inset -, donde -\begin_inset Formula $\mu_{k}$ + se anula en la frontera de +\begin_inset Formula $G$ \end_inset - es el valor propio asociado a -\begin_inset Formula $e_{k}$ + en sentido generalizado +\series default +, +\begin_inset Formula $u=0$ +\end_inset + + en +\begin_inset Formula $\partial G$ +\end_inset + +, si +\begin_inset Formula $u\in H_{0}^{1}(G)$ +\end_inset + +, y para +\begin_inset Formula $f,g\in W^{1}(G)$ +\end_inset + +, +\series bold + +\begin_inset Formula $f=g$ +\end_inset + + en +\begin_inset Formula $\partial G$ +\end_inset + + en sentido generalizado +\series default + si +\begin_inset Formula $f-g\in H_{0}^{1}(G)$ \end_inset . \end_layout \begin_layout Standard -Si -\begin_inset Formula $T$ + +\series bold +Desigualdad de Poincaré-Friedrichs: +\series default + Si +\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ \end_inset - es un operador compacto autoadjunto en el espacio de Hilbert -\begin_inset Formula $H$ + es un abierto acotado no vacío, existe +\begin_inset Formula $C>0$ \end_inset -, -\begin_inset Formula $\Vert T\Vert$ + tal que para +\begin_inset Formula $u\in H_{0}^{1}(G)$ \end_inset - o -\begin_inset Formula $-\Vert T\Vert$ +, +\begin_inset Formula +\[ +C\int_{G}u^{2}\leq\int_{G}\sum_{j=1}^{n}(\partial_{j}u)^{2}. +\] + \end_inset - es valor propio de -\begin_inset Formula $T$ + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $R\coloneqq\prod_{i}[a_{i},b_{i}]$ \end_inset -. -\begin_inset Note Note -status open + con +\begin_inset Formula $G\subseteq R$ +\end_inset -\begin_layout Plain Layout -nproof -\end_layout + y +\begin_inset Formula $u\in{\cal D}(G)$ +\end_inset +, y vemos +\begin_inset Formula $u$ \end_inset + como una función en +\begin_inset Formula $R$ +\end_inset -\end_layout + que se anula fuera de +\begin_inset Formula $G$ +\end_inset -\begin_layout Standard -Todo operador normal compacto en un -\begin_inset Formula $\mathbb{C}$ + y con valor indefinido en +\begin_inset Formula $\partial G$ \end_inset --espacio de Hilbert tiene algún valor propio. -\begin_inset Note Note -status open +, para +\begin_inset Formula $x\in R$ +\end_inset -\begin_layout Plain Layout -nproof -\end_layout +, por la desigualdad de Cauchy-Schwartz, +\begin_inset Formula +\begin{align*} +(u(x))^{2} & =\left(\int_{a_{n}}^{x_{n}}\partial_{n}u(x_{1},\dots,x_{n-1},t)\dif t\right)^{2}\leq\left(\int_{a_{n}}^{x_{n}}\dif t\right)\left(\int_{a_{n}}^{x_{n}}\partial_{n}u(x_{1},\dots,x_{n-1},t)^{2}\dif t\right)\leq\\ + & \leq(b_{n}-a_{n})\int_{a_{n}}^{b_{n}}\partial_{n}u(x_{1},\dots,x_{n-1},t)^{2}\dif t, +\end{align*} \end_inset +luego +\begin_inset Formula +\begin{align*} +\int_{G}u^{2} & =\int_{R}u^{2}\leq\int_{a_{1}}^{b_{1}}\cdots\int_{a_{n}}^{b_{n}}(b_{n}-a_{n})\int_{a_{n}}^{b_{n}}\partial_{n}u(x_{1},\dots,x_{n-1},t)^{2}\dif t\dif x_{n}\cdots\dif x_{1}=\\ + & =(b_{n}-a_{n})^{2}\int_{a_{1}}^{b_{1}}\cdots\int_{a_{n}}^{b_{n}}\partial_{n}u(x_{1},\dots,x_{n-1},t)^{2}\dif t\dif x_{n-1}\cdots\dif x_{1}=\\ + & =(b_{n}-a_{n})^{2}\int_{R}(\partial_{n}u)^{2}\dif x\leq(b_{n}-a_{n})^{2}\int_{R}\sum_{j}(\partial_{j}u)^{2}\dif x=(b_{n}-a_{n})^{2}\int_{G}\sum_{j}(\partial_{j}u)^{2}\dif x. +\end{align*} -\end_layout +\end_inset -\begin_layout Standard -Si -\begin_inset Formula $T\in{\cal L}(H)$ +Para +\begin_inset Formula $u\in H_{0}^{1}(G)$ \end_inset - es compacto en el -\begin_inset Formula $\mathbb{K}$ +,existe una sucesión +\begin_inset Formula $\{u_{m}\}_{m}\subseteq{\cal D}(G)$ \end_inset --espacio de Hilbert -\begin_inset Formula $H$ + con +\begin_inset Formula $\lim_{m}\Vert u-u_{m}\Vert_{1,2}=0$ \end_inset - y -\begin_inset Formula $\lambda\in\mathbb{K}\setminus0$ + y por tanto +\begin_inset Formula $\lim_{m}\Vert u-u_{m}\Vert_{2}=\lim_{m}\Vert\partial_{j}u-\partial_{j}u_{m}\Vert_{2}=0$ \end_inset -, -\begin_inset Formula $\ker(T-\lambda1_{H})$ +, y tomando límites y usando que la norma +\begin_inset Formula $\Vert\cdot\Vert_{2}\leq\Vert\cdot\Vert_{1,2}$ \end_inset - es de dimensión finita. -\begin_inset Note Note -status open + y por tanto es continua en +\begin_inset Formula $W^{1}(G)$ +\end_inset -\begin_layout Plain Layout -nproof -\end_layout +, +\begin_inset Formula +\[ +C\int_{G}u^{2}-\int_{G}\sum_{j}(\partial_{j}u)^{2}=C\Vert u\Vert_{2}^{2}-\sum_{j}\Vert\partial_{j}u\Vert_{2}^{2}=\lim_{m}\left(C\Vert u_{m}\Vert_{2}^{2}-\sum_{j}\Vert\partial_{j}u_{m}\Vert_{2}^{2}\right)\leq0. +\] \end_inset @@ -3105,126 +4118,255 @@ nproof \end_layout \begin_layout Standard -Sean -\begin_inset Formula $X$ + +\series bold +Principio de Dirichlet: +\series default + Sean +\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ \end_inset - e -\begin_inset Formula $Y$ + un abierto acotado no vacío, +\begin_inset Formula $f\in L^{2}(G)$ \end_inset - espacios de Banach y -\begin_inset Formula $T\in{\cal L}(X,Y)$ + y +\begin_inset Formula $g\in W^{1}(G)$ \end_inset - compacto, -\begin_inset Formula $\sigma_{\text{p}}(T)$ +, +\begin_inset Formula $F:\{u\in W^{1}(G)\mid u-g\in H_{0}^{1}(G)\}\to\mathbb{R}$ \end_inset - es contable, contiene a -\begin_inset Formula $\sigma(T)\setminus\{0\}$ + dada por +\begin_inset Formula +\[ +F(u)\coloneqq\frac{1}{2}\int_{G}\sum_{j=1}^{n}(\partial_{j}u)^{2}-\int_{G}fu +\] + \end_inset - y, si es infinito, es una sucesión acotada con a lo sumo un punto de acumulació -n, el 0, y si -\begin_inset Formula $T$ +alcanza su mínimo en un único punto, que es el único +\begin_inset Formula $u\in\text{Dom}f$ \end_inset - es normal el 0 es punto de acumulación. -\begin_inset Note Note -status open + tal que +\begin_inset Formula +\[ +\forall v\in H_{0}^{1}(G),\int_{G}\sum_{j=1}^{n}(\partial_{j}u)(\partial_{j}v)=\int_{G}fv +\] -\begin_layout Plain Layout -nproof -\end_layout +\end_inset +y la única solución en +\begin_inset Formula $\text{Dom}f$ \end_inset + del problema de valores frontera para la ecuación de Poisson +\begin_inset Formula $-\nabla^{2}u=f$ +\end_inset +. \end_layout \begin_layout Standard \series bold -Teorema espectral para operadores compactos autoadjuntos: +Demostración: \series default - Sean -\begin_inset Formula $H$ + Para +\begin_inset Formula $u,v\in W^{1}(G)$ \end_inset - un -\begin_inset Formula $\mathbb{K}$ + definimos +\begin_inset Formula +\begin{align*} +B(u,v) & \coloneqq\int_{G}\sum_{j}(\partial_{j}u)(\partial_{j}v), & b_{0}(v) & \coloneqq\int_{G}fv, & b(v) & \coloneqq b_{0}(v)-B(v,g). +\end{align*} + \end_inset --espacio de Hilbert y -\begin_inset Formula $T\in{\cal L}(H)$ + +\begin_inset Formula $B$ \end_inset - compacto normal: -\end_layout + es bilineal y simétrica, y es acotada porque +\begin_inset Formula +\[ +|B(u,v)|=\left|\sum_{j}\int_{G}(\partial_{j}u)(\partial_{j}v)\right|\leq\sum_{j}\left|\int_{G}(\partial_{j}u)(\partial_{j}v)\right|\leq\sum_{j}\Vert\partial_{j}u\Vert_{2}\Vert\partial_{j}v\Vert_{2}\leq n\Vert u\Vert_{1,2}\Vert v\Vert_{1,2}. +\] -\begin_layout Enumerate -\begin_inset Formula $\sigma_{\text{p}}(T)\setminus\{0\}$ \end_inset - es contable. -\begin_inset Note Note -status open +Por la desigualdad de Poincaré-Friedrichs, existe +\begin_inset Formula $C>0$ +\end_inset -\begin_layout Plain Layout -nproof -\end_layout + tal que, para todo +\begin_inset Formula $v\in H$ +\end_inset + +, +\begin_inset Formula +\[ +C\int_{G}v^{2}\leq\int_{G}\sum_{j}(\partial_{j}v)^{2}, +\] \end_inset +luego +\begin_inset Formula +\[ +C\Vert v\Vert_{1,2}^{2}=C\left(\int_{G}v^{2}+\sum_{j}(\partial_{j}v)^{2}\right)\leq(1+C)\int_{G}\sum_{j}(\partial_{j}v)^{2}=(1+C)B(v,v) +\] -\end_layout +\end_inset + +y +\begin_inset Formula $B$ +\end_inset + + es fuertemente positiva. + Además, +\begin_inset Formula $b_{0}$ +\end_inset + + es lineal y es acotada por la desigualdad de Cauchy-Schwartz, y como además + +\begin_inset Formula $B$ +\end_inset + + es bilineal y acotada, +\begin_inset Formula $b_{0}$ +\end_inset + + es lineal acotada y se dan las condiciones del teorema principal de los + problemas variacionales cuadráticos. + Ahora bien, si +\begin_inset Formula $w\coloneqq u-g\in H_{0}^{1}(G)$ +\end_inset + +, +\begin_inset Formula +\begin{multline*} +\frac{1}{2}B(w,w)-b(w)=\frac{1}{2}\int_{G}\sum_{j}(\partial_{j}(u-g))^{2}-\int_{G}f(u-g)+\int_{G}\sum_{j}(\partial_{j}(u-g))(\partial_{j}(g))=\\ +=\frac{1}{2}\int_{G}\sum_{j}(\partial_{j}(u-g))(\partial_{j}(u+g))-\int_{G}f(u-g)=\\ +=\frac{1}{2}\int_{G}\sum_{j}(\partial_{j}u)^{2}-\int_{G}fu+\frac{1}{2}\int_{G}\sum_{j}(\partial_{j}g)^{2}+\int_{G}fg, +\end{multline*} + +\end_inset + +luego minimizar +\begin_inset Formula $F$ +\end_inset + + equivale a minimizar +\begin_inset Formula $\frac{1}{2}B(w,w)-b(w)$ +\end_inset + +, y además +\begin_inset Formula +\begin{multline*} +B(w,v)=b(v)\iff B(u,v)-B(g,v)=b_{0}(v)-B(v,g)\iff B(u,v)=b_{0}(v)\iff\\ +\iff\int_{G}\sum_{j}(\partial_{j}u)(\partial_{j}v)=\int_{G}fv. +\end{multline*} + +\end_inset + +Para la última parte, si +\begin_inset Formula $u_{0}$ +\end_inset + + cumple esta última fórmula para todo +\begin_inset Formula $v\in H_{0}^{1}(G)$ +\end_inset + +, por integración por partes, +\begin_inset Formula +\[ +0=\int_{G}\sum_{j}(\partial_{j}u_{0})(\partial_{j}v)-\int_{G}fv=-\int_{G}\sum_{j}(\partial_{j}\partial_{j}u_{0})v-\int_{G}fv=-\int_{G}(\nabla^{2}u_{0}+f)v, +\] -\begin_layout Enumerate -Si -\begin_inset Formula $P_{\lambda}\in{\cal L}(H)$ \end_inset - es la proyección ortogonal sobre -\begin_inset Formula $\ker(T-\lambda1_{H})$ +con lo que +\begin_inset Formula $(\nabla^{2}u_{0}+f)\bot H_{0}^{1}(G)$ +\end_inset + + y, como +\begin_inset Formula ${\cal D}(G)\subseteq H_{0}^{1}(G)$ +\end_inset + + es denso en +\begin_inset Formula $L^{2}(G)$ \end_inset , -\begin_inset Formula $T=\sum_{\lambda\in\sigma_{\text{p}}(T)}\lambda P_{\lambda}$ +\begin_inset Formula $\nabla^{2}u_{0}+f=0$ \end_inset . -\begin_inset Note Note -status open +\end_layout -\begin_layout Plain Layout -nproof +\begin_layout Section +Soluciones débiles \end_layout +\begin_layout Standard +Dados +\begin_inset Formula $k,n\in\mathbb{N}$ \end_inset + y +\begin_inset Formula $a_{\alpha}\in\mathbb{K}^{n}$ +\end_inset -\end_layout + para cada +\begin_inset Formula $\alpha\in\mathbb{N}^{n}$ +\end_inset -\begin_layout Enumerate -\begin_inset Formula $\overline{\text{Im}T}=\bigoplus_{\lambda\in\sigma_{\text{p}}(T)\setminus\{0\}}\ker(T-\lambda1_{H})$ + con +\begin_inset Formula $|\alpha|<k$ \end_inset -. -\begin_inset Note Note -status open +, un +\series bold +operador diferencial lineal de coeficientes constantes +\series default + es uno de la forma +\begin_inset Formula +\[ +L\coloneqq\sum_{|\alpha|\leq k}a_{\alpha}\left(\frac{\partial}{\partial x}\right)^{\alpha}\coloneqq\sum_{|\alpha|\leq k}a_{\alpha}\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}}\cdots\partial x_{n}^{\alpha_{n}}}, +\] -\begin_layout Plain Layout -nproof -\end_layout +\end_inset + +y su +\series bold +operador adjunto +\series default + es +\begin_inset Formula +\[ +L^{*}\coloneqq\sum_{|\alpha|\leq k}(-1)^{|\alpha|}\overline{a_{\alpha}}\left(\frac{\partial}{\partial x}\right)^{\alpha}. +\] \end_inset +Si +\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ +\end_inset -\end_layout + es abierto, +\begin_inset Formula $\varphi,\psi\in L^{2}(G)$ +\end_inset -\begin_layout Enumerate -\begin_inset Formula $H=\ker T\oplus\overline{\text{Im}T}$ + son de clase +\begin_inset Formula ${\cal C}^{k}$ +\end_inset + + y una de las dos tiene soporte compacto, entonces +\begin_inset Formula $\langle L\psi,\varphi\rangle=\langle\psi,L^{*}\varphi\rangle$ \end_inset . @@ -3240,37 +4382,90 @@ nproof \end_layout -\begin_layout Enumerate -Existe una base ortonormal -\begin_inset Formula $(e_{n})_{n\in J}$ +\begin_layout Standard +Así, si +\begin_inset Formula $G$ \end_inset - de -\begin_inset Formula $\overline{\text{Im}T}$ + es un abierto en +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + +, +\begin_inset Formula $f,u\in L^{2}(G)$ +\end_inset + + son de clase +\begin_inset Formula ${\cal C}^{k}$ \end_inset y -\begin_inset Formula $\{\mu_{n}\}_{n\in J}\subseteq\mathbb{C}$ +\begin_inset Formula $Lu=f$ \end_inset - tales que, para -\begin_inset Formula $x\in H$ +, entonces +\begin_inset Formula $\langle f,\psi\rangle=\langle u,L^{*}\psi\rangle$ +\end_inset + + para todo +\begin_inset Formula $\psi\in{\cal D}(G)$ +\end_inset + +. + Para +\begin_inset Formula $f\in L^{2}(G)$ +\end_inset + +, +\begin_inset Formula $u\in L^{2}(G)$ +\end_inset + + es +\series bold +solución débil +\series default + de la ecuación en derivadas parciales +\begin_inset Formula $Lu=f$ +\end_inset + + si para todo +\begin_inset Formula $\psi\in{\cal D}(G)$ +\end_inset + + es +\begin_inset Formula $\langle f,\psi\rangle=\langle u,L^{*}\psi\rangle$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $L=\od{}{x}$ +\end_inset + + y +\begin_inset Formula $u,f\in L^{2}((0,1))$ \end_inset , -\begin_inset Formula $(\mu_{n}\langle x,e_{n}\rangle e_{n})_{n\in J}$ +\begin_inset Formula $Lu=f$ \end_inset - es sumable con suma -\begin_inset Formula $Tx$ + en sentido débil si y sólo si existe +\begin_inset Formula $F:(0,1)\to\mathbb{R}$ \end_inset -, y entonces -\begin_inset Formula $\{\mu_{n}\}_{n\in J}\subseteq\sigma_{\text{p}}(T)\setminus\{0\}$ + absolutamente continua con +\begin_inset Formula $F=u$ \end_inset y -\begin_inset Formula $\forall\lambda\in\sigma_{\text{p}}(T)\setminus\{0\},|\{n\in J\mid\mu_{n}=\lambda\}|=\dim\ker(T-\lambda1_{H})$ +\begin_inset Formula $F'=f$ +\end_inset + + para casi todo +\begin_inset Formula $x\in(0,1)$ \end_inset . @@ -3286,20 +4481,25 @@ nproof \end_layout -\begin_layout Enumerate -Si -\begin_inset Formula $P_{0}$ -\end_inset +\begin_layout Standard +La ecuación de ondas en una dimensión, +\begin_inset Formula +\[ +\left\{ \begin{array}{rlrl} +\frac{\partial^{2}u}{\partial x^{2}}-\frac{\partial^{2}u}{\partial t^{2}} & =0, & t & \in[0,+\infty),\\ +u(x,0) & \equiv f(x), & x & \in[0,\pi],\\ +\frac{\partial u}{\partial t}(x,0) & \equiv0, +\end{array}\right. +\] - es la proyección ortogonal sobre -\begin_inset Formula $\ker T$ \end_inset -, -\begin_inset Formula $\forall x\in H,x=P_{0}x+\sum_{n\in J}\langle x,e_{n}\rangle e_{n}$ +siendo +\begin_inset Formula $f:[0,\pi]\to\mathbb{R}$ \end_inset -. + una función lineal a trozos, admite soluciones débiles que no son soluciones + ordinarias. \begin_inset Note Note status open @@ -3313,356 +4513,462 @@ nproof \end_layout \begin_layout Standard -Si -\begin_inset Formula $H$ -\end_inset - - es un -\begin_inset Formula $\mathbb{K}$ -\end_inset --espacio de Hilbert, -\begin_inset Formula $T\in{\cal L}(H)$ +\series bold +Teorema de Malgrange-Ehrenpreis: +\series default + Sean +\begin_inset Formula $G$ \end_inset - es compacto autoadjunto si y sólo si hay una familia ortonormal contable - -\begin_inset Formula $\{e_{n}\}_{n\in J}\subseteq H$ + un abierto acotado de +\begin_inset Formula $\mathbb{R}^{n}$ \end_inset y -\begin_inset Formula $\{\mu_{n}\}_{n\in J}\subseteq\mathbb{R}$ +\begin_inset Formula $L$ \end_inset - de modo que -\begin_inset Formula $\forall x\in H,Tx=\sum_{n\in J}\mu_{n}\langle x,e_{n}\rangle e_{n}$ + un operador en derivadas parciales lineal con coeficientes constantes, + existe un operador lineal continuo +\begin_inset Formula $K:L^{2}(G)\to L^{2}(G)$ \end_inset - y 0 es el único punto de acumulación de -\begin_inset Formula $(\mu_{n})_{n}$ + tal que para todo +\begin_inset Formula $f\in L^{2}(G)$ \end_inset -. -\begin_inset Note Note -status open - -\begin_layout Plain Layout -nproof -\end_layout - +, +\begin_inset Formula $u\coloneqq K(f)$ \end_inset + es solución débil de +\begin_inset Formula $Lu=f$ +\end_inset +. \end_layout \begin_layout Standard \series bold -Teorema de alternativa de Fredholm: +Demostración: \series default - Sean -\begin_inset Formula $H$ + Definimos +\begin_inset Formula $\langle\varphi,\psi\rangle_{L}\coloneqq\langle L^{*}\varphi,L^{*}\psi\rangle_{2}$ \end_inset - un -\begin_inset Formula $\mathbb{K}$ +, y para ver que es un producto escalar sobre +\begin_inset Formula ${\cal D}(G)$ \end_inset --espacio de Hilbert, -\begin_inset Formula $T\in{\cal L}(H)$ + vemos que existe +\begin_inset Formula $C>0$ \end_inset - compacto autoadjunto, -\begin_inset Formula $(e_{n})_{n\in J}$ + tal que, para +\begin_inset Formula $\psi\in{\cal D}(G)$ \end_inset - una base ortonormal de -\begin_inset Formula $\overline{\text{Im}T}$ +, +\begin_inset Formula $\Vert\psi\Vert_{2}\leq C\Vert L^{*}\psi\Vert_{2}$ \end_inset - de modo que -\begin_inset Formula $Tx\eqqcolon\sum_{n\in J}\mu_{n}\langle x,e_{n}\rangle e_{n}$ +. + Si +\begin_inset Formula $L^{*}=\frac{\partial}{\partial x_{1}}$ \end_inset - para ciertos -\begin_inset Formula $\mu_{n}\in\mathbb{K}$ +, llamando +\begin_inset Formula $\psi(x)\coloneqq0$ \end_inset - e -\begin_inset Formula $y\in H$ + para +\begin_inset Formula $x\notin G$ \end_inset -: -\end_layout +, para +\begin_inset Formula $x\in G$ +\end_inset -\begin_layout Enumerate -Para -\begin_inset Formula $\lambda\in\mathbb{K}\setminus\{\sigma_{\text{p}}(T)\cup\{0\})$ +, como +\begin_inset Formula $\text{sop}\psi\subseteq G$ \end_inset -, la ecuación -\begin_inset Formula $(\lambda1_{H}-T)x=y$ + es compacto, sea +\begin_inset Formula $m\coloneqq\inf_{x\in G}x_{1}$ \end_inset - tiene como única solución +, \begin_inset Formula -\[ -x=\frac{1}{\lambda}\left(y+\sum_{n\in J}\frac{\mu_{n}}{\lambda-\mu_{n}}\langle y,e_{n}\rangle e_{n}\right). -\] +\begin{align*} +\psi(x)^{2} & =\left(\int_{m}^{x_{1}}\frac{\partial\psi}{\partial x_{1}}(t,x_{2},\dots,x_{n})\dif t\right)^{2}\leq\left(\int_{m}^{x_{1}}\left|\frac{\partial\psi}{\partial x_{1}}(t,x_{2},\dots,x_{n})\right|\cdot1\dif t\right)\leq\\ + & \leq\int_{m}^{x_{1}}\dif t\int_{m}^{x_{1}}\left|\frac{\partial\psi}{\partial x_{1}}(t,x_{2},\dots,x_{n})\right|^{2}\dif t\leq d\int_{m}^{x_{1}}\left|\frac{\partial\psi}{\partial x_{1}}(t,x_{2},\dots,x_{n})\right|^{2}, +\end{align*} \end_inset +donde +\begin_inset Formula $d$ +\end_inset -\end_layout - -\begin_deeper -\begin_layout Standard -Si existe solución -\begin_inset Formula $x\in H$ + es el diámetro de +\begin_inset Formula $G$ \end_inset -, +, e integrando de nuevo, \begin_inset Formula -\[ -(\lambda1_{H}-T)x=y\iff\lambda x=Tx+y\iff x=\frac{1}{\lambda}\left(\sum_{n\in J}\mu_{n}\langle x,e_{n}\rangle e_{n}+y\right), -\] +\begin{align*} +\Vert\psi\Vert_{2}^{2} & =\int_{G}\psi(x)^{2}\dif x\leq d\int_{m}^{x_{1}}\int_{-\infty}^{x_{2}}\cdots\int_{-\infty}^{x_{n}}\int_{m}^{x_{1}}\left|\frac{\partial\psi}{\partial x_{1}}(t,x_{2},\dots,x_{n})\right|^{2}\dif t\dif x_{n}\cdots\dif x_{1}\leq\\ + & \leq d^{2}\int_{G}\left|\frac{\partial\psi}{\partial x_{1}}(x)\right|^{2}\dif x=d^{2}\Vert L^{*}\psi\Vert_{2}^{2}. +\end{align*} + +\end_inset + +Si +\begin_inset Formula $L^{*}=\frac{\partial}{\partial x_{i}}$ +\end_inset + para otro +\begin_inset Formula $i$ \end_inset -pero entonces -\begin_inset Formula $\langle x,e_{n}\rangle=\frac{1}{\lambda}(\mu_{n}\langle x,e_{n}\rangle+\langle y,e_{n}\rangle)$ +, es análogo, y si +\begin_inset Formula $L^{*}=\left(\frac{\partial}{\partial x}\right)^{|\alpha|}$ +\end_inset + +, por inducción, +\begin_inset Formula $\Vert\psi\Vert_{2}\leq d^{|\alpha|}\Vert L^{*}\psi\Vert_{2}$ +\end_inset + +. + Para +\begin_inset Formula $L$ +\end_inset + + arbitrario basta hacer combinaciones lineales. + Visto esto, sean +\begin_inset Formula $H_{0}\coloneqq({\cal D}(G),\langle\cdot,\cdot\rangle_{L})$ \end_inset y -\begin_inset Formula $(\lambda-\mu_{n})\langle x,e_{n}\rangle=\langle y,e_{n}\rangle$ +\begin_inset Formula $H$ \end_inset -, y como -\begin_inset Formula $\lambda-\mu_{n}\neq0$ + su compleción, +\begin_inset Formula $L^{*}:H_{0}\to L^{2}(G)$ \end_inset -, podemos sustituir -\begin_inset Formula $\langle x,e_{n}\rangle=\frac{1}{\lambda-\mu_{n}}\langle y,e_{n}\rangle$ + es lineal y continuo y por tanto admite una extensión lineal y continua + +\begin_inset Formula $\hat{L}^{*}:H\to L^{2}(G)$ \end_inset - en lo anterior y queda la solución del enunciado. - Queda ver que la serie converge, pero si -\begin_inset Formula $\sigma_{\text{p}}(T)$ +. + Sea ahora +\begin_inset Formula $f\in L^{2}(G)$ \end_inset - es infinito, -\begin_inset Formula $\{\mu_{n}\}_{n}\subseteq\sigma_{\text{p}}(T)$ + y +\begin_inset Formula $l_{0}:H_{0}\to\mathbb{K}$ \end_inset - es acotado y por tanto lo es -\begin_inset Formula $\left|\frac{\mu_{n}}{\lambda-\mu_{n}}\right|$ + dada por +\begin_inset Formula $l_{0}(\psi)\coloneqq\langle\psi,f\rangle_{2}$ \end_inset - y +, \begin_inset Formula \[ -\sum_{n\in J}\left|\frac{\mu_{n}}{\lambda-\mu_{n}}\right|^{2}|\langle y,e_{n}\rangle|^{2}\leq\sup_{n\in J}\left|\frac{\mu_{n}}{\lambda-\mu_{n}}\right|^{2}\sum_{n\in J}|\langle y,e_{n}\rangle|^{2}<\infty. +|l_{0}(\psi)|=|\langle\psi,f\rangle_{2}|\leq\Vert\psi\Vert_{2}\Vert f\Vert_{2}\leq C\Vert f\Vert_{2}\Vert L^{*}\psi\Vert_{2}, \] \end_inset +donde +\begin_inset Formula $C$ +\end_inset -\end_layout + es tal que +\begin_inset Formula $\Vert\psi\Vert_{2}\leq C\Vert L^{*}\psi\Vert_{2}$ +\end_inset -\end_deeper -\begin_layout Enumerate -Para -\begin_inset Formula $\lambda\in\sigma_{\text{p}}(T)\setminus\{0\}$ + para todo +\begin_inset Formula $C$ \end_inset -, la ecuación -\begin_inset Formula $(\lambda1_{H}-T)x=y$ +, de modo que +\begin_inset Formula $l_{0}$ \end_inset - tiene solución si y sólo si -\begin_inset Formula $y\bot\ker(\lambda1_{H}-T)$ + es lineal continua por la cota +\begin_inset Formula $C\Vert f\Vert_{2}$ \end_inset -, en cuyo caso las soluciones son -\begin_inset Formula -\begin{align*} -x & =\frac{1}{\lambda}\left(y+\sum_{\begin{subarray}{c} -n\in J\\ -\mu_{n}\neq\lambda -\end{subarray}}\frac{\mu_{n}}{\lambda-\mu_{n}}\langle y,e_{n}\rangle e_{n}\right)+z, & z & \in\ker(\lambda1_{H}-T). -\end{align*} + y se puede extender a una forma lineal y continua +\begin_inset Formula $l:H\to\mathbb{K}$ +\end_inset + con +\begin_inset Formula $\Vert l\Vert\leq C\Vert f\Vert_{2}$ \end_inset +. + Por el teorema de Riesz, existe un único +\begin_inset Formula $\hat{u}\in H$ +\end_inset -\end_layout + con +\begin_inset Formula $l(h)\equiv\langle h,\hat{u}\rangle_{L}$ +\end_inset -\begin_deeper -\begin_layout Standard -Si la ecuación tiene solución -\begin_inset Formula $x$ + para +\begin_inset Formula $h\in H$ \end_inset -, entonces -\begin_inset Formula $y=(\lambda1_{H}-T)x\in\text{Im}(\lambda1_{H}-T)\subseteq\overline{\text{Im}(\lambda1_{H}-T)}=\ker((\lambda1_{H}-T)^{*})^{\bot}=\ker(\lambda1_{H}-T)^{\bot}$ + y además +\begin_inset Formula $\Vert\hat{u}\Vert_{H}=\Vert l\Vert_{H}$ \end_inset - por ser -\begin_inset Formula $1_{H}$ +, y tomando +\begin_inset Formula $u\coloneqq\hat{L}^{*}\hat{u}$ +\end_inset + +, +\begin_inset Formula $l(h)=\langle\hat{L}^{*}h,\hat{L}^{*}\hat{u}\rangle=\langle\hat{L}^{*}h,u\rangle_{2}$ +\end_inset + +, pero para +\begin_inset Formula $\psi\in{\cal D}(G)$ +\end_inset + +, +\begin_inset Formula $l(\psi)=\langle\psi,f\rangle_{2}$ \end_inset y -\begin_inset Formula $T$ +\begin_inset Formula $\hat{L}^{*}(\psi)=L^{*}\psi$ \end_inset - autoadjuntos, y claramente dos soluciones difieren en un vector de -\begin_inset Formula $\ker(\lambda1_{H}-T)$ +, con lo que +\begin_inset Formula $\langle L^{*}\psi,u\rangle_{2}=l(\psi)=\langle\psi,f\rangle_{2}$ +\end_inset + +, y basta llamar +\begin_inset Formula $K(f)\coloneqq u$ \end_inset . - Queda ver que, si -\begin_inset Formula $y\in\ker(\lambda1_{H}-T)^{\bot}$ + Para la continuidad de +\begin_inset Formula $K$ \end_inset -, la -\begin_inset Formula $x$ +, +\begin_inset Formula +\[ +\Vert K(f)\Vert_{2}=\Vert u\Vert_{2}=\Vert\hat{L}^{*}\hat{u}\Vert_{2}=\Vert\hat{u}\Vert_{H}=\Vert l\Vert_{H}=\sup_{\Vert\psi\Vert_{H}=\Vert L^{*}\psi\Vert_{2}=1}|l(\psi)|\leq C\Vert f\Vert_{2}. +\] + +\end_inset + + +\end_layout + +\begin_layout Section +Método de Galerkin +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $M_{1}\subseteq M_{2}\subseteq\dots\subseteq M_{n}\subseteq\dots$ \end_inset - del enunciado es solución, para lo cual hacemos la misma sustitución que - al principio del primer apartado pero, cuando -\begin_inset Formula $\lambda=\mu_{n}$ + una sucesión de subespacios cerrados de un espacio de Hilbert +\begin_inset Formula $H$ \end_inset -, en su lugar vemos que -\begin_inset Formula $(\lambda-\mu_{n})\langle x,e_{n}\rangle=\langle y,e_{n}\rangle$ + con unión densa en +\begin_inset Formula $H$ \end_inset - y por tanto -\begin_inset Formula $\langle y,e_{n}\rangle=0$ +, +\begin_inset Formula $a:H\times H\to\mathbb{R}$ \end_inset -, por lo que excluimos dicho factor de la serie, la cual converge por el - mismo motivo que en el primer apartado y resulta en la solución del enunciado. -\end_layout + bilineal, simétrica, continua y fuertemente positiva, +\begin_inset Formula $b:H\to\mathbb{R}$ +\end_inset + + lineal continua, +\begin_inset Formula +\[ +J(x)\coloneqq\frac{1}{2}a(x,x)-b(x) +\] -\end_deeper -\begin_layout Enumerate -Para -\begin_inset Formula $y=0$ +\end_inset + +para +\begin_inset Formula $x\in H$ \end_inset , -\begin_inset Formula $Tx=y$ +\begin_inset Formula $u\in H$ \end_inset - tiene solución si y sólo si -\begin_inset Formula $y\bot\ker T$ + con +\begin_inset Formula $J(u)$ \end_inset - y -\begin_inset Formula $\sum_{n\in J}\left|\frac{\langle y,e_{n}\rangle}{\mu_{n}}\right|^{2}<\infty$ + mínimo y, para +\begin_inset Formula $n\in\mathbb{N}$ \end_inset -, en cuyo caso las soluciones son -\begin_inset Formula -\begin{align*} -x & =\sum_{n\in J}\frac{1}{\mu_{n}}\langle y,e_{n}\rangle e_{n}+z, & z & \in\ker T. -\end{align*} +, +\begin_inset Formula $u_{n}\in M_{n}$ +\end_inset + + con +\begin_inset Formula $J(u_{n})$ +\end_inset + + mínimo, de modo que +\begin_inset Formula $a(x,u_{n})=b(x)$ +\end_inset + + para todo +\begin_inset Formula $x\in M_{n}$ +\end_inset + + y +\begin_inset Formula $a(x,u)=b(x)$ +\end_inset + para todo +\begin_inset Formula $x\in H$ \end_inset +: +\end_layout + +\begin_layout Enumerate + +\series bold +Teorema de Galerkin-Ritz: +\series default + +\begin_inset Formula $\lim_{n}u_{n}=u$ +\end_inset +. \end_layout \begin_deeper \begin_layout Standard -Si la ecuación tiene solución -\begin_inset Formula $x$ +Para +\begin_inset Formula $x\in M_{n}$ \end_inset , -\begin_inset Formula $y\in\text{Im}T\subseteq(\ker T)^{\bot}$ +\begin_inset Formula $a(x,u_{n})=b(x)$ \end_inset - y -\begin_inset Formula -\[ -\sum_{n\in J}\mu_{n}\langle x,e_{n}\rangle e_{n}=Tx=y=\sum_{n\in J}\langle y,e_{n}\rangle e_{n}, -\] +, y para +\begin_inset Formula $x\in H$ +\end_inset +, +\begin_inset Formula $a(x,u)=f(x)$ \end_inset -con lo que -\begin_inset Formula $\langle x,e_{n}\rangle=\frac{1}{\mu_{n}}\langle y,e_{n}\rangle$ +, luego +\begin_inset Formula $a(x,u-u_{n})=b(x)-b(x)=0$ \end_inset - para cada -\begin_inset Formula $n$ + para +\begin_inset Formula $x\in M_{n}$ \end_inset - y por tanto -\begin_inset Formula $\sum_{n\in J}\left|\frac{\langle y,e_{n}\rangle}{\mu_{n}}\right|^{2}=\Vert x\Vert^{2}<\infty$ +. + Pero +\begin_inset Formula $a$ \end_inset -, y como -\begin_inset Formula $(e_{n})_{n}$ + es un producto escalar equivalente al de +\begin_inset Formula $H$ \end_inset - es base de -\begin_inset Formula $\overline{\text{Im}T}$ +, luego +\begin_inset Formula $u-u_{n}\bot M_{n}$ \end_inset -, -\begin_inset Formula $x\in\sum_{n\in J}\frac{1}{\mu_{n}}\langle y,e_{n}\rangle e_{n}+\overline{\text{Im}T}^{\bot}$ + y, si +\begin_inset Formula $P_{n}:H\to M_{n}$ \end_inset - con -\begin_inset Formula $\overline{\text{Im}T}^{\bot}=\ker T$ + es la proyección ortogonal, +\begin_inset Formula $P_{n}(u)=u_{n}$ \end_inset . - Finalmente, si esta condición se cumple, -\begin_inset Formula $y\in\overline{\text{Im}T}$ + Por el teorema de la proyección, +\begin_inset Formula $\Vert u-u_{n}\Vert=\Vert u-P_{n}(u)\Vert=d(u,M_{n})$ \end_inset -, la serie del enunciado converge y -\begin_inset Formula -\[ -T\left(\sum_{n\in J}\frac{1}{\mu_{n}}\langle y,e_{n}\rangle e_{n}+z\right)=\sum_{n\in J}\langle y,e_{n}\rangle e_{n}+0=y. -\] +, pero por la densidad es +\begin_inset Formula $d(u,\bigcup_{n}M_{n})=0$ +\end_inset +, y para +\begin_inset Formula $\varepsilon>0$ \end_inset + existen +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset -\end_layout + e +\begin_inset Formula $y\in M_{n_{0}}$ +\end_inset -\end_deeper -\begin_layout Standard -Sea -\begin_inset Formula $A$ + con +\begin_inset Formula $\Vert u-y\Vert<\varepsilon$ \end_inset - un operador en un espacio de Hilbert -\begin_inset Formula $H$ +, y como la sucesión es creciente, para +\begin_inset Formula $n\geq n_{0}$ \end_inset -: +, +\begin_inset Formula $\Vert u-u_{n}\Vert=d(u,M_{n})\leq d(u,M_{n_{0}})\leq\Vert u-y\Vert<\varepsilon$ +\end_inset + +, con lo que +\begin_inset Formula $\lim_{n}u_{n}=u$ +\end_inset + +. \end_layout +\end_deeper \begin_layout Enumerate -\begin_inset Formula $A$ +Dados +\begin_inset Formula $c,d>0$ \end_inset - es una isometría si y sólo si -\begin_inset Formula $A^{*}$ + con +\begin_inset Formula $a(x,y)\leq d\Vert x\Vert\Vert y\Vert$ \end_inset - es inverso por la izquierda de -\begin_inset Formula $A$ + y +\begin_inset Formula $c\Vert x\Vert^{2}\leq a(x,x)$ \end_inset -, si y sólo si -\begin_inset Formula $\forall x,y\in H,\langle Ax,Ay\rangle=\langle x,y\rangle$ + para todo +\begin_inset Formula $x,y\in H$ +\end_inset + +, +\begin_inset Formula $c\Vert u\Vert\leq\Vert b\Vert$ \end_inset . @@ -3679,27 +4985,118 @@ nproof \end_layout \begin_layout Enumerate -\begin_inset Formula $A$ + +\series bold +Razón de convergencia: +\series default + +\begin_inset Formula $\Vert u-u_{n}\Vert\leq\frac{d}{c}d(u,M_{n})$ \end_inset - es un isomorfismo isométrico, si y sólo si es una isometría suprayectiva, - si y sólo si -\begin_inset Formula $A^{*}$ +. +\end_layout + +\begin_layout Enumerate + +\series bold +Estimación del error: +\series default + Si +\begin_inset Formula $\beta\leq J(x)$ \end_inset - es inverso de -\begin_inset Formula $A$ + para todo +\begin_inset Formula $x\in H$ \end_inset -, y entonces decimos que -\begin_inset Formula $A$ +, para +\begin_inset Formula $n\in\mathbb{N}$ \end_inset es +\begin_inset Formula $\frac{c}{2}\Vert u-u_{n}\Vert^{2}\leq J(u_{n})-\beta$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El \series bold -unitario +método de Galerkin \series default + para resolver un problema de esta forma consiste en tomar en el teorema + anterior los +\begin_inset Formula $M_{n}$ +\end_inset + + de dimensión finita y resolver los sistemas de ecuaciones lineales resultantes, + con matriz de coeficientes simétrica y definida positiva de tamaño +\begin_inset Formula $\dim M_{n}$ +\end_inset + . + Tomando adecuadamente las bases de los +\begin_inset Formula $M_{n}$ +\end_inset + + se puede conseguir que las matrices tengan muchas entradas nulas. +\end_layout + +\begin_layout Section +Bases hilbertianas +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $(H_{i})_{i\in I}$ +\end_inset + + una familia de +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacios de Hilbert, +\begin_inset Formula $H_{0}\coloneqq\prod_{i\in I}H_{i}$ +\end_inset + + y +\begin_inset Formula $\langle\cdot,\cdot\rangle:H_{0}\times H_{0}\to[0,+\infty]$ +\end_inset + + dada por +\begin_inset Formula +\[ +\langle x,y\rangle\coloneqq\sum_{i\in I}\langle x_{i},y_{i}\rangle_{H_{i}}, +\] + +\end_inset + +llamamos +\series bold +suma directa hilbertiana +\series default + o +\series bold +suma +\begin_inset Formula $\ell^{2}$ +\end_inset + + +\series default + de +\begin_inset Formula $\{H_{i}\}_{i\in I}$ +\end_inset + + al espacio de Hilbert +\begin_inset Formula +\[ +\bigoplus_{i\in I}H_{i}\coloneqq\ell^{2}((H_{i})_{i\in I})\coloneqq(\{x\in H_{0}\mid\langle x,x\rangle<\infty\},\langle\cdot,\cdot\rangle). +\] + +\end_inset + + \begin_inset Note Note status open @@ -3713,28 +5110,84 @@ nproof \end_layout \begin_layout Standard -Sean +Cada +\begin_inset Formula $H_{i}$ +\end_inset + + es isométricamente isomorfo al subespacio de \begin_inset Formula $H$ \end_inset - un + de los vectores con todas las coordenadas nulas salvo la +\begin_inset Formula $i$ +\end_inset + +, los +\begin_inset Formula $H_{i}$ +\end_inset + + son mutuamente ortogonales en +\begin_inset Formula $H$ +\end_inset + +, +\begin_inset Formula $H$ +\end_inset + + es la clausura lineal cerrada de los +\begin_inset Formula $H_{i}$ +\end_inset + + y cada +\begin_inset Formula $x\in H$ +\end_inset + + se puede expresar de forma única como +\begin_inset Formula $\sum_{i\in I}x_{i}$ +\end_inset + + con cada +\begin_inset Formula $x_{i}\in H_{i}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $H$ +\end_inset + + es un \begin_inset Formula $\mathbb{K}$ \end_inset -espacio de Hilbert y -\begin_inset Formula $S,T\in{\cal L}(H)$ +\begin_inset Formula $(H_{i})_{i\in I}$ +\end_inset + + es una familia de subespacios cerrados de +\begin_inset Formula $H$ \end_inset - compactos autoadjuntos, -\begin_inset Formula $\forall\lambda\in\mathbb{K},\dim\ker(T-\lambda1_{H})=\dim\ker(S-\lambda1_{H})$ + mutuamente ortogonales con +\begin_inset Formula $H=\overline{\text{span}\{H_{i}\}_{i\in I}}$ \end_inset - si y sólo si existe -\begin_inset Formula $U\in{\cal L}(H)$ +, entonces +\begin_inset Formula $H$ +\end_inset + + es isométricamente isomorfo a +\begin_inset Formula $\bigoplus_{i\in I}H_{i}$ +\end_inset + +, e identificamos +\begin_inset Formula $H$ \end_inset - unitario con -\begin_inset Formula $U^{*}SU=T$ + con +\begin_inset Formula $\bigoplus_{i\in I}H_{i}$ \end_inset . @@ -3751,80 +5204,268 @@ nproof \end_layout \begin_layout Standard -\begin_inset Formula $S,T\in{\cal L}(H)$ + +\series bold +Desigualdad de Bessel: +\series default + Sean +\begin_inset Formula $H$ \end_inset - en el -\begin_inset Formula $\mathbb{K}$ + un espacio prehilbertiano y +\begin_inset Formula $\{e_{i}\}_{i\in I}\subseteq H$ +\end_inset + + una familia ortonormal, para +\begin_inset Formula $x\in H$ +\end_inset + +, +\begin_inset Formula +\[ +\sum_{i\in I}|\langle x,e_{i}\rangle|^{2}\leq\Vert x\Vert^{2}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Para un conjunto +\begin_inset Formula $I$ +\end_inset + + arbitrario, llamamos +\begin_inset Formula $\ell^{2}(I)\coloneqq\bigoplus_{i\in I}\mathbb{K}$ \end_inset --espacio de Hilbert +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de la base hilbertiana: +\series default + Sean \begin_inset Formula $H$ \end_inset - son + un espacio de Hilbert y +\begin_inset Formula $\{e_{i}\}_{i\in I}\subseteq H$ +\end_inset + + una familia ortonormal, +\begin_inset Formula $\{e_{i}\}_{i\in I}$ +\end_inset + + es ortonormal maximal (por inclusión) si y sólo si +\begin_inset Formula $\forall x\in H,(\forall i\in I,\langle x,e_{i}\rangle=0\implies x=0)$ +\end_inset + +, si y sólo si es un conjunto total, si y sólo si +\begin_inset Formula $\hat{}:H\to\ell^{2}(I)$ +\end_inset + + dada por +\begin_inset Formula $\hat{x}\coloneqq(\langle x,e_{i}\rangle)_{i\in I}$ +\end_inset + + es inyectiva, si y sólo si todo +\begin_inset Formula $x\in H$ +\end_inset + + admite un \series bold -simultáneamente diagonalizables +desarrollo de Fourier \series default - si existe una familia ortonormal -\begin_inset Formula $\{e_{n}\}_{n\in J}\subseteq H$ + +\begin_inset Formula $x=\sum_{i\in I}\langle x,e_{i}\rangle e_{i}$ \end_inset - y -\begin_inset Formula $\{\alpha_{n}\}_{n\in J},\{\beta_{n}\}_{n\in J}\subseteq\mathbb{K}$ +, si y sólo si +\begin_inset Formula $\forall x,y\in H,\langle x,y\rangle=\sum_{i\in I}\langle x,e_{i}\rangle\overline{\langle y,e_{i}\rangle}$ \end_inset - tal que -\begin_inset Formula -\[ -\forall x\in H,\left(Sx=\sum_{n\in J}\alpha_{n}\langle x,e_{n}\rangle e_{n}\land Tx=\sum_{n\in J}\beta_{n}\langle x,e_{n}\rangle e_{n}\right). -\] +, si y sólo si todo +\begin_inset Formula $x\in H$ +\end_inset + cumple la +\series bold +identidad de Parseval +\series default +, +\begin_inset Formula $\Vert x\Vert^{2}=\sum_{i\in I}|\langle x,e_{i}\rangle|^{2}$ \end_inset -Si -\begin_inset Formula $S$ +, y entonces decimos que +\begin_inset Formula $(e_{i})_{i\in I}$ \end_inset - y -\begin_inset Formula $T$ + es una +\series bold +base hilbertiana +\series default + de +\begin_inset Formula $H$ +\end_inset + + o un +\series bold +sistema ortonormal completo +\series default +. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies2]$ +\end_inset + + Entonces +\begin_inset Formula $x\bot\{e_{i}\}_{i\in I}$ +\end_inset + +, por lo que si +\begin_inset Formula $x\neq0$ +\end_inset + +, +\begin_inset Formula $\{e_{i}\}_{i\in I}\cup\{x\}$ +\end_inset + + sería ortogonal. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\begin_layout Description +\begin_inset Formula $2\iff3]$ +\end_inset + + Sabemos que un +\begin_inset Formula $S\subseteq H$ \end_inset - son compactos y autoadjuntos esto equivale a que -\begin_inset Formula $ST=TS$ + es total si y sólo si +\begin_inset Formula $S^{\bot}=0$ \end_inset . -\begin_inset Note Note -status open +\end_layout -\begin_layout Plain Layout -nproof +\begin_layout Description +\begin_inset Formula $2\iff4]$ +\end_inset + + Por ser +\begin_inset Formula $\hat{}$ +\end_inset + + lineal. +\end_layout + +\begin_layout Description +\begin_inset Formula $4\implies5]$ +\end_inset + + +\begin_inset Formula $\widehat{\sum_{i}\langle x,e_{i}\rangle e_{i}}=\sum_{i}\langle x,e_{i}\rangle\hat{e}_{i}=\sum_{i}\langle x,e_{i}\rangle e_{i}=\hat{x}$ +\end_inset + +, y por inyectividad +\begin_inset Formula $x=\sum_{i\in I}\langle x,e_{i}\rangle e_{i}$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $5\implies6]$ +\end_inset + + +\begin_inset Formula $\langle x,y\rangle=\sum_{i,j\in I}\langle\langle x,e_{i}\rangle e_{i},\langle y,e_{j}\rangle e_{j}\rangle=\sum_{i,j\in I}\langle x,e_{i}\rangle\overline{\langle y,e_{j}\rangle}\langle e_{i},e_{j}\rangle=\sum_{i\in I}\langle x,e_{i}\rangle\overline{\langle y,e_{j}\rangle}$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $6\implies7]$ +\end_inset + + Basta tomar +\begin_inset Formula $x=y$ +\end_inset + +. \end_layout +\begin_layout Description +\begin_inset Formula $7\implies1]$ +\end_inset + + Si fuera +\begin_inset Formula $\{e_{i}\}_{i}\subsetneq M\subseteq H$ +\end_inset + + con +\begin_inset Formula $M$ +\end_inset + + ortonormal, para +\begin_inset Formula $x\in M\setminus\{e_{i}\}_{i}$ \end_inset +, +\begin_inset Formula $1=\Vert x\Vert^{2}=\sum_{i\in I}|\langle x,e_{i}\rangle|^{2}=0\#$ +\end_inset +. \end_layout \begin_layout Standard \series bold -Teorema espectral para operadores compactos normales: +Primer teorema de Riesz-Fischer: \series default Si \begin_inset Formula $H$ \end_inset - es un -\begin_inset Formula $\mathbb{C}$ + es un espacio prehilbertiano con una familia ortonormal +\begin_inset Formula $\{e_{i}\}_{i\in I}$ \end_inset --espacio de Hilbert y -\begin_inset Formula $T\in{\cal L}(H)$ + y +\begin_inset Formula $\hat{}:H\to\mathbb{K}^{I}$ +\end_inset + + viene dada por +\begin_inset Formula $\hat{x}\coloneqq(\langle x,e_{i}\rangle)_{i\in I}$ +\end_inset + +, +\begin_inset Formula $\hat{}$ +\end_inset + + es lineal y continua con imagen contenida en +\begin_inset Formula $\ell^{2}(I)$ +\end_inset + + e igual a +\begin_inset Formula $\ell^{2}(I)$ +\end_inset + + si +\begin_inset Formula $H$ \end_inset - compacto normal, ocurre lo mismo que en el anterior teorema espectral. + es de Hilbert. \begin_inset Note Note status open @@ -3842,24 +5483,17 @@ Si \begin_inset Formula $H$ \end_inset - es un -\begin_inset Formula $\mathbb{C}$ -\end_inset - --espacio de Hilbert, -\begin_inset Formula $T\in{\cal L}(H)$ -\end_inset - - es compacto normal si y sólo si hay una familia ortonormal contable -\begin_inset Formula $\{e_{n}\}_{n\in J}\subseteq H$ + es un espacio de Hilbert, todo espacio ortonormal de vectores en +\begin_inset Formula $H$ \end_inset - y -\begin_inset Formula $\{\mu_{n}\}_{n\in J}\subseteq\mathbb{C}$ + se puede completar a una base hilbertiana de +\begin_inset Formula $H$ \end_inset - con 0 como único punto de acumulación de modo que -\begin_inset Formula $\forall x\in H,Tx=\sum_{n\in J}\mu_{n}\langle x,e_{n}\rangle e_{n}$ +, y en particular todo espacio de Hilbert posee una base hilbertiana y es + isométricamente isomorfo a un +\begin_inset Formula $\ell^{2}(I)$ \end_inset . @@ -3876,28 +5510,16 @@ nproof \end_layout \begin_layout Standard -Un operador entre -\begin_inset Formula $\mathbb{K}$ -\end_inset - --espacios de Hilbert -\begin_inset Formula $T\in{\cal L}(G,H)$ -\end_inset - - es compacto si y sólo si hay una familia contable -\begin_inset Formula $\{\nu_{n}\}_{n\in J}\subseteq\mathbb{R}^{+}$ -\end_inset - - con 0 como punto de acumulación, -\begin_inset Formula $\{e_{n}\}_{n\in J}\subseteq G$ +Los espacios de Hilbert +\begin_inset Formula $\ell^{2}(I)$ \end_inset y -\begin_inset Formula $\{f_{n}\}_{n\in J}\subseteq H$ +\begin_inset Formula $\ell^{2}(J)$ \end_inset - tales que -\begin_inset Formula $\forall x\in H,Tx=\sum_{n\in J}\nu_{n}\langle x,e_{n}\rangle f_{n}$ + son topológicamente isomorfos si y sólo si +\begin_inset Formula $|I|=|J|$ \end_inset . @@ -3913,135 +5535,156 @@ nproof \end_layout -\begin_layout Section -Ecuaciones integrales de Fredholm -\end_layout - \begin_layout Standard -Una +Llamamos \series bold -ecuación integral de Fredholm +dimensión hilbertiana \series default - es una de la forma -\begin_inset Formula -\[ -x(t)-\mu\int_{a}^{b}k(t,s)x(s)\dif s=g(t), -\] - + de un espacio de Hilbert al cardinal de cualquier base hilbertiana. + +\series bold +Segundo teorema de Riesz-Fischer: +\series default + Si +\begin_inset Formula $H$ \end_inset -donde -\begin_inset Formula $x,g\in L^{2}([a,b])$ + es de dimensión infinita, +\begin_inset Formula $\dim H=\aleph_{0}\coloneqq|\mathbb{N}|$ \end_inset -, -\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ + si y sólo si +\begin_inset Formula $H\cong\ell^{2}$ \end_inset - y la incógnita es -\begin_inset Formula $x$ +, si y sólo si +\begin_inset Formula $H$ \end_inset -. - + es separable. \end_layout -\begin_layout Standard -Un núcleo -\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +\begin_layout Description +\begin_inset Formula $1\iff2]$ \end_inset - es -\series bold -simétrico -\series default - si -\begin_inset Formula $k(t,s)=\overline{k(s,t)}$ + Por lo anterior. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies3]$ \end_inset - para casi todo -\begin_inset Formula $s,t\in[a,b]$ + Visto. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies2]$ \end_inset -. - -\series bold -Teorema de alternativa de Fredholm: -\series default - Sean -\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ + Dado +\begin_inset Formula $\{x_{n}\}_{n\in\mathbb{N}}\subseteq H$ \end_inset - un núcleo simétrico, -\begin_inset Formula $K$ + denso, como +\begin_inset Formula $H$ \end_inset - el operador integral asociado y -\begin_inset Formula $g\in L^{2}([a,b])$ + es de dimensión infinita, existe una subsucesión +\begin_inset Formula $(x_{n_{k}})_{k}$ \end_inset -, si -\begin_inset Formula $Kx=\sum_{n\in J}\mu_{j}\langle x,e_{n}\rangle e_{n}$ + linealmente independiente de +\begin_inset Formula $(x_{n})_{n}$ \end_inset - para cierta base hilbertiana contable -\begin_inset Formula $(e_{n})_{n\in J}$ + con +\begin_inset Formula $\text{span}\{x_{n}\}_{n}=\text{span}\{x_{n_{k}}\}_{k}$ \end_inset - de -\begin_inset Formula $\overline{\text{Im}K}$ +, luego +\begin_inset Formula $\overline{\text{span}\{x_{n_{k}}\}_{k}}=H$ \end_inset -, ciertos -\begin_inset Formula $\{\mu_{n}\}_{n\in J}\subseteq\mathbb{R}$ + y el proceso de ortonormalización de Gram-Schmidt nos da una base hilbertiana + numerable de +\begin_inset Formula $H$ \end_inset - y todo -\begin_inset Formula $x\in X$ +. +\end_layout + +\begin_layout Standard +Así, si +\begin_inset Formula $Z\leq_{\mathbb{K}}\ell^{2}$ \end_inset -, considerando la ecuación integral de Fredholm de arriba, -\begin_inset Formula $x-Kx=g$ + es cerrado de dimensión infinita, +\begin_inset Formula $Z\cong\ell^{2}$ \end_inset -: +. \end_layout -\begin_layout Enumerate +\begin_layout Section +Aproximaciones por polinomios +\end_layout + +\begin_layout Standard Si -\begin_inset Formula $\mu=0$ +\begin_inset Formula $I\subseteq\mathbb{R}$ +\end_inset + + es un intervalo cerrado, llamamos +\begin_inset Formula ${\cal C}(I)$ +\end_inset + + al conjunto de funciones +\begin_inset Formula $I\to\mathbb{R}$ \end_inset -, la ecuación tiene como única solución -\begin_inset Formula $x=g$ + continuas en el interior de +\begin_inset Formula $I$ \end_inset . \end_layout -\begin_layout Enumerate -Si -\begin_inset Formula $\frac{1}{\mu}\notin\{\mu_{n}\}_{n}$ +\begin_layout Standard + +\series bold +Teorema de Korovkin: +\series default + Sean +\begin_inset Formula $p_{0},p_{1},p_{2}:[a,b]\subseteq\mathbb{R}\to\mathbb{R}$ \end_inset -, la ecuación tiene como única solución -\begin_inset Formula -\[ -x(t)=g(t)+\mu\left(\sum_{n}\frac{\mu_{n}}{1-\mu\mu_{n}}\left(\int_{a}^{b}g\overline{e_{n}}\right)e_{n}(t)\right), -\] + dadas por +\begin_inset Formula $p_{k}(t)\coloneqq t^{k}$ +\end_inset + y +\begin_inset Formula $(P_{n}:{\cal C}([a,b])\to{\cal C}([a,b]))_{n}$ \end_inset -y existe -\begin_inset Formula $\alpha>0$ + una sucesión de funciones lineales positivas ( +\begin_inset Formula $\forall f\in{\cal C}([a,b]),(f\geq0\implies P_{n}(f)\geq0)$ \end_inset - que depende solo de -\begin_inset Formula $k$ +) con +\begin_inset Formula $\lim_{n}\Vert P_{n}(p_{k})-p_{k}\Vert_{\infty}=0$ \end_inset - tal que -\begin_inset Formula $\Vert x\Vert_{2}\leq\alpha\Vert g\Vert_{2}$ + para +\begin_inset Formula $k\in\{0,1,2\}$ +\end_inset + +, entonces, para +\begin_inset Formula $f\in{\cal C}([a,b])$ +\end_inset + +, +\begin_inset Formula $\lim_{n}\Vert P_{n}(f)-f\Vert_{\infty}=0$ \end_inset . @@ -4057,27 +5700,26 @@ nproof \end_layout -\begin_layout Enumerate -Si existe -\begin_inset Formula $n\in J$ -\end_inset +\begin_layout Standard - con -\begin_inset Formula $\mu_{n}=\frac{1}{\mu}$ +\series bold +Teorema de Weierstrass: +\series default + El conjunto de polinomios en una variable es denso +\begin_inset Formula $({\cal C}([a,b]),\Vert\cdot\Vert_{\infty})$ \end_inset -, la ecuación tiene solución si y sólo si -\begin_inset Formula $g\bot\ker(\frac{1_{L^{2}([a,b])}}{\mu}-K)$ +, y en particular +\begin_inset Formula $({\cal C}([a,b]),\Vert\cdot\Vert_{\infty})$ \end_inset -, y entonces las soluciones son -\begin_inset Formula -\begin{align*} -x(t) & =g(t)+\mu\sum_{\begin{subarray}{c} -n\in J\\ -\mu_{n}\neq\frac{1}{\mu} -\end{subarray}}\frac{\mu_{n}}{1-\mu\mu_{n}}\left(\int g\overline{e_{n}}\right)e_{j}+u, & u & \in\ker(\tfrac{1_{L^{2}([a,b])}}{\mu}-K). -\end{align*} + es separable. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout \end_inset @@ -4085,167 +5727,272 @@ n\in J\\ \end_layout \begin_layout Standard -La convergencia de las series es de media cuadrática, pero en ciertos casos - puede ser uniforme. +Así, para +\begin_inset Formula $f\in{\cal C}([a,b])$ +\end_inset + +, se puede encontrar una sucesión de polinomios que converja uniformemente + a +\begin_inset Formula $f$ +\end_inset + +. + Hacerlo con polinomios de interpolación por nodos prefijados no es una + buena estrategia ya que para toda secuencia de nodos de interpolación en + +\begin_inset Formula $[a,b]$ +\end_inset + +, existe +\begin_inset Formula $f\in{\cal C}([a,b])$ +\end_inset + + para la que los polinomios de interpolación en dichos nodos no converge + uniformemente a +\begin_inset Formula $f$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof \end_layout -\begin_layout Standard -Si -\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ \end_inset - es un núcleo simétrico con -\begin_inset Formula -\[ -\sup_{t\in[a,b]}\int_{a}^{b}|k(t,s)|^{2}\dif s<\infty, -\] + Si se hace con nodos equidistantes se da el fenómeno de Runge. +\end_layout + +\begin_layout Standard +\series bold +Teorema de Čebyšev: +\series default + Para +\begin_inset Formula $f\in{\cal C}([a,b])$ \end_inset + y +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset -\begin_inset Formula $K$ +, si +\begin_inset Formula $K_{n}\subseteq\mathbb{K}[X]$ \end_inset - es el operador integral asociado y hay una base hilbertiana -\begin_inset Formula $(e_{n})_{n\in J}$ + es el conjunto de polinomio de grado máximo +\begin_inset Formula $n$ \end_inset - de -\begin_inset Formula $\overline{\text{Im}K}$ +, +\begin_inset Formula $p:K_{n}\mapsto\Vert f-p\Vert_{\infty}$ \end_inset - y -\begin_inset Formula $\{\mu_{n}\}_{n\in J}\subseteq\mathbb{R}$ + tiene un único mínimo +\begin_inset Formula $p_{n}$ \end_inset - y tales que -\begin_inset Formula $Kx=\sum_{n}\mu_{n}\langle x,e_{n}\rangle e_{n}$ +, y +\begin_inset Formula $(p_{n})_{n}$ \end_inset -: + converge uniformemente a +\begin_inset Formula $f$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof \end_layout -\begin_layout Enumerate +\end_inset + +\end_layout + +\begin_layout Standard +Un \series bold -Teorema de Hilbert-Schmidt: +polinomio trigonométrico real \series default - Para -\begin_inset Formula $x\in L^{2}([a,b])$ + es una función +\begin_inset Formula $p:\mathbb{R}\to\mathbb{R}$ \end_inset -, + de la forma \begin_inset Formula \[ -\int_{a}^{b}k(t,s)x(s)\dif s=\sum_{n\in J}\mu_{n}\left(\int_{a}^{b}x\overline{e_{n}}\right)e_{n}(t) +p(x)\coloneqq\sum_{n=0}^{m}(a_{n}\cos(nx)+b_{n}\sin(nx)) \] \end_inset -para casi todo -\begin_inset Formula $t\in[a,b]$ +para ciertos +\begin_inset Formula $a_{n},b_{n}\in\mathbb{R}$ \end_inset -, y si -\begin_inset Formula $J$ +. + +\series bold +Teorema de Weierstrass: +\series default + Si +\begin_inset Formula $f:[-\pi,\pi]\to\mathbb{R}$ \end_inset - es numerable la serie converge absoluta y uniformemente en -\begin_inset Formula $[a,b]$ + es continua con +\begin_inset Formula $f(-\pi)=f(\pi)$ +\end_inset + +, para cada +\begin_inset Formula $\varepsilon>0$ +\end_inset + + existe un polinomio trigonométrico real +\begin_inset Formula $p$ +\end_inset + + con +\begin_inset Formula $\Vert f-p\Vert_{\infty}<\varepsilon$ \end_inset . +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + \end_layout -\begin_deeper \begin_layout Standard -Para la primera parte basta tomar en el teorema anterior un -\begin_inset Formula $\mu\neq0$ +Para +\begin_inset Formula $f:[-\pi,\pi]\to\mathbb{C}$ \end_inset - tal que -\begin_inset Formula $\frac{1}{\mu}$ + integrable y +\begin_inset Formula $r\in\mathbb{Z}$ \end_inset - no sea valor propio y despejar. - Para la segunda podemos suponer -\begin_inset Formula $J=(\mathbb{N},\geq)$ +, llamamos +\series bold + +\begin_inset Formula $r$ \end_inset -, y queremos ver que +-ésimo coeficiente de Fourier +\series default + de +\begin_inset Formula $f$ +\end_inset + + a \begin_inset Formula \[ -\sum_{n}\left|\mu_{n}\left(\int_{a}^{b}x\overline{e_{n}}\right)e_{n}(t)\right|=\sum_{n}|\mu_{n}\langle x,e_{n}\rangle e_{n}(t)| +\hat{f}(r)\coloneqq\frac{1}{2\pi}\int_{-\pi}^{\pi}f(t)\text{e}^{-\text{i}rt}\dif t, \] \end_inset -es uniformemente de Cauchy en -\begin_inset Formula $[a,b]$ +y +\series bold +serie de Fourier +\series default + de +\begin_inset Formula $f$ \end_inset -. - Por la desigualdad de Cauchy-Schwartz, + a la serie formal \begin_inset Formula \[ -\sum_{n=p}^{q}|\mu_{n}e_{n}(t)||\langle x,e_{n}\rangle|\leq\sqrt{\sum_{n=p}^{q}|\mu_{n}e_{n}(t)|^{2}\sum_{n=p}^{q}|\langle x,e_{n}\rangle|^{2}}, +\sum_{r\in\mathbb{Z}}\hat{f}(r)\text{e}^{-\text{i}rt}. \] \end_inset -pero para -\begin_inset Formula $n\in J$ + +\end_layout + +\begin_layout Standard +Para +\begin_inset Formula $f:[-\pi,\pi]\to\mathbb{R}$ \end_inset - y -\begin_inset Formula $t\in[a,b]$ + integrable y +\begin_inset Formula $n\in\mathbb{N}^{*}$ \end_inset -, +, llamando \begin_inset Formula -\[ -\mu_{n}e_{n}(t)=K(e_{n})(t)=\int_{a}^{b}k(t,s)e_{k}(s)\dif s=\langle e_{k},\overline{k_{t}}\rangle, -\] +\begin{align*} +a_{0} & \coloneqq\frac{1}{2\pi}\int_{-\pi}^{\pi}f, & a_{n} & \coloneqq\frac{1}{\pi}\int_{-\pi}^{\pi}f(t)\cos(nt)\dif t, & b_{n} & \coloneqq\frac{1}{\pi}\int_{-\pi}^{\pi}f(t)\sin(nt)\dif t, +\end{align*} \end_inset -donde -\begin_inset Formula $k_{t}(s)\coloneqq k(t,s)$ +la +\series bold +serie de Fourier real +\series default + de +\begin_inset Formula $f$ \end_inset -, luego + es \begin_inset Formula \[ -\sqrt{\sum_{n=p}^{q}|\mu_{n}e_{n}(t)|^{2}}=\sqrt{\sum_{n=p}^{q}|\langle e_{n},\overline{k_{t}}\rangle|^{2}}\leq\Vert k_{t}\Vert_{2}\leq\sup_{t\in[a,b]}\Vert k_{t}\Vert_{2}<\infty, +\sum_{n=0}^{\infty}a_{n}\cos(nt)+\sum_{n=1}^{\infty}b_{n}\sin(nt). \] \end_inset -con lo que esto está acotado superiormente por un valor independiente de - -\begin_inset Formula $t$ + +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, sean +\begin_inset Formula $([-\pi,\pi],\Sigma,\mu)$ \end_inset - y el resultado sale de que -\begin_inset Formula $|\langle x,e_{n}\rangle|^{2}$ + es el espacio de medida usual en +\begin_inset Formula $[-\pi,\pi]$ \end_inset - tampoco depende de -\begin_inset Formula $t$ +, +\begin_inset Formula $M_{\mathbb{R}}\coloneqq L_{\mathbb{R}}^{2}([-\pi,\pi],\Sigma,\frac{\mu}{\pi})$ \end_inset y -\begin_inset Formula $\lim_{p,q}\sum_{n=p}^{q}|\langle x,e_{n}\rangle|^{2}=0$ +\begin_inset Formula $M_{\mathbb{C}}\coloneqq L_{\mathbb{C}}^{2}([-\pi,\pi],\Sigma,\frac{\mu}{2\pi})$ \end_inset -. +: \end_layout -\end_deeper \begin_layout Enumerate -Las series del teorema de alternativa de Fredholm convergen absoluta y uniformem -ente en -\begin_inset Formula $[a,b]$ +El +\series bold +sistema trigonométrico +\series default + +\begin_inset Formula $(\text{e}^{\text{i}rt})_{r\in\mathbb{Z}}$ +\end_inset + + es una base hilbertiana de +\begin_inset Formula $M_{\mathbb{C}}$ \end_inset . @@ -4261,44 +6008,67 @@ nproof \end_layout -\begin_layout Standard -Si -\begin_inset Formula $k\in{\cal C}([a,b]\times[a,b])$ +\begin_layout Enumerate +\begin_inset Formula $(\cos(nt))_{n\in\mathbb{N}}\star(\sin(nt))_{n\in\mathbb{N}^{*}}$ \end_inset - es un núcleo simétrico, existen una familia ortonormal contable -\begin_inset Formula $\{e_{n}\}_{n\in J}\subseteq({\cal C}([a,b]),\Vert\cdot\Vert_{2})$ + es una base hilbertiana de +\begin_inset Formula $M_{\mathbb{R}}$ \end_inset - y -\begin_inset Formula $\{\mu_{n}\}_{n\in J}\subseteq\mathbb{R}$ +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + \end_inset - tales que, si -\begin_inset Formula $K$ + +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $f\in M_{\mathbb{C}}$ \end_inset - es el operador integral asociado a -\begin_inset Formula $k$ +, +\begin_inset Formula $f$ \end_inset - y -\begin_inset Formula $f\in{\cal C}([a,b])$ + coincide con su serie de Fourier en +\begin_inset Formula $\Vert\cdot\Vert_{2}$ \end_inset -, -\begin_inset Formula -\[ -Kf(t)=\sum_{n\in J}\mu_{n}\left(\int_{a}^{b}f\overline{e_{n}}\right)e_{n}(t) -\] +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $f\in M_{\mathbb{R}}$ +\end_inset +, +\begin_inset Formula $f$ \end_inset -para todo -\begin_inset Formula $t\in[a,b]$ + coincide con su serie de Fourier real en +\begin_inset Formula $\Vert\cdot\Vert_{2}$ \end_inset - y la convergencia de la serie es absoluta y uniforme. +. \begin_inset Note Note status open @@ -4311,142 +6081,263 @@ nproof \end_layout -\begin_layout Section -Problemas de Sturm-Liouville +\begin_layout Enumerate +\begin_inset Formula ${\cal F}:M_{\mathbb{C}}\to\ell^{2}(\mathbb{Z})$ +\end_inset + + que asigna a cada función su familia de coeficientes de Fourier +\begin_inset Formula $(\hat{f}(n))_{n\in\mathbb{Z}}$ +\end_inset + + es un isomorfismo de espacios de Hilbert. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + \end_layout \begin_layout Standard Un \series bold -problema regular de Sturm-Liouville +peso \series default + en un intervalo cerrado +\begin_inset Formula $I\subseteq\mathbb{R}$ +\end_inset + + es una +\begin_inset Formula $p\in{\cal C}(I)$ +\end_inset + + estrictamente positiva tal que +\begin_inset Formula +\[ +\forall n\in\mathbb{N},\int_{I}|t|^{n}p(t)\dif t<\infty. +\] + +\end_inset -\begin_inset Foot +Entonces +\begin_inset Formula $\langle\cdot,\cdot\rangle:{\cal C}(I)\times{\cal C}(I)\to[-\infty,+\infty]$ +\end_inset + + dada por +\begin_inset Formula +\[ +\langle f,g\rangle\coloneqq\int_{I}f\overline{g}p +\] + +\end_inset + +es un producto escalar en +\begin_inset Formula $H_{p}\coloneqq\{f\in{\cal C}(I)\mid\langle f,f\rangle<\infty\}$ +\end_inset + +. +\begin_inset Note Note status open \begin_layout Plain Layout -La forma general del problema tiene como ecuación -\begin_inset Formula $\od{}{x}(p\dot{x})+qx+\lambda\sigma x+y=0$ -\end_inset +nproof +\end_layout - con -\begin_inset Formula $p$ \end_inset - y -\begin_inset Formula $\sigma$ + +\end_layout + +\begin_layout Standard +Llamamos +\series bold +sucesión de polinomios ortonormales +\series default + asociada a +\begin_inset Formula $\langle\cdot,\cdot\rangle$ \end_inset - continuas y estrictamente positivas. - Aquí tomamos + o al peso \begin_inset Formula $p$ \end_inset - y -\begin_inset Formula $q$ + en +\begin_inset Formula $I$ \end_inset - constantes en 1. -\end_layout + a una sucesión +\begin_inset Formula $\{P_{n}\}_{n\in\mathbb{N}}\subseteq H_{p}$ +\end_inset + de polinomios con +\begin_inset Formula $\text{span}\{1,t,\dots,t^{n}\}=\text{span}\{P_{0},P_{1},\dots,P_{n}\}$ \end_inset - es uno de la forma -\begin_inset Formula -\begin{align*} --\ddot{x}+qx-\lambda x & =y, & \alpha x(a)+\beta\dot{x}(a) & =0, & \gamma x(b)+\delta\dot{x}(b) & =0, -\end{align*} + para cada +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset +, y entonces, para +\begin_inset Formula $n\in\mathbb{N}$ \end_inset -donde -\begin_inset Formula $q\in{\cal C}([a,b],\mathbb{R})$ +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $P_{n}$ \end_inset -, -\begin_inset Formula $y\in{\cal C}([a,b],\mathbb{C})$ + es un polinomio de grado +\begin_inset Formula $n$ \end_inset -, -\begin_inset Formula $\lambda\in\mathbb{C}$ + con coeficientes reales. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + \end_inset -, -\begin_inset Formula $\alpha,\beta,\gamma,\delta\in\mathbb{R}$ + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $P_{n}$ \end_inset - con -\begin_inset Formula $|\alpha|+|\beta|,|\gamma|+|\delta|\neq0$ + es ortogonal en +\begin_inset Formula $H_{p}$ \end_inset - y la incógnita -\begin_inset Formula $x\in{\cal C}^{2}([a,b],\mathbb{C})$ + al subespacio de polinomios de grado menor que +\begin_inset Formula $n$ \end_inset . - Su -\series bold -operador de Sturm-Liouville -\series default - asociado es -\begin_inset Formula $S\in{\cal L}(D_{S},{\cal C}([a,b],\mathbb{C}))$ -\end_inset +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout - dado por -\begin_inset Formula $S(x)\coloneqq-\ddot{x}+qx$ \end_inset -, donde -\begin_inset Formula -\[ -D_{S}\coloneqq\{x\in{\cal C}^{2}([a,b],\mathbb{C})\mid\alpha x(a)+\beta\dot{x}(a)=\gamma x(b)+\delta\dot{x}(b)=0\}, -\] +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $P_{n}$ +\end_inset + + tiene +\begin_inset Formula $n$ \end_inset -y entonces el problema anterior es -\begin_inset Formula $(S-\mu1_{D_{S}})x=y$ + raíces distintas en +\begin_inset Formula $(a,b)$ \end_inset . +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + \end_layout \begin_layout Standard -Para -\begin_inset Formula $q\in{\cal C}([a,b],\mathbb{R})$ +Ejemplos: +\end_layout + +\begin_layout Enumerate + +\series bold +Polinomios de Legendre: +\series default + +\begin_inset Formula $I=[-1,1]$ \end_inset - e -\begin_inset Formula $y_{0},y_{1}\in\mathbb{R}$ +, +\begin_inset Formula $p(t)=1$ \end_inset -, el problema de Cauchy -\begin_inset Formula -\begin{align*} --\ddot{x}+qx & =0, & x(a) & =y_{0}, & \dot{x}(a) & =y_{1} -\end{align*} +, +\begin_inset Formula $P_{n}(t)=\frac{\sqrt{\frac{2n+1}{2}}}{2^{n}n!}\od[n]{(t^{2}-1)^{n}}{t}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout \end_inset -tiene una única solución real, y para -\begin_inset Formula $\alpha,\beta\in\mathbb{R}$ + +\end_layout + +\begin_layout Enumerate + +\series bold +Polinomios de Laguerre: +\series default + +\begin_inset Formula $I=[0,\infty)$ \end_inset - con -\begin_inset Formula $|\alpha|+|\beta|\neq0$ +, +\begin_inset Formula $p(t)=\text{e}^{-t}$ \end_inset -, si -\begin_inset Formula $(y_{0},y_{1})\in\mathbb{R}^{2}$ +, +\begin_inset Formula $P_{n}(t)=\frac{\text{e}^{t}}{n!}\od[n]{\text{e}^{-t}t^{n}}{t}$ \end_inset - recorre la recta -\begin_inset Formula $\alpha y_{0}+\beta y_{1}=0$ +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + \end_inset -, la correspondiente solución del problema recorre una recta (subespacio - de dimensión 1) de -\begin_inset Formula ${\cal C}^{2}([a,b])$ + +\end_layout + +\begin_layout Enumerate + +\series bold +Polinomios de Hermite: +\series default + +\begin_inset Formula $I=\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $p(t)=\text{e}^{-t^{2}}$ +\end_inset + +, +\begin_inset Formula $P_{n}(t)=\frac{\text{e}^{t^{2}}}{\sqrt[4]{\pi}\sqrt{2^{n}n!}}\od[n]{\text{e}^{-t^{2}}}{t}$ \end_inset . @@ -4462,105 +6353,172 @@ nproof \end_layout -\begin_layout Standard -El +\begin_layout Enumerate + \series bold -determinante wronskiano +Polinomios de Čebyšev: \series default - de -\begin_inset Formula $x_{1},\dots,x_{n}\in{\cal C}^{n-1}([a,b],\mathbb{K})$ + +\begin_inset Formula $I=[-1,1]$ \end_inset - es -\begin_inset Formula $W(x_{1},\dots,x_{n}):[a,b]\to\mathbb{K}$ +, +\begin_inset Formula $p(t)=\frac{1}{\sqrt{1-t^{2}}}$ \end_inset - dada por -\begin_inset Formula $t\mapsto\det(x_{j}^{(i)}(t))_{0\leq i<n}^{1\leq j\leq n}$ +, +\begin_inset Formula $P_{n}(t)=\cos(n\arccos t)$ +\end_inset + +, siendo +\begin_inset Formula $\arccos:[-1,1]\to[0,\pi]$ \end_inset . +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + \end_layout \begin_layout Standard -Si -\begin_inset Formula $S:D_{S}\to{\cal C}([a,b],\mathbb{C})$ +Una sucesión de polinomios ortonormales asociada a un peso +\begin_inset Formula $p$ \end_inset - es un operador de Sturm-Liouville asociado al problema con parámetros -\begin_inset Formula $q,y,\lambda,\alpha,\beta,\gamma,\delta$ + en un intervalo compacto es total en +\begin_inset Formula $H_{p}$ \end_inset -, existen -\begin_inset Formula $u,v\in{\cal C}([a,b],\mathbb{R})$ +, y en particular los polinomios de Legendre forman una base hilbertiana + en +\begin_inset Formula $L^{2}([-1,1]).$ \end_inset - con -\begin_inset Formula $-\ddot{u}+qu=0$ + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + \end_inset -, -\begin_inset Formula $\alpha x(a)+\beta\dot{x}(a)=0$ + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $p$ \end_inset -, -\begin_inset Formula $-\ddot{v}+qv=0$ + es un peso en +\begin_inset Formula $[a,b]$ \end_inset y -\begin_inset Formula $\gamma x(b)+\delta\dot{x}(b)=0$ +\begin_inset Formula $a\leq t_{1}<\dots<t_{n}\leq b$ \end_inset -, y entonces -\begin_inset Formula $W(u,v)(t)$ -\end_inset +, se tiene una +\series bold +fórmula de cuadratura gaussiana +\series default +, +\begin_inset Formula +\[ +\int_{a}^{b}fp\approx\sum_{k=1}^{n}A_{k}f(t_{k}) +\] - es constante en -\begin_inset Formula $t$ \end_inset - y, si -\begin_inset Formula $S$ +para ciertos +\begin_inset Formula $A_{1},\dots,A_{n}\in\mathbb{R}$ \end_inset - es inyectivo, -\begin_inset Formula $W(u,v)(t)\neq0$ +, y se alcanza la igualdad si +\begin_inset Formula $f$ \end_inset - y -\begin_inset Formula $u$ + es un polinomio de grado menor que +\begin_inset Formula $n$ \end_inset - y -\begin_inset Formula $v$ +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + \end_inset - son linealmente independientes, y llamamos + +\end_layout + +\begin_layout Standard + \series bold -función de Green +Teorema de Gauss: \series default - asociada a -\begin_inset Formula $S$ + Dados un peso +\begin_inset Formula $p$ \end_inset - al núcleo simétrico -\begin_inset Formula $k\in{\cal C}([a,b]\times[a,b])$ + en +\begin_inset Formula $[a,b]$ \end_inset - dado por + con una sucesión de polinomios ortonormales +\begin_inset Formula $(P_{n})_{n}$ +\end_inset + +, +\begin_inset Formula $n\in\mathbb{N}^{*}$ +\end_inset + +, +\begin_inset Formula $a<t_{1}<\dots<t_{n}<b$ +\end_inset + + y +\begin_inset Formula $A_{1},\dots,A_{n}\in\mathbb{R}$ +\end_inset + +, si \begin_inset Formula \[ -k(t,s)\coloneqq-\frac{u(\min\{t,s\})v(\max\{t,s\})}{W(u,v)(a)}, +\int_{a}^{b}fp=\sum_{k=1}^{n}A_{k}f(t_{k}) \] \end_inset -que no depende de -\begin_inset Formula $u$ +para todo polinomio +\begin_inset Formula $f$ \end_inset - y -\begin_inset Formula $v$ + de grado menor que +\begin_inset Formula $n$ +\end_inset + +, esta fórmula se para polinomios de grado menor que +\begin_inset Formula $2n$ +\end_inset + + si y sólo si +\begin_inset Formula $t_{1},\dots,t_{n}$ +\end_inset + + son los ceros de +\begin_inset Formula $P_{n}$ \end_inset . @@ -4577,39 +6535,52 @@ nproof \end_layout \begin_layout Standard -Si -\begin_inset Formula $S:D_{S}\to{\cal C}([a,b])$ + +\series bold +Teorema de Stieltjes: +\series default + Sean +\begin_inset Formula $p$ \end_inset - es un operador de Sturm-Liouville inyectivo con función de Green -\begin_inset Formula $k$ + un peso en +\begin_inset Formula $[a,b]$ \end_inset -, llamamos -\series bold -operador de Green -\series default - asociado a -\begin_inset Formula $S$ + con una sucesión de polinomios ortonormales +\begin_inset Formula $(P_{n})_{n}$ \end_inset - al operador integral -\begin_inset Formula $G:L^{2}([a,b])\to L^{2}([a,b])$ + y, para +\begin_inset Formula $n\in\mathbb{N}$ \end_inset - asociado al núcleo -\begin_inset Formula $k$ +, +\begin_inset Formula $t_{n1}<\dots<t_{nn}$ \end_inset -, y entonces -\begin_inset Formula $G|_{{\cal C}([a,b])}$ + los ceros de +\begin_inset Formula $P_{n}$ \end_inset - es el inverso de -\begin_inset Formula $S$ + y +\begin_inset Formula $A_{n1},\dots,A_{nn}\in\mathbb{R}$ \end_inset -. + los correspondientes coeficientes en la fórmula de cuadratura gaussiana, + para +\begin_inset Formula $f\in{\cal C}([a,b])$ +\end_inset + +, +\begin_inset Formula +\[ +\int_{a}^{b}fp=\lim_{n}\sum_{k=1}^{n}A_{nk}f(t_{nk}). +\] + +\end_inset + + \begin_inset Note Note status open @@ -4622,125 +6593,221 @@ nproof \end_layout +\begin_layout Section +El espacio de Bergman +\end_layout + \begin_layout Standard -Así, -\begin_inset Formula $(S-\mu1_{D_{S}})x=y$ +Llamamos +\begin_inset Formula $D(a,r)\coloneqq B(a,r)\subseteq\mathbb{C}$ \end_inset - tiene solución única -\begin_inset Formula $x\in D_{S}$ +. + Si +\begin_inset Formula $\Omega\subseteq\mathbb{C}$ \end_inset - si y sólo si -\begin_inset Formula $(1_{{\cal C}([a,b])}-\mu G)x=Gy$ + es abierto, +\begin_inset Formula ${\cal H}(\Omega)$ +\end_inset + + es el conjunto de las funciones holomorfas en +\begin_inset Formula $\Omega$ +\end_inset + +, y para +\begin_inset Formula $f\in{\cal H}(\Omega)$ +\end_inset + + y +\begin_inset Formula $\overline{D(a,r)}\subseteq\Omega$ +\end_inset + +, la serie +\begin_inset Formula $\sum_{n\in\mathbb{N}}a_{n}(z-a)^{n}$ \end_inset - tiene solución única -\begin_inset Formula $x\in{\cal C}([a,b])$ + con +\begin_inset Formula $z\in D(a,r)$ +\end_inset + + converge uniformemente a +\begin_inset Formula $f$ +\end_inset + + en compactos de +\begin_inset Formula $D(a,r)$ +\end_inset + + para ciertos +\begin_inset Formula $a_{n}\in\mathbb{C}$ \end_inset . \end_layout \begin_layout Standard -Como +Si +\begin_inset Formula $\Omega\subseteq\mathbb{C}$ +\end_inset + + es abierto, llamamos +\begin_inset Formula ${\cal T}_{\text{K}}$ +\end_inset + + a la topología en +\begin_inset Formula ${\cal H}(\Omega)$ +\end_inset + + de convergencia uniforme sobre compactos, y \series bold -teorema +espacio de Bergman \series default -, si -\begin_inset Formula $S:D_{S}\to{\cal C}([a,b],\mathbb{C})$ + en el abierto +\begin_inset Formula $\Omega\subseteq\mathbb{C}$ \end_inset - es el operador de Sturm-Liouville asociado al problema con parámetros -\begin_inset Formula $q,y,\lambda,\alpha,\beta,\gamma,\delta$ + a +\begin_inset Formula +\[ +A^{2}(\Omega)\coloneqq\left\{ f\in{\cal H}(\Omega)\;\middle|\;\int_{\Omega}|f|^{2}<\infty\right\} , +\] + \end_inset -, existe una sucesión -\begin_inset Formula $(\nu_{n})_{n}$ +un subespacio cerrado y separable de +\begin_inset Formula $L^{2}(\Omega)$ \end_inset - de reales distintos con -\begin_inset Formula $\sum_{n}\frac{1}{\nu_{n}^{2}}<\infty$ + que es pues un espacio de Hilbert numerable con +\begin_inset Formula $\langle\cdot,\cdot\rangle_{2}$ \end_inset - y una base hilbertiana numerable -\begin_inset Formula $(u_{n})_{n}$ +, y en el que la topología inducida por +\begin_inset Formula $L^{2}(\Omega)$ \end_inset - de -\begin_inset Formula $L^{2}([a,b])$ + es más fina que la inducida por +\begin_inset Formula ${\cal T}_{\text{K}}$ \end_inset - tales que: +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof \end_layout -\begin_layout Enumerate -\begin_inset Formula $\forall n\in\mathbb{N},Su_{n}=\nu_{n}u_{n}$ \end_inset -. + \end_layout -\begin_layout Enumerate -\begin_inset Formula -\[ -\forall x\in D_{S},\forall t\in[a,b],x(t)=\sum_{n}\left(\int_{a}^{b}xu_{n}\right)u_{n}(t), -\] +\begin_layout Standard +Si +\begin_inset Formula $\Omega\subseteq\mathbb{C}$ +\end_inset + es abierto, +\begin_inset Formula $(\omega_{n})_{n}$ \end_inset -donde la serie converge absoluta y uniformemente para -\begin_inset Formula $t\in[a,b]$ + es base hilbertiana de +\begin_inset Formula $A^{2}(\Omega)$ +\end_inset + + y +\begin_inset Formula $f\in A^{2}(\Omega)$ +\end_inset + +, el desarrollo en serie de Fourier de +\begin_inset Formula $f$ +\end_inset + +, +\begin_inset Formula $\sum_{n}\langle f,\omega_{n}\rangle\omega_{n}$ +\end_inset + +, converge uniformemente a +\begin_inset Formula $f$ +\end_inset + + en compactos de +\begin_inset Formula $\Omega$ \end_inset . - +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof \end_layout -\begin_layout Enumerate +\end_inset + + +\end_layout + +\begin_layout Standard Si -\begin_inset Formula $\lambda\notin\{\nu_{n}\}_{n}$ +\begin_inset Formula $\psi_{n}(z)\coloneqq(z-a)^{n}$ \end_inset -, el problema tiene como única solución -\begin_inset Formula -\[ -x(t)=\sum_{n}\frac{1}{\nu_{n}-\lambda}\left(\int_{a}^{b}yu_{n}\right)u_{n}(t), -\] +, +\begin_inset Formula $(\frac{\psi_{n}}{\Vert\psi_{n}\Vert})_{n}$ +\end_inset + es una base hilbertiana de +\begin_inset Formula $A^{2}(D(a,r))$ \end_inset -donde la serie converge absoluta y uniformemente para -\begin_inset Formula $t\in[a,b]$ +, y el desarrollo en serie de potencias es el desarrollo en serie de Fourier + sobre esta base. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + \end_inset -. - + \end_layout -\begin_layout Enumerate -Si -\begin_inset Formula $\lambda=\nu_{k}$ +\begin_layout Standard +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $\Omega\subsetneq\mathbb{C}$ \end_inset - para algún -\begin_inset Formula $k$ + es un abierto simplemente conexo y +\begin_inset Formula $f:\Omega\to D(0,1)$ \end_inset -, el problema tiene solución si y sólo si -\begin_inset Formula $y\bot u_{k}$ + es un isomorfismo, +\begin_inset Formula $\left(z\mapsto\sqrt{\frac{n}{\pi}}(f(z))^{n-1}\dot{f}(z)\right)_{n}$ \end_inset -, y entonces las soluciones son -\begin_inset Formula -\begin{align*} -x(t) & =\alpha u_{k}+\sum_{n\in\mathbb{N}\setminus\{k\}}\frac{1}{\nu_{n}-\lambda}\left(\int_{a}^{b}yu_{n}\right)u_{n}(t), & \alpha & \in\mathbb{C}, -\end{align*} + es base hilbertiana de +\begin_inset Formula $A^{2}(\Omega)$ +\end_inset +, y en particular para +\begin_inset Formula $R>0$ +\end_inset + +, +\begin_inset Formula $\left(z\mapsto\sqrt{\frac{n}{\pi}}R^{-n}z^{n-1}\right)_{n}$ \end_inset -donde la serie converge absoluta y uniformemente para -\begin_inset Formula $t\in[a,b]$ + es base hilbertiana de +\begin_inset Formula $A^{2}(D(0,R))$ \end_inset . diff --git a/af/n3.lyx b/af/n3.lyx new file mode 100644 index 0000000..e043d8a --- /dev/null +++ b/af/n3.lyx @@ -0,0 +1,4760 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\usepackage{commath} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Algunos operadores acotados en espacios de Hilbert: +\end_layout + +\begin_layout Enumerate +Sean +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $H$ +\end_inset + + espacios prehilbertianos y +\begin_inset Formula $G$ +\end_inset + + de dimensión finita con base +\begin_inset Formula $(e_{i})_{i}$ +\end_inset + +, todo homomorfismo +\begin_inset Formula $T:G\to H$ +\end_inset + + es acotado con +\begin_inset Formula +\[ +\Vert T\Vert\leq\sqrt{\sum_{i}\Vert Te_{i}\Vert^{2}}. +\] + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Sean +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $H$ +\end_inset + + +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacios de Hilbert de dimensión +\begin_inset Formula $\aleph_{0}$ +\end_inset + + con bases ortonormales +\begin_inset Formula $(e_{n})_{n}$ +\end_inset + + y +\begin_inset Formula $(f_{n})_{n}$ +\end_inset + + y +\begin_inset Formula $\{a_{n}\}_{n}\subseteq\mathbb{K}$ +\end_inset + + una sucesión acotada, el +\series bold +operador diagonal +\series default + +\begin_inset Formula $T:G\to H$ +\end_inset + + dado por +\begin_inset Formula +\[ +T(x)\coloneqq\sum_{n=1}^{\infty}a_{n}\langle x,e_{n}\rangle f_{n} +\] + +\end_inset + +es acotado con +\begin_inset Formula $\Vert T\Vert=\sup_{n}|a_{n}|$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $g\in L^{\infty}([a,b])$ +\end_inset + +, el +\series bold +operador multiplicación por +\begin_inset Formula $g$ +\end_inset + + +\series default +, +\begin_inset Formula $T:L^{2}([a,b])\to L^{2}([a,b])$ +\end_inset + + dado por +\begin_inset Formula $Tf\coloneqq gf$ +\end_inset + +, es acotado con +\begin_inset Formula $\Vert T\Vert=\Vert g\Vert_{\infty}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Sean +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $H$ +\end_inset + + +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacios de Hilbert de dimensión +\begin_inset Formula $\aleph_{0}$ +\end_inset + + con bases ortonormales respectivas +\begin_inset Formula $(u_{n})_{n}$ +\end_inset + + y +\begin_inset Formula $(v_{n})_{n}$ +\end_inset + + y +\begin_inset Formula $(a_{ij})\in\mathbb{K}^{\mathbb{N}\times\mathbb{N}}$ +\end_inset + + una matriz infinita con +\begin_inset Formula $\sum_{i,j}|a_{ij}|^{2}<\infty$ +\end_inset + +, +\begin_inset Formula $T:G\to H$ +\end_inset + + dado por +\begin_inset Formula +\[ +T(x)\coloneqq\sum_{i,j}a_{ij}\langle x,u_{i}\rangle v_{j} +\] + +\end_inset + +es un operador acotado con +\begin_inset Formula $\Vert T\Vert\leq\sqrt{\sum_{i,j}|a_{ij}|^{2}}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +\end_inset + +, el +\series bold +operador integral con núcleo +\begin_inset Formula $k$ +\end_inset + + +\series default +, +\begin_inset Formula $K:L^{2}([a,b])\to L^{2}([a,b])$ +\end_inset + + dado por +\begin_inset Formula +\[ +K(f)(t)\coloneqq\int_{a}^{b}k(t,s)f(s)\dif s, +\] + +\end_inset + +es acotado con +\begin_inset Formula $\Vert K\Vert\leq\sqrt{\iint_{[a,b]\times[a,b]}|k|^{2}}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Una matriz infinita +\begin_inset Formula $(a_{ij})\in\mathbb{K}^{\mathbb{N}\times\mathbb{N}}$ +\end_inset + + satisface el +\series bold +test de Schur +\series default + si existen +\begin_inset Formula $C,D\in\mathbb{R}$ +\end_inset + + tales que +\begin_inset Formula +\begin{align*} +\forall i\in\mathbb{N},\sum_{j}|a_{ij}| & \leq C, & \forall j\in\mathbb{N}, & \sum_{i}|a_{ij}|\leq D. +\end{align*} + +\end_inset + +Entonces, si +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $H$ +\end_inset + + son +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacios de Hilbert de dimensión +\begin_inset Formula $\aleph_{0}$ +\end_inset + + con bases ortonormales respectivas +\begin_inset Formula $(u_{n})_{n}$ +\end_inset + + y +\begin_inset Formula $(v_{n})_{n}$ +\end_inset + +, +\begin_inset Formula $T:G\to H$ +\end_inset + + dada por +\begin_inset Formula +\[ +T(x)\coloneqq\sum_{i,j}a_{ij}\langle x,u_{i}\rangle v_{j} +\] + +\end_inset + +es un operador acotado con +\begin_inset Formula $\Vert T\Vert\leq\sqrt{CD}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Sean +\begin_inset Formula $k:[a,b]\times[a,b]\to\mathbb{K}$ +\end_inset + + medible y +\begin_inset Formula $C,D\in\mathbb{R}$ +\end_inset + + tales que +\begin_inset Formula +\begin{align*} +\forall t\in[a,b],\int_{a}^{b}|k(t,s)|\dif s & \leq C, & \forall s\in[a,b], & \int_{a}^{b}|k(t,s)|\dif t\leq D, +\end{align*} + +\end_inset + +entonces +\begin_inset Formula $K:L^{2}([a,b])\to L^{2}([a,b])$ +\end_inset + + dada por +\begin_inset Formula +\[ +K(f)(t)\coloneqq\int_{a}^{b}k(t,s)f(s)\dif s +\] + +\end_inset + +es un operador acotado con +\begin_inset Formula $\Vert K\Vert\leq\sqrt{CD}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $H$ +\end_inset + + es un espacio de Hilbert de dimensión +\begin_inset Formula $\aleph_{0}$ +\end_inset + + con base ortonormal +\begin_inset Formula $(e_{n})_{n}$ +\end_inset + +, para +\begin_inset Formula $T\in L(H)$ +\end_inset + + y +\begin_inset Formula $x\in H$ +\end_inset + +, +\begin_inset Formula +\[ +T(x)=\sum_{i,j}\langle x,e_{j}\rangle\langle Te_{j},e_{i}\rangle e_{i}, +\] + +\end_inset + +con lo que +\begin_inset Formula $T$ +\end_inset + + admite una representación matricial +\begin_inset Formula $(\langle Te_{j},e_{i}\rangle)_{i,j}\in\mathbb{K}^{\mathbb{N}\times\mathbb{N}}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $T\in L(X,Y)$ +\end_inset + + es +\series bold +de rango finito +\series default + si +\begin_inset Formula $\dim\text{Im}T<\infty$ +\end_inset + +. + Dados espacios de Hilbert +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $H$ +\end_inset + + y +\begin_inset Formula $T\in L(G,H)$ +\end_inset + +, +\begin_inset Formula $T$ +\end_inset + + es de rango finito si y sólo si viene dada por +\begin_inset Formula $T(x)=\sum_{i=1}^{n}\langle x,u_{i}\rangle v_{i}$ +\end_inset + + para ciertos +\begin_inset Formula $u_{1},\dots,u_{n}\in G$ +\end_inset + + y +\begin_inset Formula $v_{1},\dots,v_{n}\in H$ +\end_inset + +, en cuyo caso los +\begin_inset Formula $(v_{i})_{i}$ +\end_inset + + pueden tomarse de forma que sean una base de +\begin_inset Formula $\text{Im}T$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Inversión de operadores +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + son +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacios normados, +\begin_inset Formula $T\in{\cal L}(X,Y)$ +\end_inset + + y +\begin_inset Formula $S\in{\cal L}(Y,X)$ +\end_inset + + cumplen +\begin_inset Formula $ST=1_{X}$ +\end_inset + + entonces +\begin_inset Formula $S$ +\end_inset + + es el +\series bold +inverso por la izquierda +\series default + de +\begin_inset Formula $T$ +\end_inset + + y +\begin_inset Formula $T$ +\end_inset + + es el +\series bold +inverso por la derecha +\series default + de +\begin_inset Formula $S$ +\end_inset + +, y +\begin_inset Formula $T\in{\cal L}(X,Y)$ +\end_inset + + es +\series bold +invertible +\series default + si existe +\begin_inset Formula $T^{-1}\in{\cal L}(Y,X)$ +\end_inset + + inverso de +\begin_inset Formula $T$ +\end_inset + + por la izquierda y por la derecha. + Llamamos +\begin_inset Formula ${\cal L}(X)\coloneqq\text{End}_{\mathbb{K}}X={\cal L}(X,X)$ +\end_inset + + e +\begin_inset Formula +\[ +\text{Isom}X\coloneqq\text{Isom}_{\mathbb{K}}(X)\coloneqq\{T\in{\cal L}(X)\mid T\text{ invertible}\}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $X$ +\end_inset + + es de dimensión finita, +\begin_inset Formula $T\in{\cal L}(X)$ +\end_inset + + tiene inverso por la izquierda si y sólo si lo tiene por la derecha, si + y sólo si es invertible. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + Esto no es cierto en general en dimensión infinita; por ejemplo, el operador + +\series bold +desplazamiento a derecha +\series default +, +\begin_inset Formula $S_{\text{r}}\in\ell^{2}$ +\end_inset + + dado por +\begin_inset Formula $S_{\text{r}}(x_{1},\dots,x_{n},\dots)\coloneqq(0,x_{1},\dots,x_{n},\dots)$ +\end_inset + +, tiene como inverso por la izquierda el +\series bold +desplazamiento a izquierda +\series default +, +\begin_inset Formula $S_{\text{l}}\in\ell^{2}$ +\end_inset + + dado por +\begin_inset Formula $S_{\text{l}}(x_{1},\dots,x_{n},\dots)\coloneqq(x_{2},\dots,x_{n},\dots)$ +\end_inset + +, pero no tiene inverso por la derecha. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $T\in\text{End}_{\mathbb{K}}X$ +\end_inset + +, +\begin_inset Formula $\lambda\in\mathbb{K}$ +\end_inset + + es un +\series bold +valor regular +\series default + de +\begin_inset Formula $T$ +\end_inset + + si +\begin_inset Formula $T-\lambda1_{X}$ +\end_inset + + es invertible, un +\series bold +valor espectral +\series default + en otro caso, y un +\series bold +valor propio +\series default + si +\begin_inset Formula $\ker(T-\lambda1_{X})\neq0$ +\end_inset + +, en cuyo caso llamamos +\series bold +subespacio propio +\series default + de +\begin_inset Formula $T$ +\end_inset + + correspondiente al valor propio +\begin_inset Formula $\lambda$ +\end_inset + + a +\begin_inset Formula $\ker(T-\lambda1_{X})$ +\end_inset + + y +\series bold +valores propios +\series default + de +\begin_inset Formula $T$ +\end_inset + + correspondientes al valor propio +\begin_inset Formula $\lambda$ +\end_inset + + a los elementos no nulos de este subespacio. + Llamamos +\series bold +resolvente +\series default + de +\begin_inset Formula $T$ +\end_inset + + al conjunto de sus valores regulares, +\series bold +espectro +\series default + de +\begin_inset Formula $T$ +\end_inset + +, +\begin_inset Formula $\sigma(T)$ +\end_inset + +, al conjunto de sus valores espectrales y +\series bold +espectro puntual +\series default + de +\begin_inset Formula $T$ +\end_inset + +, +\begin_inset Formula $\sigma_{\text{p}}(T)\subseteq\sigma(T)$ +\end_inset + +, al conjunto de sus valores propios. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $X$ +\end_inset + + es de dimensión finita, +\begin_inset Formula $\sigma_{\text{p}}(T)=\sigma(T)$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + Sin embargo, +\begin_inset Formula $0\in\sigma(S_{\text{r}})$ +\end_inset + + pero +\begin_inset Formula $\sigma_{\text{p}}(S_{\text{r}})=\emptyset$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $X$ +\end_inset + + es un espacio de Banach y +\begin_inset Formula $T\in{\cal L}(X)$ +\end_inset + + cumple +\begin_inset Formula $\Vert T\Vert<1$ +\end_inset + +, +\begin_inset Formula $1_{X}-T$ +\end_inset + + es invertible con inverso +\begin_inset Formula $\sum_{n\in\mathbb{N}}T^{n}$ +\end_inset + + y +\begin_inset Formula $\Vert(1_{X}-T)^{-1}\Vert\leq\frac{1}{1-\Vert T\Vert}$ +\end_inset + +. + +\series bold +Demostración: +\series default + Para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $\sum_{k=0}^{n}\Vert T^{k}\Vert\leq\sum_{k=0}^{n}\Vert T\Vert^{k}\leq\sum_{k\in\mathbb{N}}\Vert T\Vert^{n}=\frac{1}{1-\Vert T\Vert}$ +\end_inset + +, con lo que +\begin_inset Formula $\sum_{n}\Vert T^{n}\Vert$ +\end_inset + + converge y, por ser +\begin_inset Formula $X$ +\end_inset + + de Banach, +\begin_inset Formula $S\coloneqq\sum_{n}T^{n}$ +\end_inset + + también, pero +\begin_inset Formula $S(1_{X}-T)=S-ST=T^{0}=1_{X}$ +\end_inset + + y análogamente +\begin_inset Formula $(1_{X}-T)S=1_{X}$ +\end_inset + +, luego +\begin_inset Formula $S=(1_{X}-T)^{-1}$ +\end_inset + +, y finalmente +\begin_inset Formula +\[ +\Vert(1_{X}-T)^{-1}\Vert=\left\Vert \sum_{n}T^{n}\right\Vert \leq\sum_{n}\Vert T\Vert^{n}=\frac{1}{1-\Vert T\Vert}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de von Neumann: +\series default + Sean +\begin_inset Formula $X$ +\end_inset + + es un espacio de Banach, +\begin_inset Formula $T\in{\cal L}(X)$ +\end_inset + + invertible y +\begin_inset Formula $S\in{\cal L}(X)$ +\end_inset + + tal que +\begin_inset Formula $\Vert T-S\Vert<\frac{1}{\Vert T^{-1}\Vert}$ +\end_inset + +, entonces +\begin_inset Formula $S$ +\end_inset + + es invertible con +\begin_inset Formula +\begin{align*} +S^{-1} & =\sum_{n\in\mathbb{N}}(T^{-1}(T-S))^{n}T^{-1}, & \left\Vert T^{-1}-S^{-1}\right\Vert & \leq\frac{\Vert T^{-1}\Vert^{2}\Vert T-S\Vert}{1-\Vert T^{-1}\Vert\Vert T-S\Vert}. +\end{align*} + +\end_inset + + +\series bold +Demostración: +\series default + +\begin_inset Formula $\Vert T^{-1}(T-S)\Vert=\Vert T-S\Vert\Vert T^{-1}\Vert<1$ +\end_inset + +, luego por el teorema anterior +\begin_inset Formula $1_{X}-T^{-1}(T-S)=T^{-1}S$ +\end_inset + + es invertible con +\begin_inset Formula +\[ +(T^{-1}S)^{-1}=\sum_{n}(T^{-1}(T-S))^{n}, +\] + +\end_inset + +luego +\begin_inset Formula $S=T(T^{-1}S)$ +\end_inset + + es invertible con inversa +\begin_inset Formula $(T^{-1}S)^{-1}T^{-1}$ +\end_inset + + y +\begin_inset Formula +\begin{align*} +\Vert T^{-1}-S^{-1}\Vert & =\Vert T^{-1}-(T^{-1}S)^{-1}T^{-1}\Vert=\Vert(1_{X}-(T^{-1}S)^{-1})T^{-1}\Vert\leq\\ + & \leq\left\Vert \left(1_{X}-\sum_{n}(T^{-1}(T-S))^{n}\right)T^{-1}\right\Vert =\left\Vert \sum_{n\geq1}(T^{-1}(T-S))^{n}T^{-1}\right\Vert \leq\\ + & \leq\sum_{n\geq1}\Vert(T^{-1}(T-S))^{n}\Vert\Vert T^{-1}\Vert\leq\frac{\Vert T^{-1}\Vert^{2}\Vert T-S\Vert}{1-\Vert T^{-1}\Vert\Vert T-S\Vert}. +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Así, si +\begin_inset Formula $X$ +\end_inset + + es un espacio de Banach, +\begin_inset Formula $\text{Isom}X$ +\end_inset + + es un abierto de +\begin_inset Formula ${\cal L}(X)$ +\end_inset + + y +\begin_inset Formula $\cdot^{-1}:\text{Isom}X\to\text{Isom}X$ +\end_inset + + es continua con la norma de +\begin_inset Formula ${\cal L}(X)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{reminder}{FVC} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Liouville: +\series default + Toda función [...][compleja holomorfa y] acotada es constante. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{reminder} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Gelfand: +\series default + Si +\begin_inset Formula $_{\mathbb{C}}X$ +\end_inset + + es de Banach y +\begin_inset Formula $T\in{\cal L}(X)$ +\end_inset + +, +\begin_inset Formula $\sigma(T)$ +\end_inset + + es compacto no vacío contenido en +\begin_inset Formula $B(0,\Vert T\Vert)$ +\end_inset + +. + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $\lambda\in\mathbb{C}\setminus B[0,\Vert T\Vert]$ +\end_inset + +, +\begin_inset Formula $\frac{\Vert T\Vert}{|\lambda|}<1$ +\end_inset + +, luego +\begin_inset Formula $\lambda1_{X}-T=\lambda(1_{X}-\frac{T}{\lambda})$ +\end_inset + + es invertible y +\begin_inset Formula $\lambda\notin\sigma(T)$ +\end_inset + +. + La función +\begin_inset Formula $\psi:\mathbb{C}\to{\cal L}(X)$ +\end_inset + + dada por +\begin_inset Formula $\psi(\lambda)\coloneqq\lambda1_{X}-T$ +\end_inset + + es continua y por tanto +\begin_inset Formula $\mathbb{C}\setminus\sigma(T)=\psi^{-1}(\text{Isom}X)$ +\end_inset + + es abierto, con lo que +\begin_inset Formula $\sigma(T)$ +\end_inset + + es cerrado acotado y por tanto compacto. + Si fuera vacío, podemos definir +\begin_inset Formula $\phi:\mathbb{C}\to\text{Isom}X$ +\end_inset + + como +\begin_inset Formula $\phi(\lambda)\coloneqq(\lambda1_{X}-T)^{-1}$ +\end_inset + +, que es continua, pero para +\begin_inset Formula $\lambda,h\in\mathbb{C}$ +\end_inset + +, +\begin_inset Formula +\begin{multline*} +\frac{\phi(\lambda+h)-\phi(\lambda)}{h}=\frac{((\lambda+h)1_{X}-T)^{-1}(\lambda1_{X}-T)^{-1}((\lambda1_{X}-T)-((\lambda+h)1_{X}-T))}{h}=\\ +=-((\lambda+h)1_{X}-T)^{-1}(\lambda1_{X}-T)^{-1}, +\end{multline*} + +\end_inset + +de donde +\begin_inset Formula +\[ +\dot{\phi}(\lambda)=\lim_{h\to0}\frac{\phi(\lambda+h)-\phi(\lambda)}{h}=\lim_{h\to0}(-((\lambda+h)1_{X}-T)^{-1}(\lambda1_{X}-T)^{-1})=-((\lambda1_{X}-T)^{-1})^{2}, +\] + +\end_inset + +con lo que +\begin_inset Formula $\phi$ +\end_inset + + es holomorfa y +\begin_inset Formula $\dot{\phi}\neq0$ +\end_inset + +, pero +\begin_inset Formula +\[ +\Vert\phi(\lambda)\Vert=\Vert(\lambda1_{X}-T)^{-1}\Vert=\frac{1}{|\lambda|}\left\Vert \left(1_{X}-\frac{T}{\lambda}\right)^{-1}\right\Vert =\frac{1}{|\lambda|}\left\Vert \sum_{n\in\mathbb{N}}\frac{T^{n}}{\lambda^{n}}\right\Vert \leq\frac{1}{|\lambda|}\frac{1}{1-\frac{\Vert T\Vert}{|\lambda|}}=\frac{1}{|\lambda|-\Vert T\Vert}, +\] + +\end_inset + +con lo que +\begin_inset Formula $\lim_{|\lambda|\to\infty}\Vert\phi(\lambda)\Vert=\infty$ +\end_inset + + y por tanto, como +\begin_inset Formula $\phi$ +\end_inset + + es continua, es acotada y, por el teorema de Liouville +\begin_inset Foot +status open + +\begin_layout Plain Layout +Que todavía no hemos visto que se de para espacios vectoriales infinitos + pero suponemos que se cumple. +\end_layout + +\end_inset + +, +\begin_inset Formula $\phi$ +\end_inset + + es constante y +\begin_inset Formula $\dot{\phi}=0\#$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $(a_{ij})\in\mathbb{K}^{\mathbb{N}\times\mathbb{N}}$ +\end_inset + + con +\begin_inset Formula $\sum_{i,j}|a_{ij}|^{2}<1$ +\end_inset + + e +\begin_inset Formula $y\in\ell^{2}$ +\end_inset + +, el sistema +\begin_inset Formula +\begin{align*} +x_{k}-\sum_{j\in\mathbb{N}}a_{kj}x_{j} & =y_{k}, & k & \in\mathbb{N}, +\end{align*} + +\end_inset + +tiene solución única +\begin_inset Formula $z\in\ell^{2}$ +\end_inset + +, y para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, el sistema truncado +\begin_inset Formula +\begin{align*} +x_{k}-\sum_{j\in\mathbb{N}_{n}}a_{kj}x_{j} & =y_{k}, & k & \in\mathbb{N}_{n} +\end{align*} + +\end_inset + +tiene una única solución +\begin_inset Formula $z_{n}\in\mathbb{K}^{n}$ +\end_inset + + de modo que, si +\begin_inset Formula $J_{n}:\mathbb{K}^{n}\to\ell^{2}$ +\end_inset + + es la inclusión canónica de +\begin_inset Formula $\mathbb{K}^{n}$ +\end_inset + + en las +\begin_inset Formula $n$ +\end_inset + + primeras coordenadas, +\begin_inset Formula $\lim_{n}J_{n}(z_{n})=z$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +\end_inset + + con +\begin_inset Formula $\Vert k\Vert_{2}<1$ +\end_inset + + y +\begin_inset Formula $g\in L^{2}([a,b])$ +\end_inset + +, la ecuación +\begin_inset Formula +\begin{align*} +f(t)-\int_{a}^{b}k(t,s)f(s)\dif s & =g(t), & t & \in[a,b], +\end{align*} + +\end_inset + +tiene solución única que es de la forma +\begin_inset Formula +\[ +g(t)+\int_{a}^{b}\tilde{k}(t,s)g(s)\dif s +\] + +\end_inset + +para cierto +\begin_inset Formula $\tilde{k}\in L^{2}([a,b]\times[a,b])$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $K$ +\end_inset + + es el operador integral con núcleo +\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +\end_inset + +, +\begin_inset Formula $\Vert k\Vert_{2}<1$ +\end_inset + + y +\begin_inset Formula +\[ +\forall t\in[a,b],\int_{a}^{b}|k(t,s)|^{2}\dif s\leq C, +\] + +\end_inset + +para +\begin_inset Formula $g\in L^{2}([a,b])$ +\end_inset + +, la serie +\begin_inset Formula $\sum_{n}K^{n}g$ +\end_inset + + converge en +\begin_inset Formula $L^{2}([a,b])$ +\end_inset + + y converge absoluta y uniformemente en +\begin_inset Formula $[a,b]$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Con todo esto, para +\begin_inset Formula $g\in L^{2}([0,1])$ +\end_inset + + y +\begin_inset Formula $\lambda\in\mathbb{R}\setminus\{1\}$ +\end_inset + +, la ecuación integral +\begin_inset Formula +\[ +f(t)-\lambda\int_{0}^{1}\text{e}^{t-s}f(s)\dif s=g(t) +\] + +\end_inset + +tiene solución única +\begin_inset Formula +\[ +f(t)=g(t)+\frac{\lambda}{1-\lambda}\int_{0}^{1}\text{e}^{t-s}g(s)\dif s. +\] + +\end_inset + + +\end_layout + +\begin_layout Section +Operador adjunto +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $H$ +\end_inset + + son espacios de Hilbert y +\begin_inset Formula $T\in L(G,H)$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula +\[ +\Vert T\Vert=\sup_{x,y\in\overline{B_{G}}}|\langle Tx,y\rangle|=\sup_{x,y\in B_{G}}|\langle Tx,y\rangle|. +\] + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Existe un único +\begin_inset Formula $T^{*}\in L(H,G)$ +\end_inset + + tal que +\begin_inset Formula $\forall x\in G,\forall y\in H,\langle Tx,y\rangle\equiv\langle x,T^{*}y\rangle$ +\end_inset + +, el +\series bold +adjunto +\series default + de +\begin_inset Formula $T$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\Vert T\Vert=\Vert T^{*}\Vert$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $G$ +\end_inset + +, +\begin_inset Formula $H$ +\end_inset + + y +\begin_inset Formula $J$ +\end_inset + + +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacios de Hilbert, +\begin_inset Formula $A,B\in L(G,H)$ +\end_inset + +, +\begin_inset Formula $C\in L(H,J)$ +\end_inset + + y +\begin_inset Formula $\alpha\in\mathbb{K}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(A+B)^{*}=A^{*}+B^{*}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(\alpha A)^{*}=\overline{\alpha}A^{*}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A^{**}=A$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(AC)^{*}=C^{*}A^{*}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + es invertible, también lo es +\begin_inset Formula $A^{*}$ +\end_inset + + y +\begin_inset Formula $(A^{*})^{-1}=(A^{-1})^{*}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\Vert AA^{*}\Vert=\Vert A^{*}A\Vert=\Vert A\Vert^{2}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\ker A=(\text{Im}A^{*})^{\bot}$ +\end_inset + + y +\begin_inset Formula $\ker A^{*}=(\text{Im}A)^{\bot}.$ +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(\ker A)^{\bot}=\overline{\text{Im}A^{*}}$ +\end_inset + + y +\begin_inset Formula $(\ker A^{*})^{\bot}=\overline{\text{Im}A}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Ejemplos: +\end_layout + +\begin_layout Enumerate +En +\begin_inset Formula $\ell^{2}$ +\end_inset + +, el adjunto de +\begin_inset Formula $S_{\text{r}}$ +\end_inset + + es +\begin_inset Formula $S_{\text{l}}$ +\end_inset + + y viceversa. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $H$ +\end_inset + + es un espacio de Hilbert y +\begin_inset Formula $K\in{\cal L}(H)$ +\end_inset + + es un operador de rango finito dado por +\begin_inset Formula $K(x)=\sum_{i=1}^{n}\langle x,u_{i}\rangle v_{i}$ +\end_inset + +, su adjunto es de rango finito dado por +\begin_inset Formula $K^{*}(x)=\sum_{i=1}^{n}\langle x,v_{i}\rangle u_{i}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $H$ +\end_inset + + es un espacio de Hilbert con base +\begin_inset Formula $(e_{i})_{i\in I}$ +\end_inset + + y +\begin_inset Formula $A\in{\cal L}(H)$ +\end_inset + + es un operador diagonal con +\begin_inset Formula $A(e_{i})\coloneqq\lambda_{i}e_{i}$ +\end_inset + + para ciertos +\begin_inset Formula $\lambda_{i}$ +\end_inset + +, entonces +\begin_inset Formula $A^{*}$ +\end_inset + + es un operador diagonal con +\begin_inset Formula $A^{*}(e_{i})=\overline{\lambda_{i}}e_{i}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $K\in{\cal L}(L^{2}([a,b]))$ +\end_inset + + es el operador multiplicación por +\begin_inset Formula $g\in L^{\infty}([a,b])$ +\end_inset + +, +\begin_inset Formula $K^{*}$ +\end_inset + + es el operador multiplicación por +\begin_inset Formula $\overline{g}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $H$ +\end_inset + + es un espacio de Hilbert separable con base hilbertiana +\begin_inset Formula $(e_{n})_{n\in I}$ +\end_inset + + y +\begin_inset Formula $A\in{\cal L}(H)$ +\end_inset + + se expresa en dicha base como +\begin_inset Formula $(a_{ij})\in\mathbb{K}^{I\times I}$ +\end_inset + +, +\begin_inset Formula $A^{*}$ +\end_inset + + se expresa en dicha base como +\begin_inset Formula $(\overline{a_{ji}})\in\mathbb{K}^{I\times I}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $K\in{\cal L}(L^{2}([a,b]))$ +\end_inset + + es el operador integral con núcleo +\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +\end_inset + +, +\begin_inset Formula $K^{*}$ +\end_inset + + es el operador integral con núcleo +\begin_inset Formula $k^{*}(t,s)\coloneqq\overline{k(s,t)}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $H$ +\end_inset + + es un espacio de Hilbert, +\begin_inset Formula $M\leq H$ +\end_inset + + es cerrado e +\begin_inset Formula $\iota:M\hookrightarrow H$ +\end_inset + + es la inclusión, +\begin_inset Formula $\iota^{*}:H\to M$ +\end_inset + + es la proyección ortogonal. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +En general el adjunto no existe en espacios prehilbertianos. + Por ejemplo, +\begin_inset Formula $T:c_{00}\to c_{00}$ +\end_inset + + dado por +\begin_inset Formula $T(x)\coloneqq\sum_{n\geq1}\frac{x_{n}}{n}(1,0,\dots)$ +\end_inset + + no tiene adjunto en +\begin_inset Formula $(c_{00},\langle\cdot,\cdot\rangle_{2})$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $H$ +\end_inset + + es un espacio de Hilbert, +\begin_inset Formula $A\in{\cal L}(H)$ +\end_inset + + es +\series bold +autoadjunto +\series default + o +\series bold +hermitiano +\series default + si +\begin_inset Formula $A^{*}=A$ +\end_inset + +. + Si +\begin_inset Formula $A,B\in{\cal L}(H)$ +\end_inset + + son autoadjuntos: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\Vert A\Vert=\sup_{x\in\overline{B_{H}}}|\langle Ax,x\rangle|=\sup_{x\in S_{H}}|\langle Ax,x\rangle|$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Los valores propios de +\begin_inset Formula $A$ +\end_inset + + son reales. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall x\in H,\langle Ax,x\rangle=0\implies A=0$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $H=\ker A\oplus\overline{\text{Im}A}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A+B$ +\end_inset + + es autoadjunto, y +\begin_inset Formula $AB$ +\end_inset + + lo es si y sólo si +\begin_inset Formula $AB=BA$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $_{\mathbb{C}}H$ +\end_inset + + es un espacio de Hilbert y +\begin_inset Formula $A\in{\cal L}(H)$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A$ +\end_inset + + es autoadjunto si y sólo si +\begin_inset Formula $\forall x\in H,\langle Ax,x\rangle\in\mathbb{R}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\backslash +Existen únicos +\begin_inset Formula $\text{Re}A,\text{Im}A\in{\cal L}(H)$ +\end_inset + + autoadjuntos, la +\series bold +parte real +\series default + y la +\series bold +imaginaria +\series default + de +\begin_inset Formula $A$ +\end_inset + +, con +\begin_inset Formula $A=\text{Re}A+\text{i}\text{Im}A$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\llbracket A\rrbracket\coloneqq\sup_{x\in S_{H}}|\langle Ax,x\rangle|$ +\end_inset + + es una norma en +\begin_inset Formula ${\cal L}(H)$ +\end_inset + + equivalente a la usual. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $H$ +\end_inset + + es un espacio de Hilbert con base +\begin_inset Formula $(e_{i})_{i\in I}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +El operador diagonal +\begin_inset Formula $T\in{\cal L}(H)$ +\end_inset + + con +\begin_inset Formula $T(e_{i})\eqqcolon\lambda_{i}e_{i}$ +\end_inset + + es autoadjunto si y sólo si +\begin_inset Formula $\{\lambda_{i}\}_{i\in I}\subseteq\mathbb{R}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $H$ +\end_inset + + es separable y +\begin_inset Formula $A\in{\cal L}(H)$ +\end_inset + + se representa respecto a la base como la matriz +\begin_inset Formula $(a_{ij})\in\mathbb{K}^{I\times I}$ +\end_inset + +, +\begin_inset Formula $A$ +\end_inset + + es autoadjunto si y sólo si +\begin_inset Formula $\forall i,j\in I,a_{ij}=\overline{a_{ji}}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +El operador multiplicación por +\begin_inset Formula $g\in L^{\infty}([a,b])$ +\end_inset + + en +\begin_inset Formula $L^{2}([a,b])$ +\end_inset + + es autoadjunto si y sólo si +\begin_inset Formula $g(t)$ +\end_inset + + es real para casi todo +\begin_inset Formula $t\in[a,b]$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +El operador integral con núcleo +\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +\end_inset + + en +\begin_inset Formula $L^{2}([a,b])$ +\end_inset + + es autoadjunto si y sólo si +\begin_inset Formula $k(t,s)=\overline{k(s,t)}$ +\end_inset + + para casi todo +\begin_inset Formula $(s,t)\in[a,b]\times[a,b]$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Una proyección ortogonal +\begin_inset Formula $P:H\to H$ +\end_inset + + sobre un subespacio cerrado es autoadjunto. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $H$ +\end_inset + + es un espacio de Hilbert, +\begin_inset Formula $A\in{\cal L}(H)$ +\end_inset + + es +\series bold +normal +\series default + si +\begin_inset Formula $AA^{*}=A^{*}A$ +\end_inset + +, si y sólo si +\begin_inset Formula $\forall x,y\in H,\langle Ax,Ay\rangle=\langle A^{*}x,A^{*}y\rangle$ +\end_inset + +, si y sólo si +\begin_inset Formula $\forall x\in H,\Vert Ax\Vert=\Vert A^{*}x\Vert$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $H$ +\end_inset + + es un espacio de Hilbert complejo, +\begin_inset Formula $A\in{\cal L}(H)$ +\end_inset + + es normal si y sólo si +\begin_inset Formula $\text{Re}A\circ\text{Im}A=\text{Im}A\circ\text{Re}A$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Todo operador diagonal es normal. +\end_layout + +\begin_layout Enumerate +El operador integral sobre +\begin_inset Formula $L^{2}([a,b])$ +\end_inset + + con núcleo +\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +\end_inset + + es normal si y sólo si +\begin_inset Formula +\[ +\int_{a}^{b}\overline{k(s,t)}k(s,x)\dif s=\int_{a}^{b}k(t,s)\overline{k(x,s)}\dif s +\] + +\end_inset + +para casi todo +\begin_inset Formula $(t,x)\in[a,b]\times[a,b]$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Una +\series bold +proyección +\series default + en un espacio normado +\begin_inset Formula $X$ +\end_inset + + es un operador +\begin_inset Formula $X\to X$ +\end_inset + + idempotente. + Si +\begin_inset Formula $H$ +\end_inset + + es un espacio de Hilbert y +\begin_inset Formula $P$ +\end_inset + + es una proyección continua no nula en +\begin_inset Formula $X$ +\end_inset + +, +\begin_inset Formula $P$ +\end_inset + + es una proyección ortogonal si y sólo si +\begin_inset Formula $\Vert P\Vert=1$ +\end_inset + +, si y sólo si +\begin_inset Formula $\text{Im}P=(\ker P)^{\bot}$ +\end_inset + +, si y sólo si +\begin_inset Formula $\ker P=(\text{Im}P)^{\bot}$ +\end_inset + +, si y sólo si +\begin_inset Formula $P$ +\end_inset + + es autoadjunto, si y sólo si es normal, si y sólo si +\begin_inset Formula $\forall x\in H,\langle Px,x\rangle=\Vert Px\Vert^{2}$ +\end_inset + +, si y sólo si +\begin_inset Formula $\forall x\in H,\langle Px,x\rangle\geq0$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Existen proyecciones no ortogonales, como +\begin_inset Formula $p:\mathbb{R}^{2}\to\mathbb{R}^{2}$ +\end_inset + + dada por +\begin_inset Formula $p(x,y)\coloneqq(x+y,0)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $H$ +\end_inset + + es un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio de Hilbert, +\begin_inset Formula $T\in{\cal L}(H)$ +\end_inset + + y +\begin_inset Formula $\lambda\in\mathbb{K}$ +\end_inset + +, +\begin_inset Formula $\lambda\in\sigma(T)\iff\overline{\lambda}\in\sigma(T^{*})$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $T\in{\cal L}(H)$ +\end_inset + + es normal: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall\lambda\in\mathbb{C}$ +\end_inset + +, +\begin_inset Formula $\ker(T-\lambda1_{H})=\ker(T^{*}-\overline{\lambda}1_{H})$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall\lambda,\mu\in\mathbb{C},(\lambda\neq\mu\implies\ker(T-\lambda1_{H})\bot\ker(T-\mu1_{H}))$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\ker(T-\lambda1_{H})$ +\end_inset + + y +\begin_inset Formula $\ker(T-\lambda1_{H})^{\bot}$ +\end_inset + + son +\begin_inset Formula $T$ +\end_inset + +-invariantes. +\end_layout + +\begin_layout Section +Operadores compactos +\end_layout + +\begin_layout Standard +Dado un espacio topológico +\begin_inset Formula $X$ +\end_inset + +, +\begin_inset Formula $Y\subseteq X$ +\end_inset + + es +\series bold +relativamente compacto +\series default + en +\begin_inset Formula $X$ +\end_inset + + si su clausura en +\begin_inset Formula $X$ +\end_inset + + es compacta. + Sean +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + espacios normados, una función lineal +\begin_inset Formula $T:X\to Y$ +\end_inset + + es +\series bold +compacta +\series default + si +\begin_inset Formula $T(B_{X})$ +\end_inset + + es relativamente compacta en +\begin_inset Formula $Y$ +\end_inset + +, si y sólo si para cada sucesión acotada +\begin_inset Formula $\{x_{n}\}_{n}\subseteq X$ +\end_inset + +, +\begin_inset Formula $(Tx_{n})_{n}$ +\end_inset + + posee una subsucesión convergente, si y sólo si esto se cumple cuando cada + +\begin_inset Formula $\Vert x_{n}\Vert=1$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Los operadores de rango finito son compactos. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +El operador identidad en un espacio de dimensión infinita nunca es compacto. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Llamamos +\begin_inset Formula ${\cal K}(X,Y)$ +\end_inset + + al subespacio vectorial de +\begin_inset Formula ${\cal L}(X,Y)$ +\end_inset + + de los operadores compactos, que es cerrado si +\begin_inset Formula $Y$ +\end_inset + + es de Banach. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $A\in{\cal L}(X,Y)$ +\end_inset + +, +\begin_inset Formula $T\in{\cal K}(Y,Z)$ +\end_inset + + y +\begin_inset Formula $B\in{\cal L}(Z,W)$ +\end_inset + +, +\begin_inset Formula $BTA\in{\cal K}(X,W)$ +\end_inset + +, y en particular +\begin_inset Formula ${\cal K}(X)\coloneqq{\cal K}(X,X)$ +\end_inset + + es un ideal de +\begin_inset Formula ${\cal L}(X)$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $T\in{\cal K}(X,Y)$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{Im}T$ +\end_inset + + es un subespacio separable de +\begin_inset Formula $Y$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $Y$ +\end_inset + + es de Hilbert, +\begin_inset Formula $\overline{\text{Im}T}$ +\end_inset + + es de dimensión infinita con base hilbertiana +\begin_inset Formula $(e_{n})_{n\in\mathbb{N}}$ +\end_inset + + y, para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $P_{n}\in{\cal L}(Y)$ +\end_inset + + es la proyección ortogonal sobre +\begin_inset Formula $\text{span}\{e_{i}\}_{i\leq n}$ +\end_inset + +, entonces +\begin_inset Formula $T=\lim_{n}P_{n}T\in{\cal L}(X,Y)$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Así, si +\begin_inset Formula $Y$ +\end_inset + + es de Hilbert, +\begin_inset Formula ${\cal K}(X,Y)$ +\end_inset + + es la clausura en +\begin_inset Formula ${\cal L}(X,Y)$ +\end_inset + + del conjunto de operadores acotados de rango finito. + Esto no es cierto cuando +\begin_inset Formula $Y$ +\end_inset + + es un espacio de Banach arbitrario. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $H$ +\end_inset + + son espacios de Hilbert, +\begin_inset Formula $T\in{\cal L}(G,H)$ +\end_inset + + es compacto si y sólo si lo es +\begin_inset Formula $T^{*}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Con esto: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $(e_{n})_{n\in\mathbb{N}}$ +\end_inset + + y +\begin_inset Formula $(f_{n})_{n\in\mathbb{N}}$ +\end_inset + + son bases hilbertianas respectivas de +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $H$ +\end_inset + + y +\begin_inset Formula $T:G\to H$ +\end_inset + + es un operador diagonal dado por +\begin_inset Formula $Te_{n}\coloneqq\lambda_{n}f_{n}$ +\end_inset + +, +\begin_inset Formula $T$ +\end_inset + + es compacto si y sólo si +\begin_inset Formula $\lim_{n}\lambda_{n}=0$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +El operador multiplicación por +\begin_inset Formula $g\in L^{\infty}([a,b])$ +\end_inset + + es compacto si y sólo si +\begin_inset Formula $g=0$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $H$ +\end_inset + + son espacios de Hilbert de dimensión +\begin_inset Formula $\aleph_{0}$ +\end_inset + + y +\begin_inset Formula $T\in{\cal L}(G,H)$ +\end_inset + + se representa en ciertas bases de +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $H$ +\end_inset + + como +\begin_inset Formula $(a_{ij})\in\mathbb{K}^{\mathbb{N}\times\mathbb{N}}$ +\end_inset + +, si +\begin_inset Formula $\sum_{i,j}|a_{ij}|^{2}<\infty$ +\end_inset + +, +\begin_inset Formula $T$ +\end_inset + + es compacto. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +El operador integral +\begin_inset Formula $K\in{\cal L}(L^{2}([a,b]))$ +\end_inset + + con núcleo +\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +\end_inset + + es compacto, +\begin_inset Formula ${\cal C}([a,b])$ +\end_inset + + es +\begin_inset Formula $K$ +\end_inset + +-invariante y +\begin_inset Formula $K|_{{\cal C}([a,b])}:({\cal C}([a,b]),\Vert\cdot\Vert_{\infty})\to({\cal C}([a,b]),\Vert\cdot\Vert_{\infty})$ +\end_inset + + es compacto. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Teorema espectral +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $H$ +\end_inset + + es un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio de Hilbert de dimensión finita y +\begin_inset Formula $T\in{\cal L}(H)$ +\end_inset + + es autoadjunto: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\lambda_{1},\dots,\lambda_{m}$ +\end_inset + + son los distintos valores propios de +\begin_inset Formula $T$ +\end_inset + +, +\begin_inset Formula $H=\bigoplus_{k=1}^{m}\ker(T-\lambda_{k}I_{H})$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Existe una base ortonormal +\begin_inset Formula $(e_{k})_{k}$ +\end_inset + + de +\begin_inset Formula $H$ +\end_inset + + formada por vectores propios de +\begin_inset Formula $T$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $x\in X$ +\end_inset + +, +\begin_inset Formula $Tx=\sum_{k}\mu_{k}\langle x,e_{k}\rangle e_{k}$ +\end_inset + +, donde +\begin_inset Formula $\mu_{k}$ +\end_inset + + es el valor propio asociado a +\begin_inset Formula $e_{k}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $T$ +\end_inset + + es un operador compacto autoadjunto en el espacio de Hilbert +\begin_inset Formula $H$ +\end_inset + +, +\begin_inset Formula $\Vert T\Vert$ +\end_inset + + o +\begin_inset Formula $-\Vert T\Vert$ +\end_inset + + es valor propio de +\begin_inset Formula $T$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Todo operador normal compacto en un +\begin_inset Formula $\mathbb{C}$ +\end_inset + +-espacio de Hilbert tiene algún valor propio. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $T\in{\cal L}(H)$ +\end_inset + + es compacto en el +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio de Hilbert +\begin_inset Formula $H$ +\end_inset + + y +\begin_inset Formula $\lambda\in\mathbb{K}\setminus0$ +\end_inset + +, +\begin_inset Formula $\ker(T-\lambda1_{H})$ +\end_inset + + es de dimensión finita. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + espacios de Banach y +\begin_inset Formula $T\in{\cal L}(X,Y)$ +\end_inset + + compacto, +\begin_inset Formula $\sigma_{\text{p}}(T)$ +\end_inset + + es contable, contiene a +\begin_inset Formula $\sigma(T)\setminus\{0\}$ +\end_inset + + y, si es infinito, es una sucesión acotada con a lo sumo un punto de acumulació +n, el 0, y si +\begin_inset Formula $T$ +\end_inset + + es normal el 0 es punto de acumulación. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema espectral para operadores compactos autoadjuntos: +\series default + Sean +\begin_inset Formula $H$ +\end_inset + + un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio de Hilbert y +\begin_inset Formula $T\in{\cal L}(H)$ +\end_inset + + compacto normal: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\sigma_{\text{p}}(T)\setminus\{0\}$ +\end_inset + + es contable. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $P_{\lambda}\in{\cal L}(H)$ +\end_inset + + es la proyección ortogonal sobre +\begin_inset Formula $\ker(T-\lambda1_{H})$ +\end_inset + +, +\begin_inset Formula $T=\sum_{\lambda\in\sigma_{\text{p}}(T)}\lambda P_{\lambda}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\overline{\text{Im}T}=\bigoplus_{\lambda\in\sigma_{\text{p}}(T)\setminus\{0\}}\ker(T-\lambda1_{H})$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $H=\ker T\oplus\overline{\text{Im}T}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Existe una base ortonormal +\begin_inset Formula $(e_{n})_{n\in J}$ +\end_inset + + de +\begin_inset Formula $\overline{\text{Im}T}$ +\end_inset + + y +\begin_inset Formula $\{\mu_{n}\}_{n\in J}\subseteq\mathbb{C}$ +\end_inset + + tales que, para +\begin_inset Formula $x\in H$ +\end_inset + +, +\begin_inset Formula $(\mu_{n}\langle x,e_{n}\rangle e_{n})_{n\in J}$ +\end_inset + + es sumable con suma +\begin_inset Formula $Tx$ +\end_inset + +, y entonces +\begin_inset Formula $\{\mu_{n}\}_{n\in J}\subseteq\sigma_{\text{p}}(T)\setminus\{0\}$ +\end_inset + + y +\begin_inset Formula $\forall\lambda\in\sigma_{\text{p}}(T)\setminus\{0\},|\{n\in J\mid\mu_{n}=\lambda\}|=\dim\ker(T-\lambda1_{H})$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $P_{0}$ +\end_inset + + es la proyección ortogonal sobre +\begin_inset Formula $\ker T$ +\end_inset + +, +\begin_inset Formula $\forall x\in H,x=P_{0}x+\sum_{n\in J}\langle x,e_{n}\rangle e_{n}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $H$ +\end_inset + + es un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio de Hilbert, +\begin_inset Formula $T\in{\cal L}(H)$ +\end_inset + + es compacto autoadjunto si y sólo si hay una familia ortonormal contable + +\begin_inset Formula $\{e_{n}\}_{n\in J}\subseteq H$ +\end_inset + + y +\begin_inset Formula $\{\mu_{n}\}_{n\in J}\subseteq\mathbb{R}$ +\end_inset + + de modo que +\begin_inset Formula $\forall x\in H,Tx=\sum_{n\in J}\mu_{n}\langle x,e_{n}\rangle e_{n}$ +\end_inset + + y 0 es el único punto de acumulación de +\begin_inset Formula $(\mu_{n})_{n}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de alternativa de Fredholm: +\series default + Sean +\begin_inset Formula $H$ +\end_inset + + un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio de Hilbert, +\begin_inset Formula $T\in{\cal L}(H)$ +\end_inset + + compacto autoadjunto, +\begin_inset Formula $(e_{n})_{n\in J}$ +\end_inset + + una base ortonormal de +\begin_inset Formula $\overline{\text{Im}T}$ +\end_inset + + de modo que +\begin_inset Formula $Tx\eqqcolon\sum_{n\in J}\mu_{n}\langle x,e_{n}\rangle e_{n}$ +\end_inset + + para ciertos +\begin_inset Formula $\mu_{n}\in\mathbb{K}$ +\end_inset + + e +\begin_inset Formula $y\in H$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $\lambda\in\mathbb{K}\setminus\{\sigma_{\text{p}}(T)\cup\{0\})$ +\end_inset + +, la ecuación +\begin_inset Formula $(\lambda1_{H}-T)x=y$ +\end_inset + + tiene como única solución +\begin_inset Formula +\[ +x=\frac{1}{\lambda}\left(y+\sum_{n\in J}\frac{\mu_{n}}{\lambda-\mu_{n}}\langle y,e_{n}\rangle e_{n}\right). +\] + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Si existe solución +\begin_inset Formula $x\in H$ +\end_inset + +, +\begin_inset Formula +\[ +(\lambda1_{H}-T)x=y\iff\lambda x=Tx+y\iff x=\frac{1}{\lambda}\left(\sum_{n\in J}\mu_{n}\langle x,e_{n}\rangle e_{n}+y\right), +\] + +\end_inset + +pero entonces +\begin_inset Formula $\langle x,e_{n}\rangle=\frac{1}{\lambda}(\mu_{n}\langle x,e_{n}\rangle+\langle y,e_{n}\rangle)$ +\end_inset + + y +\begin_inset Formula $(\lambda-\mu_{n})\langle x,e_{n}\rangle=\langle y,e_{n}\rangle$ +\end_inset + +, y como +\begin_inset Formula $\lambda-\mu_{n}\neq0$ +\end_inset + +, podemos sustituir +\begin_inset Formula $\langle x,e_{n}\rangle=\frac{1}{\lambda-\mu_{n}}\langle y,e_{n}\rangle$ +\end_inset + + en lo anterior y queda la solución del enunciado. + Queda ver que la serie converge, pero si +\begin_inset Formula $\sigma_{\text{p}}(T)$ +\end_inset + + es infinito, +\begin_inset Formula $\{\mu_{n}\}_{n}\subseteq\sigma_{\text{p}}(T)$ +\end_inset + + es acotado y por tanto lo es +\begin_inset Formula $\left|\frac{\mu_{n}}{\lambda-\mu_{n}}\right|$ +\end_inset + + y +\begin_inset Formula +\[ +\sum_{n\in J}\left|\frac{\mu_{n}}{\lambda-\mu_{n}}\right|^{2}|\langle y,e_{n}\rangle|^{2}\leq\sup_{n\in J}\left|\frac{\mu_{n}}{\lambda-\mu_{n}}\right|^{2}\sum_{n\in J}|\langle y,e_{n}\rangle|^{2}<\infty. +\] + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +Para +\begin_inset Formula $\lambda\in\sigma_{\text{p}}(T)\setminus\{0\}$ +\end_inset + +, la ecuación +\begin_inset Formula $(\lambda1_{H}-T)x=y$ +\end_inset + + tiene solución si y sólo si +\begin_inset Formula $y\bot\ker(\lambda1_{H}-T)$ +\end_inset + +, en cuyo caso las soluciones son +\begin_inset Formula +\begin{align*} +x & =\frac{1}{\lambda}\left(y+\sum_{\begin{subarray}{c} +n\in J\\ +\mu_{n}\neq\lambda +\end{subarray}}\frac{\mu_{n}}{\lambda-\mu_{n}}\langle y,e_{n}\rangle e_{n}\right)+z, & z & \in\ker(\lambda1_{H}-T). +\end{align*} + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Si la ecuación tiene solución +\begin_inset Formula $x$ +\end_inset + +, entonces +\begin_inset Formula $y=(\lambda1_{H}-T)x\in\text{Im}(\lambda1_{H}-T)\subseteq\overline{\text{Im}(\lambda1_{H}-T)}=\ker((\lambda1_{H}-T)^{*})^{\bot}=\ker(\lambda1_{H}-T)^{\bot}$ +\end_inset + + por ser +\begin_inset Formula $1_{H}$ +\end_inset + + y +\begin_inset Formula $T$ +\end_inset + + autoadjuntos, y claramente dos soluciones difieren en un vector de +\begin_inset Formula $\ker(\lambda1_{H}-T)$ +\end_inset + +. + Queda ver que, si +\begin_inset Formula $y\in\ker(\lambda1_{H}-T)^{\bot}$ +\end_inset + +, la +\begin_inset Formula $x$ +\end_inset + + del enunciado es solución, para lo cual hacemos la misma sustitución que + al principio del primer apartado pero, cuando +\begin_inset Formula $\lambda=\mu_{n}$ +\end_inset + +, en su lugar vemos que +\begin_inset Formula $(\lambda-\mu_{n})\langle x,e_{n}\rangle=\langle y,e_{n}\rangle$ +\end_inset + + y por tanto +\begin_inset Formula $\langle y,e_{n}\rangle=0$ +\end_inset + +, por lo que excluimos dicho factor de la serie, la cual converge por el + mismo motivo que en el primer apartado y resulta en la solución del enunciado. +\end_layout + +\end_deeper +\begin_layout Enumerate +Para +\begin_inset Formula $y=0$ +\end_inset + +, +\begin_inset Formula $Tx=y$ +\end_inset + + tiene solución si y sólo si +\begin_inset Formula $y\bot\ker T$ +\end_inset + + y +\begin_inset Formula $\sum_{n\in J}\left|\frac{\langle y,e_{n}\rangle}{\mu_{n}}\right|^{2}<\infty$ +\end_inset + +, en cuyo caso las soluciones son +\begin_inset Formula +\begin{align*} +x & =\sum_{n\in J}\frac{1}{\mu_{n}}\langle y,e_{n}\rangle e_{n}+z, & z & \in\ker T. +\end{align*} + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Si la ecuación tiene solución +\begin_inset Formula $x$ +\end_inset + +, +\begin_inset Formula $y\in\text{Im}T\subseteq(\ker T)^{\bot}$ +\end_inset + + y +\begin_inset Formula +\[ +\sum_{n\in J}\mu_{n}\langle x,e_{n}\rangle e_{n}=Tx=y=\sum_{n\in J}\langle y,e_{n}\rangle e_{n}, +\] + +\end_inset + +con lo que +\begin_inset Formula $\langle x,e_{n}\rangle=\frac{1}{\mu_{n}}\langle y,e_{n}\rangle$ +\end_inset + + para cada +\begin_inset Formula $n$ +\end_inset + + y por tanto +\begin_inset Formula $\sum_{n\in J}\left|\frac{\langle y,e_{n}\rangle}{\mu_{n}}\right|^{2}=\Vert x\Vert^{2}<\infty$ +\end_inset + +, y como +\begin_inset Formula $(e_{n})_{n}$ +\end_inset + + es base de +\begin_inset Formula $\overline{\text{Im}T}$ +\end_inset + +, +\begin_inset Formula $x\in\sum_{n\in J}\frac{1}{\mu_{n}}\langle y,e_{n}\rangle e_{n}+\overline{\text{Im}T}^{\bot}$ +\end_inset + + con +\begin_inset Formula $\overline{\text{Im}T}^{\bot}=\ker T$ +\end_inset + +. + Finalmente, si esta condición se cumple, +\begin_inset Formula $y\in\overline{\text{Im}T}$ +\end_inset + +, la serie del enunciado converge y +\begin_inset Formula +\[ +T\left(\sum_{n\in J}\frac{1}{\mu_{n}}\langle y,e_{n}\rangle e_{n}+z\right)=\sum_{n\in J}\langle y,e_{n}\rangle e_{n}+0=y. +\] + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Standard +Sea +\begin_inset Formula $A$ +\end_inset + + un operador en un espacio de Hilbert +\begin_inset Formula $H$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A$ +\end_inset + + es una isometría si y sólo si +\begin_inset Formula $A^{*}$ +\end_inset + + es inverso por la izquierda de +\begin_inset Formula $A$ +\end_inset + +, si y sólo si +\begin_inset Formula $\forall x,y\in H,\langle Ax,Ay\rangle=\langle x,y\rangle$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A$ +\end_inset + + es un isomorfismo isométrico, si y sólo si es una isometría suprayectiva, + si y sólo si +\begin_inset Formula $A^{*}$ +\end_inset + + es inverso de +\begin_inset Formula $A$ +\end_inset + +, y entonces decimos que +\begin_inset Formula $A$ +\end_inset + + es +\series bold +unitario +\series default +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $H$ +\end_inset + + un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio de Hilbert y +\begin_inset Formula $S,T\in{\cal L}(H)$ +\end_inset + + compactos autoadjuntos, +\begin_inset Formula $\forall\lambda\in\mathbb{K},\dim\ker(T-\lambda1_{H})=\dim\ker(S-\lambda1_{H})$ +\end_inset + + si y sólo si existe +\begin_inset Formula $U\in{\cal L}(H)$ +\end_inset + + unitario con +\begin_inset Formula $U^{*}SU=T$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $S,T\in{\cal L}(H)$ +\end_inset + + en el +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio de Hilbert +\begin_inset Formula $H$ +\end_inset + + son +\series bold +simultáneamente diagonalizables +\series default + si existe una familia ortonormal +\begin_inset Formula $\{e_{n}\}_{n\in J}\subseteq H$ +\end_inset + + y +\begin_inset Formula $\{\alpha_{n}\}_{n\in J},\{\beta_{n}\}_{n\in J}\subseteq\mathbb{K}$ +\end_inset + + tal que +\begin_inset Formula +\[ +\forall x\in H,\left(Sx=\sum_{n\in J}\alpha_{n}\langle x,e_{n}\rangle e_{n}\land Tx=\sum_{n\in J}\beta_{n}\langle x,e_{n}\rangle e_{n}\right). +\] + +\end_inset + +Si +\begin_inset Formula $S$ +\end_inset + + y +\begin_inset Formula $T$ +\end_inset + + son compactos y autoadjuntos esto equivale a que +\begin_inset Formula $ST=TS$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema espectral para operadores compactos normales: +\series default + Si +\begin_inset Formula $H$ +\end_inset + + es un +\begin_inset Formula $\mathbb{C}$ +\end_inset + +-espacio de Hilbert y +\begin_inset Formula $T\in{\cal L}(H)$ +\end_inset + + compacto normal, ocurre lo mismo que en el anterior teorema espectral. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $H$ +\end_inset + + es un +\begin_inset Formula $\mathbb{C}$ +\end_inset + +-espacio de Hilbert, +\begin_inset Formula $T\in{\cal L}(H)$ +\end_inset + + es compacto normal si y sólo si hay una familia ortonormal contable +\begin_inset Formula $\{e_{n}\}_{n\in J}\subseteq H$ +\end_inset + + y +\begin_inset Formula $\{\mu_{n}\}_{n\in J}\subseteq\mathbb{C}$ +\end_inset + + con 0 como único punto de acumulación de modo que +\begin_inset Formula $\forall x\in H,Tx=\sum_{n\in J}\mu_{n}\langle x,e_{n}\rangle e_{n}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un operador entre +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacios de Hilbert +\begin_inset Formula $T\in{\cal L}(G,H)$ +\end_inset + + es compacto si y sólo si hay una familia contable +\begin_inset Formula $\{\nu_{n}\}_{n\in J}\subseteq\mathbb{R}^{+}$ +\end_inset + + con 0 como punto de acumulación, +\begin_inset Formula $\{e_{n}\}_{n\in J}\subseteq G$ +\end_inset + + y +\begin_inset Formula $\{f_{n}\}_{n\in J}\subseteq H$ +\end_inset + + tales que +\begin_inset Formula $\forall x\in H,Tx=\sum_{n\in J}\nu_{n}\langle x,e_{n}\rangle f_{n}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Ecuaciones integrales de Fredholm +\end_layout + +\begin_layout Standard +Una +\series bold +ecuación integral de Fredholm +\series default + es una de la forma +\begin_inset Formula +\[ +x(t)-\mu\int_{a}^{b}k(t,s)x(s)\dif s=g(t), +\] + +\end_inset + +donde +\begin_inset Formula $x,g\in L^{2}([a,b])$ +\end_inset + +, +\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +\end_inset + + y la incógnita es +\begin_inset Formula $x$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Un núcleo +\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +\end_inset + + es +\series bold +simétrico +\series default + si +\begin_inset Formula $k(t,s)=\overline{k(s,t)}$ +\end_inset + + para casi todo +\begin_inset Formula $s,t\in[a,b]$ +\end_inset + +. + +\series bold +Teorema de alternativa de Fredholm: +\series default + Sean +\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +\end_inset + + un núcleo simétrico, +\begin_inset Formula $K$ +\end_inset + + el operador integral asociado y +\begin_inset Formula $g\in L^{2}([a,b])$ +\end_inset + +, si +\begin_inset Formula $Kx=\sum_{n\in J}\mu_{j}\langle x,e_{n}\rangle e_{n}$ +\end_inset + + para cierta base hilbertiana contable +\begin_inset Formula $(e_{n})_{n\in J}$ +\end_inset + + de +\begin_inset Formula $\overline{\text{Im}K}$ +\end_inset + +, ciertos +\begin_inset Formula $\{\mu_{n}\}_{n\in J}\subseteq\mathbb{R}$ +\end_inset + + y todo +\begin_inset Formula $x\in X$ +\end_inset + +, considerando la ecuación integral de Fredholm de arriba, +\begin_inset Formula $x-Kx=g$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\mu=0$ +\end_inset + +, la ecuación tiene como única solución +\begin_inset Formula $x=g$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\frac{1}{\mu}\notin\{\mu_{n}\}_{n}$ +\end_inset + +, la ecuación tiene como única solución +\begin_inset Formula +\[ +x(t)=g(t)+\mu\left(\sum_{n}\frac{\mu_{n}}{1-\mu\mu_{n}}\left(\int_{a}^{b}g\overline{e_{n}}\right)e_{n}(t)\right), +\] + +\end_inset + +y existe +\begin_inset Formula $\alpha>0$ +\end_inset + + que depende solo de +\begin_inset Formula $k$ +\end_inset + + tal que +\begin_inset Formula $\Vert x\Vert_{2}\leq\alpha\Vert g\Vert_{2}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si existe +\begin_inset Formula $n\in J$ +\end_inset + + con +\begin_inset Formula $\mu_{n}=\frac{1}{\mu}$ +\end_inset + +, la ecuación tiene solución si y sólo si +\begin_inset Formula $g\bot\ker(\frac{1_{L^{2}([a,b])}}{\mu}-K)$ +\end_inset + +, y entonces las soluciones son +\begin_inset Formula +\begin{align*} +x(t) & =g(t)+\mu\sum_{\begin{subarray}{c} +n\in J\\ +\mu_{n}\neq\frac{1}{\mu} +\end{subarray}}\frac{\mu_{n}}{1-\mu\mu_{n}}\left(\int g\overline{e_{n}}\right)e_{j}+u, & u & \in\ker(\tfrac{1_{L^{2}([a,b])}}{\mu}-K). +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +La convergencia de las series es de media cuadrática, pero en ciertos casos + puede ser uniforme. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +\end_inset + + es un núcleo simétrico con +\begin_inset Formula +\[ +\sup_{t\in[a,b]}\int_{a}^{b}|k(t,s)|^{2}\dif s<\infty, +\] + +\end_inset + + +\begin_inset Formula $K$ +\end_inset + + es el operador integral asociado y hay una base hilbertiana +\begin_inset Formula $(e_{n})_{n\in J}$ +\end_inset + + de +\begin_inset Formula $\overline{\text{Im}K}$ +\end_inset + + y +\begin_inset Formula $\{\mu_{n}\}_{n\in J}\subseteq\mathbb{R}$ +\end_inset + + y tales que +\begin_inset Formula $Kx=\sum_{n}\mu_{n}\langle x,e_{n}\rangle e_{n}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate + +\series bold +Teorema de Hilbert-Schmidt: +\series default + Para +\begin_inset Formula $x\in L^{2}([a,b])$ +\end_inset + +, +\begin_inset Formula +\[ +\int_{a}^{b}k(t,s)x(s)\dif s=\sum_{n\in J}\mu_{n}\left(\int_{a}^{b}x\overline{e_{n}}\right)e_{n}(t) +\] + +\end_inset + +para casi todo +\begin_inset Formula $t\in[a,b]$ +\end_inset + +, y si +\begin_inset Formula $J$ +\end_inset + + es numerable la serie converge absoluta y uniformemente en +\begin_inset Formula $[a,b]$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Para la primera parte basta tomar en el teorema anterior un +\begin_inset Formula $\mu\neq0$ +\end_inset + + tal que +\begin_inset Formula $\frac{1}{\mu}$ +\end_inset + + no sea valor propio y despejar. + Para la segunda podemos suponer +\begin_inset Formula $J=(\mathbb{N},\geq)$ +\end_inset + +, y queremos ver que +\begin_inset Formula +\[ +\sum_{n}\left|\mu_{n}\left(\int_{a}^{b}x\overline{e_{n}}\right)e_{n}(t)\right|=\sum_{n}|\mu_{n}\langle x,e_{n}\rangle e_{n}(t)| +\] + +\end_inset + +es uniformemente de Cauchy en +\begin_inset Formula $[a,b]$ +\end_inset + +. + Por la desigualdad de Cauchy-Schwartz, +\begin_inset Formula +\[ +\sum_{n=p}^{q}|\mu_{n}e_{n}(t)||\langle x,e_{n}\rangle|\leq\sqrt{\sum_{n=p}^{q}|\mu_{n}e_{n}(t)|^{2}\sum_{n=p}^{q}|\langle x,e_{n}\rangle|^{2}}, +\] + +\end_inset + +pero para +\begin_inset Formula $n\in J$ +\end_inset + + y +\begin_inset Formula $t\in[a,b]$ +\end_inset + +, +\begin_inset Formula +\[ +\mu_{n}e_{n}(t)=K(e_{n})(t)=\int_{a}^{b}k(t,s)e_{k}(s)\dif s=\langle e_{k},\overline{k_{t}}\rangle, +\] + +\end_inset + +donde +\begin_inset Formula $k_{t}(s)\coloneqq k(t,s)$ +\end_inset + +, luego +\begin_inset Formula +\[ +\sqrt{\sum_{n=p}^{q}|\mu_{n}e_{n}(t)|^{2}}=\sqrt{\sum_{n=p}^{q}|\langle e_{n},\overline{k_{t}}\rangle|^{2}}\leq\Vert k_{t}\Vert_{2}\leq\sup_{t\in[a,b]}\Vert k_{t}\Vert_{2}<\infty, +\] + +\end_inset + +con lo que esto está acotado superiormente por un valor independiente de + +\begin_inset Formula $t$ +\end_inset + + y el resultado sale de que +\begin_inset Formula $|\langle x,e_{n}\rangle|^{2}$ +\end_inset + + tampoco depende de +\begin_inset Formula $t$ +\end_inset + + y +\begin_inset Formula $\lim_{p,q}\sum_{n=p}^{q}|\langle x,e_{n}\rangle|^{2}=0$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Las series del teorema de alternativa de Fredholm convergen absoluta y uniformem +ente en +\begin_inset Formula $[a,b]$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $k\in{\cal C}([a,b]\times[a,b])$ +\end_inset + + es un núcleo simétrico, existen una familia ortonormal contable +\begin_inset Formula $\{e_{n}\}_{n\in J}\subseteq({\cal C}([a,b]),\Vert\cdot\Vert_{2})$ +\end_inset + + y +\begin_inset Formula $\{\mu_{n}\}_{n\in J}\subseteq\mathbb{R}$ +\end_inset + + tales que, si +\begin_inset Formula $K$ +\end_inset + + es el operador integral asociado a +\begin_inset Formula $k$ +\end_inset + + y +\begin_inset Formula $f\in{\cal C}([a,b])$ +\end_inset + +, +\begin_inset Formula +\[ +Kf(t)=\sum_{n\in J}\mu_{n}\left(\int_{a}^{b}f\overline{e_{n}}\right)e_{n}(t) +\] + +\end_inset + +para todo +\begin_inset Formula $t\in[a,b]$ +\end_inset + + y la convergencia de la serie es absoluta y uniforme. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Problemas de Sturm-Liouville +\end_layout + +\begin_layout Standard +Un +\series bold +problema regular de Sturm-Liouville +\series default + +\begin_inset Foot +status open + +\begin_layout Plain Layout +La forma general del problema tiene como ecuación +\begin_inset Formula $\od{}{x}(p\dot{x})+qx+\lambda\sigma x+y=0$ +\end_inset + + con +\begin_inset Formula $p$ +\end_inset + + y +\begin_inset Formula $\sigma$ +\end_inset + + continuas y estrictamente positivas. + Aquí tomamos +\begin_inset Formula $p$ +\end_inset + + y +\begin_inset Formula $q$ +\end_inset + + constantes en 1. +\end_layout + +\end_inset + + es uno de la forma +\begin_inset Formula +\begin{align*} +-\ddot{x}+qx-\lambda x & =y, & \alpha x(a)+\beta\dot{x}(a) & =0, & \gamma x(b)+\delta\dot{x}(b) & =0, +\end{align*} + +\end_inset + +donde +\begin_inset Formula $q\in{\cal C}([a,b],\mathbb{R})$ +\end_inset + +, +\begin_inset Formula $y\in{\cal C}([a,b],\mathbb{C})$ +\end_inset + +, +\begin_inset Formula $\lambda\in\mathbb{C}$ +\end_inset + +, +\begin_inset Formula $\alpha,\beta,\gamma,\delta\in\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $|\alpha|+|\beta|,|\gamma|+|\delta|\neq0$ +\end_inset + + y la incógnita +\begin_inset Formula $x\in{\cal C}^{2}([a,b],\mathbb{C})$ +\end_inset + +. + Su +\series bold +operador de Sturm-Liouville +\series default + asociado es +\begin_inset Formula $S\in{\cal L}(D_{S},{\cal C}([a,b],\mathbb{C}))$ +\end_inset + + dado por +\begin_inset Formula $S(x)\coloneqq-\ddot{x}+qx$ +\end_inset + +, donde +\begin_inset Formula +\[ +D_{S}\coloneqq\{x\in{\cal C}^{2}([a,b],\mathbb{C})\mid\alpha x(a)+\beta\dot{x}(a)=\gamma x(b)+\delta\dot{x}(b)=0\}, +\] + +\end_inset + +y entonces el problema anterior es +\begin_inset Formula $(S-\mu1_{D_{S}})x=y$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Para +\begin_inset Formula $q\in{\cal C}([a,b],\mathbb{R})$ +\end_inset + + e +\begin_inset Formula $y_{0},y_{1}\in\mathbb{R}$ +\end_inset + +, el problema de Cauchy +\begin_inset Formula +\begin{align*} +-\ddot{x}+qx & =0, & x(a) & =y_{0}, & \dot{x}(a) & =y_{1} +\end{align*} + +\end_inset + +tiene una única solución real, y para +\begin_inset Formula $\alpha,\beta\in\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $|\alpha|+|\beta|\neq0$ +\end_inset + +, si +\begin_inset Formula $(y_{0},y_{1})\in\mathbb{R}^{2}$ +\end_inset + + recorre la recta +\begin_inset Formula $\alpha y_{0}+\beta y_{1}=0$ +\end_inset + +, la correspondiente solución del problema recorre una recta (subespacio + de dimensión 1) de +\begin_inset Formula ${\cal C}^{2}([a,b])$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +El +\series bold +determinante wronskiano +\series default + de +\begin_inset Formula $x_{1},\dots,x_{n}\in{\cal C}^{n-1}([a,b],\mathbb{K})$ +\end_inset + + es +\begin_inset Formula $W(x_{1},\dots,x_{n}):[a,b]\to\mathbb{K}$ +\end_inset + + dada por +\begin_inset Formula $t\mapsto\det(x_{j}^{(i)}(t))_{0\leq i<n}^{1\leq j\leq n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $S:D_{S}\to{\cal C}([a,b],\mathbb{C})$ +\end_inset + + es un operador de Sturm-Liouville asociado al problema con parámetros +\begin_inset Formula $q,y,\lambda,\alpha,\beta,\gamma,\delta$ +\end_inset + +, existen +\begin_inset Formula $u,v\in{\cal C}([a,b],\mathbb{R})$ +\end_inset + + con +\begin_inset Formula $-\ddot{u}+qu=0$ +\end_inset + +, +\begin_inset Formula $\alpha x(a)+\beta\dot{x}(a)=0$ +\end_inset + +, +\begin_inset Formula $-\ddot{v}+qv=0$ +\end_inset + + y +\begin_inset Formula $\gamma x(b)+\delta\dot{x}(b)=0$ +\end_inset + +, y entonces +\begin_inset Formula $W(u,v)(t)$ +\end_inset + + es constante en +\begin_inset Formula $t$ +\end_inset + + y, si +\begin_inset Formula $S$ +\end_inset + + es inyectivo, +\begin_inset Formula $W(u,v)(t)\neq0$ +\end_inset + + y +\begin_inset Formula $u$ +\end_inset + + y +\begin_inset Formula $v$ +\end_inset + + son linealmente independientes, y llamamos +\series bold +función de Green +\series default + asociada a +\begin_inset Formula $S$ +\end_inset + + al núcleo simétrico +\begin_inset Formula $k\in{\cal C}([a,b]\times[a,b])$ +\end_inset + + dado por +\begin_inset Formula +\[ +k(t,s)\coloneqq-\frac{u(\min\{t,s\})v(\max\{t,s\})}{W(u,v)(a)}, +\] + +\end_inset + +que no depende de +\begin_inset Formula $u$ +\end_inset + + y +\begin_inset Formula $v$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $S:D_{S}\to{\cal C}([a,b])$ +\end_inset + + es un operador de Sturm-Liouville inyectivo con función de Green +\begin_inset Formula $k$ +\end_inset + +, llamamos +\series bold +operador de Green +\series default + asociado a +\begin_inset Formula $S$ +\end_inset + + al operador integral +\begin_inset Formula $G:L^{2}([a,b])\to L^{2}([a,b])$ +\end_inset + + asociado al núcleo +\begin_inset Formula $k$ +\end_inset + +, y entonces +\begin_inset Formula $G|_{{\cal C}([a,b])}$ +\end_inset + + es el inverso de +\begin_inset Formula $S$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Así, +\begin_inset Formula $(S-\mu1_{D_{S}})x=y$ +\end_inset + + tiene solución única +\begin_inset Formula $x\in D_{S}$ +\end_inset + + si y sólo si +\begin_inset Formula $(1_{{\cal C}([a,b])}-\mu G)x=Gy$ +\end_inset + + tiene solución única +\begin_inset Formula $x\in{\cal C}([a,b])$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $S:D_{S}\to{\cal C}([a,b],\mathbb{C})$ +\end_inset + + es el operador de Sturm-Liouville asociado al problema con parámetros +\begin_inset Formula $q,y,\lambda,\alpha,\beta,\gamma,\delta$ +\end_inset + +, existe una sucesión +\begin_inset Formula $(\nu_{n})_{n}$ +\end_inset + + de reales distintos con +\begin_inset Formula $\sum_{n}\frac{1}{\nu_{n}^{2}}<\infty$ +\end_inset + + y una base hilbertiana numerable +\begin_inset Formula $(u_{n})_{n}$ +\end_inset + + de +\begin_inset Formula $L^{2}([a,b])$ +\end_inset + + tales que: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall n\in\mathbb{N},Su_{n}=\nu_{n}u_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula +\[ +\forall x\in D_{S},\forall t\in[a,b],x(t)=\sum_{n}\left(\int_{a}^{b}xu_{n}\right)u_{n}(t), +\] + +\end_inset + +donde la serie converge absoluta y uniformemente para +\begin_inset Formula $t\in[a,b]$ +\end_inset + +. + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\lambda\notin\{\nu_{n}\}_{n}$ +\end_inset + +, el problema tiene como única solución +\begin_inset Formula +\[ +x(t)=\sum_{n}\frac{1}{\nu_{n}-\lambda}\left(\int_{a}^{b}yu_{n}\right)u_{n}(t), +\] + +\end_inset + +donde la serie converge absoluta y uniformemente para +\begin_inset Formula $t\in[a,b]$ +\end_inset + +. + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\lambda=\nu_{k}$ +\end_inset + + para algún +\begin_inset Formula $k$ +\end_inset + +, el problema tiene solución si y sólo si +\begin_inset Formula $y\bot u_{k}$ +\end_inset + +, y entonces las soluciones son +\begin_inset Formula +\begin{align*} +x(t) & =\alpha u_{k}+\sum_{n\in\mathbb{N}\setminus\{k\}}\frac{1}{\nu_{n}-\lambda}\left(\int_{a}^{b}yu_{n}\right)u_{n}(t), & \alpha & \in\mathbb{C}, +\end{align*} + +\end_inset + +donde la serie converge absoluta y uniformemente para +\begin_inset Formula $t\in[a,b]$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\end_body +\end_document diff --git a/af/n4.lyx b/af/n4.lyx new file mode 100644 index 0000000..95113e8 --- /dev/null +++ b/af/n4.lyx @@ -0,0 +1,6992 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\usepackage{commath} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Los +\series bold +principios fundamentales del análisis funcional +\series default + son el teorema de Hahn-Banach, el teorema de la acotación uniforme y el + teorema de la gráfica cerrada. +\end_layout + +\begin_layout Section +Teorema de Hahn-Banach +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Tychonoff: +\series default + Si +\begin_inset Formula $(X_{i})_{i\in I}$ +\end_inset + + son espacios topológicos compactos, +\begin_inset Formula $\prod_{i\in I}X_{i}$ +\end_inset + + es compacto con la topología producto. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de extensión de Hann-Banach: +\series default + Sean +\begin_inset Formula $Y\leq_{\mathbb{K}}X$ +\end_inset + +, +\begin_inset Formula $p:X\to\mathbb{R}$ +\end_inset + + subaditiva y positivamente homogénea y +\begin_inset Formula $f:Y\to\mathbb{K}$ +\end_inset + + lineal con +\begin_inset Formula $f\leq p|_{Y}$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + se extiende a +\begin_inset Formula $\hat{f}:X\to\mathbb{R}$ +\end_inset + + lineal con +\begin_inset Formula $\hat{f}\leq p$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\series bold +Demostración +\series default + para +\begin_inset Formula $Y$ +\end_inset + + de codimensión 1 +\series bold +: +\series default + Sea +\begin_inset Formula $x_{0}\in X\setminus Y$ +\end_inset + +, entonces +\begin_inset Formula $X=Y\oplus\text{span}\{x_{0}\}$ +\end_inset + + y toda extensión lineal +\begin_inset Formula $\hat{f}:X\to\mathbb{R}$ +\end_inset + + se escribe como +\begin_inset Formula $\hat{f}(y+ax_{0})=f(y)+a\hat{f}(x_{0})$ +\end_inset + + para cada +\begin_inset Formula $y+ax_{0}\in X$ +\end_inset + + con +\begin_inset Formula $y\in Y$ +\end_inset + + y +\begin_inset Formula $a\in\mathbb{R}$ +\end_inset + +, y queremos ver que existe +\begin_inset Formula $\alpha\in\mathbb{R}$ +\end_inset + + tal que si +\begin_inset Formula $\hat{f}(x_{0})=\alpha$ +\end_inset + + entonces +\begin_inset Formula $\hat{f}\leq p$ +\end_inset + +. + Para +\begin_inset Formula $a=0$ +\end_inset + + esto siempre se cumple; para +\begin_inset Formula $a>0$ +\end_inset + + +\begin_inset Formula +\begin{multline*} +\forall y\in Y,\hat{f}(y+ax_{0})=f(y)+a\alpha\leq p(y+ax_{0})\iff\forall y\in Y,f\left(\frac{y}{a}\right)+\alpha\leq p\left(\frac{y}{a}+x_{0}\right)\iff\\ +\iff\forall z\in Y,\alpha\leq-f(z)+p(z+x_{0}), +\end{multline*} + +\end_inset + +y para +\begin_inset Formula $a<0$ +\end_inset + +, +\begin_inset Formula +\begin{multline*} +\forall y\in Y,\hat{f}(y+ax_{0})=f(y)+a\alpha\leq p(y+ax_{0})\iff\forall y\in Y,f\left(-\frac{y}{a}\right)-\alpha\leq p\left(-\frac{y}{a}-x_{0}\right)\iff\\ +\iff\forall w\in Y,\alpha\geq f(w)-p(w-x_{0}), +\end{multline*} + +\end_inset + +con lo que la condición equivale a que +\begin_inset Formula $\forall z,w\in Y,f(w)-p(w-x_{0})\leq\alpha\leq-f(z)+p(z+x_{0})$ +\end_inset + +, pero siempre existe tal +\begin_inset Formula $\alpha$ +\end_inset + + ya que, para +\begin_inset Formula $z,w\in Y$ +\end_inset + +, +\begin_inset Formula +\[ +f(z)+f(w)=f(z+w)\leq p(z+w)=p(z+x_{0}+w-x_{0})\leq p(z+x_{0})+p(w-x_{0}). +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +El teorema de Tychonoff equivale al axioma de elección y es estrictamente + más fuerte que el teorema de Tychonoff para espacios compactos separados, + el cual implica el teorema de extensión de Hann-Banach. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Hann-Banach ( +\begin_inset Formula $\mathbb{R}$ +\end_inset + +) y Sobczyk ( +\begin_inset Formula $\mathbb{C}$ +\end_inset + +): +\series default + Sean +\begin_inset Formula $Y\leq_{\mathbb{K}}X$ +\end_inset + +, +\begin_inset Formula $p:X\to\mathbb{K}$ +\end_inset + + una seminorma y +\begin_inset Formula $f:Y\to\mathbb{K}$ +\end_inset + + lineal con +\begin_inset Formula $|f|\leq p|_{Y}$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + se extiende a una +\begin_inset Formula $\hat{f}:X\to\mathbb{K}$ +\end_inset + + lineal con +\begin_inset Formula $|\hat{f}|\leq p$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + es un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio normado e +\begin_inset Formula $Y\leq X$ +\end_inset + +, toda +\begin_inset Formula $f\in Y^{*}$ +\end_inset + + se extiende a una +\begin_inset Formula $\hat{f}\in X^{*}$ +\end_inset + + con +\begin_inset Formula $\Vert\hat{f}\Vert=\Vert f\Vert$ +\end_inset + +. + +\series bold +Demostración: +\series default + +\begin_inset Formula $p:X\to\mathbb{R}$ +\end_inset + + dada por +\begin_inset Formula $p(x)\coloneqq\Vert f\Vert\Vert x\Vert$ +\end_inset + + es subaditiva y positivamente homogénea con +\begin_inset Formula $|f(x)|\leq\Vert f\Vert\Vert x\Vert=p(x)$ +\end_inset + +, luego +\begin_inset Formula $f$ +\end_inset + + se extiende a +\begin_inset Formula $\hat{f}:X\to\mathbb{R}$ +\end_inset + + lineal con +\begin_inset Formula $|\hat{f}|\leq p$ +\end_inset + + y, para +\begin_inset Formula $x\in S_{X}$ +\end_inset + +, +\begin_inset Formula $\Vert\hat{f}(x)\Vert\leq\Vert f\Vert$ +\end_inset + +, de modo que +\begin_inset Formula $\Vert f\Vert\leq\Vert\hat{f}\Vert\leq\Vert f\Vert$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El +\series bold +teorema de Hann-Banach +\series default + es el anterior cuando +\begin_inset Formula $X$ +\end_inset + + es real y separable. + +\series bold +Demostración +\series default + sin usar cosas de esta sección no probadas +\series bold +: +\series default + Sean +\begin_inset Formula $\{x_{n}\}_{n\in\mathbb{N}}$ +\end_inset + + denso en +\begin_inset Formula $X$ +\end_inset + + y, para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $X_{n}\coloneqq\text{span}\{Y\cup\{x_{k}\}_{k\in\mathbb{N}_{n}}\}$ +\end_inset + +, o +\begin_inset Formula $X_{n}=X_{n+1}$ +\end_inset + + o es un subespacio de +\begin_inset Formula $X_{n+1}$ +\end_inset + + de codimensión 1, y por inducción en lo anterior para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + existe +\begin_inset Formula $f_{n}\in X_{n}^{*}$ +\end_inset + + con +\begin_inset Formula $\Vert f_{n}\Vert=\Vert f\Vert$ +\end_inset + + y +\begin_inset Formula $f_{n}=f_{n+1}|_{X_{n}^{*}}$ +\end_inset + +, de modo que si +\begin_inset Formula $Z\coloneqq\bigcup_{n}X_{n}$ +\end_inset + +, existe +\begin_inset Formula $F\in Z^{*}$ +\end_inset + + con +\begin_inset Formula $f=F|_{Y}$ +\end_inset + + y +\begin_inset Formula $\Vert F\Vert=\Vert f\Vert$ +\end_inset + +, pero para +\begin_inset Formula $y\in X$ +\end_inset + + existe +\begin_inset Formula $\{z_{n}\}_{n}\subseteq Z$ +\end_inset + + convergente a +\begin_inset Formula $y$ +\end_inset + + y, por continuidad de +\begin_inset Formula $F$ +\end_inset + +, existe +\begin_inset Formula $\hat{f}(y)\coloneqq\lim_{n}F(y_{n})$ +\end_inset + +, con +\begin_inset Formula $\hat{f}(y)$ +\end_inset + + independiente de la sucesión elegida, con lo que podemos definir +\begin_inset Formula $\hat{f}:X\to\mathbb{R}$ +\end_inset + + de esta forma y claramente es lineal y continua con +\begin_inset Formula $\Vert\hat{f}\Vert=\Vert F\Vert=\Vert f\Vert$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sea entonces +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio normado: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall x\in X\setminus0,\exists f\in X^{*}:(\Vert f\Vert=1\land f(x)=\Vert x\Vert)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall x\in X,\Vert x\Vert=\max_{f\in B_{X^{*}}}|f(x)|$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $Y\leq X$ +\end_inset + + y +\begin_inset Formula $x\in X$ +\end_inset + + con +\begin_inset Formula $\delta\coloneqq d(x,Y)>0$ +\end_inset + +, +\begin_inset Formula $\exists f\in X^{*}:(f(Y)=0\land f(x)=1\land\Vert f\Vert=\delta^{-1})$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula +\[ +\forall Y\leq X,\overline{Y}=\bigcap_{\begin{subarray}{c} +f\in X^{*}\\ +Y\subseteq\ker f +\end{subarray}}\ker f. +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula +\[ +\forall S\subseteq X,\overline{\text{span}S}\coloneqq\bigcap_{\begin{subarray}{c} +f\in X^{*}\\ +S\subseteq\ker f +\end{subarray}}\ker f. +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $S\subseteq X$ +\end_inset + + es total si y sólo si +\begin_inset Formula $\forall f\in X^{*},(f(S)=0\implies f=0)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $x_{1},\dots,x_{n}\in X$ +\end_inset + + son linealmente independientes, existen +\begin_inset Formula $f_{1},\dots,f_{n}\in X^{*}$ +\end_inset + + con cada +\begin_inset Formula $f_{i}(x_{j})=\delta_{ij}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Todo subespacio de +\begin_inset Formula $X$ +\end_inset + + de dimensión finita posee un complementario topológico. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $Y\leq X$ +\end_inset + +, la +\series bold +restricción +\series default + +\begin_inset Formula $\psi:X^{*}\to Y^{*}$ +\end_inset + +, +\begin_inset Formula $f\mapsto f|_{Y}$ +\end_inset + +, es lineal, continua, suprayectiva y abierta. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $Y\leq X$ +\end_inset + + y +\begin_inset Formula $X^{*}$ +\end_inset + + es separable, +\begin_inset Formula $Y^{*}$ +\end_inset + + también. +\end_layout + +\begin_layout Subsection +Versión geométrica +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, sean +\begin_inset Formula $E$ +\end_inset + + un e.l.c. + y +\begin_inset Formula $F\leq E$ +\end_inset + +, toda +\begin_inset Formula $u\in F'$ +\end_inset + + se extiende a una +\begin_inset Formula $f\in E'$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Así +\begin_inset Formula $E$ +\end_inset + + es un e.l.c.: +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $F\leq E$ +\end_inset + +, la restricción +\begin_inset Formula $E'\to F'$ +\end_inset + +, +\begin_inset Formula $f\mapsto f|_{F}$ +\end_inset + +, es suprayectiva. +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $x\in E\setminus0$ +\end_inset + + existe +\begin_inset Formula $f\in E'$ +\end_inset + + con +\begin_inset Formula $f(x)\neq0$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\{x_{1},\dots,x_{n}\}\subseteq E$ +\end_inset + + linealmente independiente, existen +\begin_inset Formula $f_{1},\dots,f_{n}\in E'$ +\end_inset + + con cada +\begin_inset Formula $f_{i}(x_{j})=\delta_{ij}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $E$ +\end_inset + + es un +\begin_inset Formula $\mathbb{R}$ +\end_inset + +-e.v.t., +\begin_inset Formula $f\in E'\setminus0$ +\end_inset + + y +\begin_inset Formula $A\subseteq E$ +\end_inset + + es un abierto convexo no vacío, +\begin_inset Formula $f(A)\subseteq\mathbb{R}$ +\end_inset + + es un intervalo abierto. + +\series bold +Demostración: +\series default + Si fuera +\begin_inset Formula $f(A)=\{p\}$ +\end_inset + + para cierto +\begin_inset Formula $p\in\mathbb{R}$ +\end_inset + +, entonces +\begin_inset Formula $A\subseteq\ker(f-p)$ +\end_inset + +, pero como +\begin_inset Formula $f\neq0$ +\end_inset + +, +\begin_inset Formula $\ker(f-p)<E$ +\end_inset + + y por tanto tiene interior vacío, luego +\begin_inset Formula $A=\emptyset\#$ +\end_inset + +. + Para ver que es un intervalo, sean +\begin_inset Formula $x,y\in A$ +\end_inset + + con +\begin_inset Formula $f(x)<f(y)$ +\end_inset + +, por convexidad, si +\begin_inset Formula $\psi:\mathbb{R}\to E$ +\end_inset + + viene dada por +\begin_inset Formula $\psi(t)\coloneqq(1-t)x+ty$ +\end_inset + +, +\begin_inset Formula $\psi([0,1])\subseteq A$ +\end_inset + +, pero +\begin_inset Formula $\psi$ +\end_inset + + es continua y por tanto también lo es +\begin_inset Formula $f\circ\psi:\mathbb{R}\to\mathbb{R}$ +\end_inset + +, y para +\begin_inset Formula $z\in[f(x),f(y)]$ +\end_inset + +, por el teorema de Bolzano existe +\begin_inset Formula $t\in[0,1]$ +\end_inset + + con +\begin_inset Formula $z=f(\psi(t))\in f(A)$ +\end_inset + +. + Ahora bien, como +\begin_inset Formula $A$ +\end_inset + + es abierto, +\begin_inset Formula $A-x$ +\end_inset + + es entorno del 0 y por tanto absorbente, y dada la función lineal +\begin_inset Formula $\phi(t)\coloneqq\psi(t)-x=t(y-x)$ +\end_inset + +, existe +\begin_inset Formula $\rho_{0}>0$ +\end_inset + + tal que, para +\begin_inset Formula $\rho>\rho_{0}$ +\end_inset + +, +\begin_inset Formula $\phi(-1)\in\rho(A-x)$ +\end_inset + +, luego +\begin_inset Formula $\phi(-\frac{1}{\rho}),\phi(\frac{2}{\rho})\in A-x$ +\end_inset + + y +\begin_inset Formula $\psi((-\frac{1}{\rho},1))=\phi((-\frac{1}{\rho},1))+x\subseteq A$ +\end_inset + + y, como +\begin_inset Formula $f\circ\psi:\mathbb{R}\to\mathbb{R}$ +\end_inset + + es afín no degenerada y por tanto un homeomorfismo, +\begin_inset Formula $f(\psi((-\frac{1}{\rho},1)))\subseteq f(A)$ +\end_inset + + es un entorno abierto de +\begin_inset Formula $x$ +\end_inset + +, pero análogamente hay un entorno abierto de +\begin_inset Formula $y$ +\end_inset + +, y como +\begin_inset Formula $f(A)$ +\end_inset + + tiene al menos dos puntos distintos, queda que +\begin_inset Formula $f(A)$ +\end_inset + + es abierta. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\psi([0,1])\subseteq A$ +\end_inset + + y +\begin_inset Formula $\psi|_{[0,1]}:[0,1]\to\psi([0,1])$ +\end_inset + + es un homeomorfismo, luego +\begin_inset Formula $f\circ\psi:[0,1]\to\mathbb{R}$ +\end_inset + + es continua y, para +\begin_inset Formula $z\in(f(x),f(y))$ +\end_inset + +, por el teorema de Bolzano existe +\begin_inset Formula $t\in[0,1]$ +\end_inset + + con +\begin_inset Formula $z=f(\psi(t))\in f(A)$ +\end_inset + +. + Como +\begin_inset Formula $A$ +\end_inset + + es abierto, +\begin_inset Formula $A-x$ +\end_inset + + es un entorno del 0, luego es absorbente y existe +\begin_inset Formula $\rho_{0}>0$ +\end_inset + + tal que, para +\begin_inset Formula $\rho>\rho_{0}$ +\end_inset + +, +\begin_inset Formula $\psi(-1)\in\rho(A-x)$ +\end_inset + +, con lo que +\begin_inset Formula $\psi(-\frac{1}{\rho})\in A$ +\end_inset + +, de modo que +\begin_inset Formula $(-\frac{1}{\rho_{0}},1)\subseteq A$ +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $E$ +\end_inset + + es un espacio vectorial, un +\series bold +hiperplano +\series default + de +\begin_inset Formula $E$ +\end_inset + + es un subespacio propio de +\begin_inset Formula $E$ +\end_inset + + y una +\series bold +variedad afín +\series default + de +\begin_inset Formula $E$ +\end_inset + + es un conjunto +\begin_inset Formula $x_{0}+F$ +\end_inset + + con +\begin_inset Formula $x_{0}\in E$ +\end_inset + + y +\begin_inset Formula $F\leq E$ +\end_inset + +, que se llama +\series bold +hiperplano afín +\series default + de +\begin_inset Formula $E$ +\end_inset + + si +\begin_inset Formula $F$ +\end_inset + + es un hiperplano de +\begin_inset Formula $E$ +\end_inset + +. + Si +\begin_inset Formula $E$ +\end_inset + + es un e.v.t., +\begin_inset Formula $M\subseteq E$ +\end_inset + + es un hiperplano afín si y sólo si existen +\begin_inset Formula $f:E\to\mathbb{K}$ +\end_inset + + lineal y +\begin_inset Formula $a\in\mathbb{K}$ +\end_inset + + con +\begin_inset Formula $M=\{x\in X\mid f(x)=a\}$ +\end_inset + +, y entonces +\begin_inset Formula $M$ +\end_inset + + es cerrado si y sólo si +\begin_inset Formula $f$ +\end_inset + + es continua. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Mazur: +\series default + Sean +\begin_inset Formula $E$ +\end_inset + + un e.v.t., +\begin_inset Formula $M\subseteq E$ +\end_inset + + una variedad afín y +\begin_inset Formula $A\subseteq E$ +\end_inset + + un abierto convexo no vacío disjunto de +\begin_inset Formula $M$ +\end_inset + +, existe un hiperplano afín cerrado de +\begin_inset Formula $E$ +\end_inset + + disjunto de +\begin_inset Formula $A$ +\end_inset + + que contiene a +\begin_inset Formula $M$ +\end_inset + +. + +\series bold +Demostración: +\series default + Podemos suponer por traslación que +\begin_inset Formula $0\in A$ +\end_inset + +, de modo que +\begin_inset Formula $A$ +\end_inset + + es absorbente y tiene asociado un funcional de Minkowski +\begin_inset Formula $p$ +\end_inset + + tal que +\begin_inset Formula $A=\{x\in E\mid p(x)<1\}$ +\end_inset + + y, como +\begin_inset Formula $A$ +\end_inset + + es abierto, +\begin_inset Formula $p$ +\end_inset + + es continua. + Sean entonces +\begin_inset Formula $x_{0}\in E$ +\end_inset + + y +\begin_inset Formula $F\leq E$ +\end_inset + + con +\begin_inset Formula $M=x_{0}+F$ +\end_inset + +, +\begin_inset Formula $x_{0}\notin F$ +\end_inset + + ya que de serlo sería +\begin_inset Formula $M=F\ni0$ +\end_inset + +, luego +\begin_inset Formula $F\cap\text{span}\{x_{0}\}=0$ +\end_inset + + y podemos definir +\begin_inset Formula $u:F\oplus\text{span}\{x_{0}\}\to\mathbb{K}$ +\end_inset + + como +\begin_inset Formula $u(y+\lambda x_{0})\coloneqq\lambda$ +\end_inset + + para +\begin_inset Formula $y\in F$ +\end_inset + + y +\begin_inset Formula $\lambda\in\mathbb{K}$ +\end_inset + +, que es lineal. + Ahora bien, para +\begin_inset Formula $\lambda\neq0$ +\end_inset + + es +\begin_inset Formula $|u(y+\lambda x_{0})|=|\lambda|\leq|\lambda|p(\tfrac{y}{\lambda}+x_{0})\leq p(y+\lambda x_{0})$ +\end_inset + +, donde en la primera desigualdad usamos que +\begin_inset Formula $\frac{y}{\lambda}+x_{0}\in M\subseteq A^{\complement}$ +\end_inset + + y por tanto +\begin_inset Formula $p(\frac{y}{\lambda}+x_{0})\geq1$ +\end_inset + +, y para +\begin_inset Formula $\lambda=0$ +\end_inset + +, +\begin_inset Formula $|u(y)|=0\leq p(y)$ +\end_inset + +, de modo que +\begin_inset Formula $|u|\leq p|_{F\oplus\text{span}\{x_{0}\}}$ +\end_inset + + y, por el teorema de Sobczyk, +\begin_inset Formula $u$ +\end_inset + + se extiende a una +\begin_inset Formula $f:E\to\mathbb{K}$ +\end_inset + + lineal con +\begin_inset Formula $|f|\leq p$ +\end_inset + +, con lo que +\begin_inset Formula $f$ +\end_inset + + es continua y, si +\begin_inset Formula $H\coloneqq\{x\in E\mid f(x)=1\}$ +\end_inset + +, +\begin_inset Formula $f(E)=1$ +\end_inset + + y por tanto +\begin_inset Formula $E\subseteq H$ +\end_inset + + y, para +\begin_inset Formula $x\in H$ +\end_inset + +, +\begin_inset Formula $f(x)=1\leq p(x)$ +\end_inset + + y por tanto +\begin_inset Formula $x\notin A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $E$ +\end_inset + + un +\begin_inset Formula $\mathbb{R}$ +\end_inset + +-e.v.t., +\begin_inset Formula $f\in E'$ +\end_inset + + y +\begin_inset Formula $\alpha\in\mathbb{R}$ +\end_inset + +, llamamos +\series bold +semiespacios abiertos +\series default + determinados por +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $\alpha$ +\end_inset + + a +\begin_inset Formula $\{x\in E\mid f(x)<\alpha\}$ +\end_inset + + y +\begin_inset Formula $\{x\in E\mid f(x)>\alpha\}$ +\end_inset + +, y +\series bold +semiespacios cerrados +\series default + determinados por +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $\alpha$ +\end_inset + + a +\begin_inset Formula $\{x\in E\mid f(x)\leq\alpha\}$ +\end_inset + + y +\begin_inset Formula $\{x\in E\mid f(x)\geq\alpha\}$ +\end_inset + +, y +\begin_inset Formula $H\coloneqq\{x\in E\mid f(x)=\alpha\}$ +\end_inset + + +\series bold +separa +\series default + +\begin_inset Formula $A,B\subseteq E$ +\end_inset + + si cada uno está en un semiespacio cerrado distinto de +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $\alpha$ +\end_inset + +, en cuyo caso +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + están +\series bold +separados +\series default +, y +\series bold +separa estrictamente +\series default + +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + si cada uno está en un semiespacio abierto distinto de +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $\alpha$ +\end_inset + +, en cuyo caso +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + están estrictamente separados. +\end_layout + +\begin_layout Standard + +\series bold +Teoremas de separación: +\end_layout + +\begin_layout Enumerate +En un +\begin_inset Formula $\mathbb{R}$ +\end_inset + +-e.v.t. + todo par de abiertos convexos disjuntos no vacíos está separado. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $E$ +\end_inset + + el +\begin_inset Formula $\mathbb{R}$ +\end_inset + +-e.v.t. + y +\begin_inset Formula $A,B\subseteq E$ +\end_inset + + tales conjuntos, +\begin_inset Formula $A-B$ +\end_inset + + es un abierto no vacío que no contiene al 0, con lo que el teorema de Mizur + nos da un hiperplano cerrado +\begin_inset Formula $H=\{x\in E\mid f(x)=\beta\}$ +\end_inset + +, con +\begin_inset Formula $f\in E'$ +\end_inset + + y +\begin_inset Formula $\beta\in\mathbb{R}$ +\end_inset + +, que contiene al 0 y es disjunto de +\begin_inset Formula $A-B$ +\end_inset + +. + +\begin_inset Formula $f(A-B)\subseteq\mathbb{R}$ +\end_inset + + es convexo. + Como +\begin_inset Formula $\beta=f(0)=0$ +\end_inset + +, +\begin_inset Formula $0\notin f(A-B)$ +\end_inset + +, pero +\begin_inset Formula $f(A-B)$ +\end_inset + + es un intervalo, luego +\begin_inset Formula $f(A-B)\subseteq\mathbb{R}^{+}$ +\end_inset + + o +\begin_inset Formula $f(A-B)\subseteq\mathbb{R}^{-}$ +\end_inset + +. + Si, por ejemplo, +\begin_inset Formula $f(A-B)\subseteq\mathbb{R}^{-}$ +\end_inset + +, para +\begin_inset Formula $a\in A$ +\end_inset + + y +\begin_inset Formula $b\in B$ +\end_inset + +, +\begin_inset Formula $f(a)<f(b)$ +\end_inset + +, luego existe +\begin_inset Formula $\alpha\in[\sup_{a\in A}f(a),\inf_{b\in B}f(b)]$ +\end_inset + +, y como +\begin_inset Formula $f(A)$ +\end_inset + + y +\begin_inset Formula $f(B)$ +\end_inset + + son intervalos abiertos, para +\begin_inset Formula $a\in A$ +\end_inset + + y +\begin_inset Formula $b\in B$ +\end_inset + +, +\begin_inset Formula $f(a)<\alpha<f(b)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $E$ +\end_inset + + es un +\begin_inset Formula $\mathbb{R}$ +\end_inset + +-e.l.c. + y +\begin_inset Formula $K,F\subseteq E$ +\end_inset + + son convexos disjuntos no vacíos con +\begin_inset Formula $K$ +\end_inset + + compacto y +\begin_inset Formula $F$ +\end_inset + + cerrado, existen +\begin_inset Formula $f\in E'$ +\end_inset + +, +\begin_inset Formula $\alpha\in\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $\varepsilon>0$ +\end_inset + + con +\begin_inset Formula $f(y)\leq\alpha-\varepsilon<\alpha<f(z)$ +\end_inset + + para todo +\begin_inset Formula $y\in K$ +\end_inset + + y +\begin_inset Formula $z\in F$ +\end_inset + + y tales que +\begin_inset Formula $f|_{K}$ +\end_inset + + alcanza +\begin_inset Formula $\alpha-\varepsilon$ +\end_inset + +, y en particular +\begin_inset Formula $K$ +\end_inset + + y +\begin_inset Formula $F$ +\end_inset + + están estrictamente separados. +\end_layout + +\begin_deeper +\begin_layout Standard +Como +\begin_inset Formula $K-F$ +\end_inset + + es cerrado y no contiene al 0, +\begin_inset Formula $E\setminus(K-F)\in{\cal E}(0)$ +\end_inset + +, luego existe +\begin_inset Formula $W\in{\cal E}(0)$ +\end_inset + + con +\begin_inset Formula $W+W\subseteq E\setminus(K-F)$ +\end_inset + + que podemos tomar absolutamente conexo y, si +\begin_inset Formula $k\in K$ +\end_inset + +, +\begin_inset Formula $f\in F$ +\end_inset + + y +\begin_inset Formula $u,v\in W$ +\end_inset + +, +\begin_inset Formula $k-f\in K-F$ +\end_inset + + y +\begin_inset Formula $u-v\in W+W\subseteq E\setminus(K-F)$ +\end_inset + +, luego +\begin_inset Formula $k-f\neq u-v$ +\end_inset + + y +\begin_inset Formula $k+v\neq f+u$ +\end_inset + +, y +\begin_inset Formula $K+W$ +\end_inset + + y +\begin_inset Formula $F+W$ +\end_inset + + son abiertos disjuntos. + Es fácil ver que la suma de conexos es conexa, luego +\begin_inset Formula $K+W$ +\end_inset + + y +\begin_inset Formula $F+W$ +\end_inset + + son conexos y, por el primer teorema de separación, existen +\begin_inset Formula $f\in E'$ +\end_inset + + y +\begin_inset Formula $\alpha\in\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $f(k)<\alpha<f(z)$ +\end_inset + + para +\begin_inset Formula $k\in K$ +\end_inset + + y +\begin_inset Formula $z\in F$ +\end_inset + +, pero como +\begin_inset Formula $f(K)$ +\end_inset + + es compacto, +\begin_inset Formula $\max f(K)<\alpha$ +\end_inset + + y basta tomar +\begin_inset Formula $\varepsilon\coloneqq\alpha-\max f(K)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Con esto, si +\begin_inset Formula $E$ +\end_inset + + es un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-e.l.c. + y +\begin_inset Formula $K,F\subseteq E$ +\end_inset + + son convexos disjuntos, +\begin_inset Formula $A$ +\end_inset + + es compacto, +\begin_inset Formula $B$ +\end_inset + + es cerrado y uno de los dos es absolutamente convexo, existe +\begin_inset Formula $u\in E'$ +\end_inset + + tal que +\begin_inset Formula $\sup_{x\in A}|u(x)|<\inf_{y\in B}|u(y)|$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $E$ +\end_inset + + es un e.l.c. + y +\begin_inset Formula $A\subseteq E$ +\end_inset + +, +\begin_inset Formula $\overline{\text{co}(A)}$ +\end_inset + + es la intersección de todos los semiespacios cerrados de +\begin_inset Formula $E$ +\end_inset + + que contienen a +\begin_inset Formula $A$ +\end_inset + +, y en particular todo conjunto convexo y cerrado es la intersección de + los semiespacios cerrados que lo contienen. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Así, si +\begin_inset Formula $E$ +\end_inset + + es un espacio vectorial con topologías +\begin_inset Formula ${\cal S}$ +\end_inset + + y +\begin_inset Formula ${\cal T}$ +\end_inset + + localmente convexas Hausdorff y +\begin_inset Formula $(E,{\cal S})'=(E,{\cal T})'$ +\end_inset + +, +\begin_inset Formula $(E,{\cal S})$ +\end_inset + + y +\begin_inset Formula $(E,{\cal T})$ +\end_inset + + tienen los mismos convexos cerrados. + Si +\begin_inset Formula $E$ +\end_inset + + es un e.l.c. + entonces +\begin_inset Formula $(E,{\cal T})'=(E,\sigma(E,E'))'$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $E$ +\end_inset + + es un e.l.c.: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $F\leq E$ +\end_inset + +, +\begin_inset Formula $\overline{F}=\{x\in E\mid\forall f\in E',(f|_{F}=0\implies f(x)=0)\}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $S\subseteq E$ +\end_inset + + es total si y sólo si +\begin_inset Formula $\{f\in E'\mid f|_{S}=0\}=0$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Normas convexas +\end_layout + +\begin_layout Standard +Llamamos +\series bold +bidual +\series default + del espacio normado +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + al dual del dual de +\begin_inset Formula $X$ +\end_inset + +, +\begin_inset Formula $X^{**}$ +\end_inset + +, con la norma dual, que es un espacio de Banach. +\end_layout + +\begin_layout Standard +La función +\begin_inset Formula $\hat{}:X\to X^{**}$ +\end_inset + + dada por +\begin_inset Formula $\hat{x}(f)\coloneqq f(x)$ +\end_inset + + es una isometría, con lo que +\begin_inset Formula $\overline{\text{Im}\hat{}}$ +\end_inset + + es un modelo para la compleción de +\begin_inset Formula $X$ +\end_inset + + identificando cada +\begin_inset Formula $x$ +\end_inset + + con +\begin_inset Formula $\hat{x}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $Y\leq X$ +\end_inset + + cerrado, +\begin_inset Formula $Q:X\to\frac{X}{Y}$ +\end_inset + + la aplicación cociente e +\begin_inset Formula $Y'\coloneqq\{f\in X^{*}\mid f(Y)=0\}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\alpha:\frac{X^{*}}{Y'}\to Y^{*}$ +\end_inset + + dada por +\begin_inset Formula $\alpha(\overline{f})\coloneqq f|_{Y}$ +\end_inset + + es un isomorfismo isométrico. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\beta:\left(\frac{X}{Y}\right)^{*}\to Y'$ +\end_inset + + dada por +\begin_inset Formula $\beta(\overline{g})\coloneqq g\circ Q$ +\end_inset + + es un isomorfismo isométrico. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Una norma +\begin_inset Formula $\Vert\cdot\Vert$ +\end_inset + + en +\begin_inset Formula $X$ +\end_inset + + es +\series bold +estrictamente convexa +\series default + si +\begin_inset Formula $\forall x,y\in S_{X},\left(x\neq y\implies\left\Vert \frac{x+y}{2}\right\Vert <1\right)$ +\end_inset + +. + +\series bold +Teorema de Taylor-Foguel: +\series default + Si +\begin_inset Formula $X$ +\end_inset + + es un espacio normado, +\begin_inset Formula $X^{*}$ +\end_inset + + es estrictamente convexo si y sólo si para +\begin_inset Formula $Y\leq X$ +\end_inset + + e +\begin_inset Formula $f\in Y^{*}$ +\end_inset + + existe una única extensión +\begin_inset Formula $\hat{f}\in X^{*}$ +\end_inset + + de +\begin_inset Formula $f$ +\end_inset + + con +\begin_inset Formula $\Vert\hat{f}\Vert=\Vert f\Vert$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Para +\begin_inset Formula $p\in(1,\infty)$ +\end_inset + + y +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, en +\begin_inset Formula $(\mathbb{K}^{n},\Vert\cdot\Vert_{p})$ +\end_inset + + y +\begin_inset Formula $(\ell^{p},\Vert\cdot\Vert_{p})$ +\end_inset + + las normas duales son estrictamente convexas, mientras que esto no ocurre + cuando +\begin_inset Formula $p=1$ +\end_inset + + o +\begin_inset Formula $p=\infty$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Las extensiones de Hann-Banach pueden ser infinitas; por ejemplo, si +\begin_inset Formula $Y$ +\end_inset + + es el subespacio de +\begin_inset Formula $({\cal C}([0,1]),\Vert\cdot\Vert_{\infty})$ +\end_inset + + de las funciones constantes y +\begin_inset Formula $g\in Y^{*}$ +\end_inset + + viene dada por +\begin_inset Formula $g(y)\coloneqq y(0)$ +\end_inset + +, para +\begin_inset Formula $t\in[0,1]$ +\end_inset + +, +\begin_inset Formula $f_{t}\in X^{*}$ +\end_inset + + dada por +\begin_inset Formula $f_{t}(x)\coloneqq x(t)$ +\end_inset + + es una extensión lineal de +\begin_inset Formula $g$ +\end_inset + + que conserva la norma. +\end_layout + +\begin_layout Subsection +Límites de Banach +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $c$ +\end_inset + + es el espacio de las sucesiones convergentes, existe +\begin_inset Formula $L\in(\ell^{\infty})^{*}$ +\end_inset + + con +\begin_inset Formula $\Vert L\Vert=1$ +\end_inset + + y +\begin_inset Formula $L(x)=\lim_{n}x_{n}$ +\end_inset + + para +\begin_inset Formula $x\in c$ +\end_inset + + tal que, para +\begin_inset Formula $x\in X$ +\end_inset + +, +\begin_inset Formula $L(x)=L((x_{2},x_{3},\dots,x_{n},\dots))$ +\end_inset + + y, si cada +\begin_inset Formula $x_{n}\geq0$ +\end_inset + +, +\begin_inset Formula $L(x)\geq0$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Espacios vectoriales ordenados +\end_layout + +\begin_layout Standard +Un +\series bold +espacio vectorial ordenado +\series default + es un conjunto preordenado +\begin_inset Formula $(X,\apprle)$ +\end_inset + + donde +\begin_inset Formula $X$ +\end_inset + + es un +\begin_inset Formula $\mathbb{R}$ +\end_inset + +-espacio vectorial y, para +\begin_inset Formula $\alpha\in\mathbb{R}^{\geq0}$ +\end_inset + + y +\begin_inset Formula $x,y,z\in X$ +\end_inset + + con +\begin_inset Formula $x\leq y$ +\end_inset + +, +\begin_inset Formula $x+z\leq y+z$ +\end_inset + + y +\begin_inset Formula $\alpha x\leq\alpha y$ +\end_inset + +. + Un +\series bold +cono +\series default + en un +\begin_inset Formula $\mathbb{R}$ +\end_inset + +-espacio vectorial +\begin_inset Formula $X$ +\end_inset + + es un +\begin_inset Formula $P\subseteq X$ +\end_inset + + tal que, para +\begin_inset Formula $\alpha\in\mathbb{R}^{\geq0}$ +\end_inset + + y +\begin_inset Formula $x,y\in P$ +\end_inset + +, +\begin_inset Formula $x+y\in P$ +\end_inset + +, +\begin_inset Formula $\alpha x\in P$ +\end_inset + + y +\begin_inset Formula $P\cap(-P)=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $(X,\apprle)$ +\end_inset + + es un espacio vectorial ordenado, +\begin_inset Formula $\{x\in X\mid x\geq0\}$ +\end_inset + + es un cono si y sólo si +\begin_inset Formula $\apprle$ +\end_inset + + es antisimétrica, y si +\begin_inset Formula $P\subseteq_{\mathbb{R}}X$ +\end_inset + + es un cono, +\begin_inset Formula $x\leq y\iff y-x\in P$ +\end_inset + + define un orden parcial en +\begin_inset Formula $P$ +\end_inset + + tal que +\begin_inset Formula $(X,\leq)$ +\end_inset + + es un espacio vectorial ordenado. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $(X,\apprle)$ +\end_inset + + es un espacio vectorial ordenado, +\begin_inset Formula $A\subseteq X$ +\end_inset + + es +\series bold +cofinal +\series default + si +\begin_inset Formula $\forall x\geq0,\exists a\in A:a\apprge x$ +\end_inset + +, y +\begin_inset Formula $e\in X$ +\end_inset + + es +\series bold +unidad de orden +\series default + si +\begin_inset Formula $\forall x\in X,\exists n\in\mathbb{N}:-ne\apprle x\apprle ne$ +\end_inset + +, en cuyo caso +\begin_inset Formula $\{ne\}_{n\in\mathbb{N}}$ +\end_inset + + es cofinal. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $K$ +\end_inset + + es un espacio compacto, en el espacio vectorial ordenado +\begin_inset Formula $(C(K),\leq)$ +\end_inset + + de funciones continuas +\begin_inset Formula $K\to\mathbb{R}$ +\end_inset + + con el orden +\begin_inset Formula $f\leq g\iff\forall x\in K,f(x)\leq f(x)$ +\end_inset + +, todas las funciones que no se anulan son unidades de orden. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(C(\mathbb{R}),\leq)$ +\end_inset + + no tiene unidades de orden. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $(X,\apprle)$ +\end_inset + + e +\begin_inset Formula $(Y,\lessapprox)$ +\end_inset + + son espacios vectoriales ordenados, +\begin_inset Formula $T:X\to Y$ +\end_inset + + lineal es +\series bold +positiva +\series default + si +\begin_inset Formula $\forall x\apprge0,Tx\gtrapprox0$ +\end_inset + +. + Como +\series bold +teorema +\series default +, si +\begin_inset Formula $(X,\apprle)$ +\end_inset + + es un espacio vectorial ordenado, +\begin_inset Formula $Y\leq X$ +\end_inset + + cofinal y +\begin_inset Formula $f:Y\to\mathbb{R}$ +\end_inset + + lineal positiva, +\begin_inset Formula $f$ +\end_inset + + se extiende a una +\begin_inset Formula $\hat{f}:X\to\mathbb{R}$ +\end_inset + + lineal positiva. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Con esto, si +\begin_inset Formula $e$ +\end_inset + + es una unidad de orden de +\begin_inset Formula $(X,\leq)$ +\end_inset + + e +\begin_inset Formula $Y\leq X$ +\end_inset + + con +\begin_inset Formula $e\in Y$ +\end_inset + +, toda función lineal positiva +\begin_inset Formula $Y\to\mathbb{R}$ +\end_inset + + se extiende a una función +\begin_inset Formula $X\to\mathbb{R}$ +\end_inset + + lineal positiva. +\end_layout + +\begin_layout Section +Propiedad de extensión +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Helly: +\series default + En +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + +, la intersección de +\begin_inset Formula $m>n$ +\end_inset + + conjuntos convexos es no vacía si y sólo si la intersección de cada +\begin_inset Formula $n+1$ +\end_inset + + de ellos es no vacía. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dados un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio normado +\begin_inset Formula $X$ +\end_inset + + y familias +\begin_inset Formula $\{x_{i}\}_{i\in I}\subseteq X$ +\end_inset + + y +\begin_inset Formula $\{r_{i}\}_{i\in I}\subseteq\mathbb{R}^{+}$ +\end_inset + +, la familia de bolas cerradas +\begin_inset Formula $(\overline{B(x_{i},r_{i})})_{i\in I}$ +\end_inset + + tiene la +\series bold +propiedad de intersección débil +\series default + si +\begin_inset Formula $\forall f\in B_{X^{*}},\bigcap_{i\in I}B(f(x_{i}),r_{i})\neq\emptyset$ +\end_inset + +, si y sólo si para +\begin_inset Formula $J\subseteq I$ +\end_inset + + finito y +\begin_inset Formula $\{a_{j}\}_{j\in J}\subseteq\mathbb{K}$ +\end_inset + + con +\begin_inset Formula $\sum_{j\in J}a_{j}=0$ +\end_inset + + es +\begin_inset Formula +\[ +\left\Vert \sum_{j\in J}a_{j}x_{j}\right\Vert \leq\sum_{j\in J}|a_{j}|r_{j}. +\] + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\mathbb{K}=\mathbb{R}$ +\end_inset + +, esto equivale a que las bolas se corten dos a dos. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\mathbb{K}=\mathbb{C}$ +\end_inset + +, la segunda definición se puede restringir sólo a los +\begin_inset Formula $J\subseteq I$ +\end_inset + + con +\begin_inset Formula $|J|=3$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio normado +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + cumple: +\end_layout + +\begin_layout Enumerate +La +\series bold +propiedad de extensión +\series default +, si para cada +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio normado +\begin_inset Formula $Y$ +\end_inset + +, +\begin_inset Formula $Y_{0}\leq Y$ +\end_inset + + y +\begin_inset Formula $T_{0}\in{\cal L}(Y_{0},X)$ +\end_inset + +, +\begin_inset Formula $T_{0}$ +\end_inset + + se extiende a una +\begin_inset Formula $T\in{\cal L}(Y,X)$ +\end_inset + + con +\begin_inset Formula $\Vert T\Vert=\Vert T_{0}\Vert$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +La +\series bold +propiedad de extensión +\begin_inset Quotes cld +\end_inset + +inmediata +\begin_inset Quotes crd +\end_inset + + +\series default +, si cumple la de extensión pero considerando sólo el caso en que +\begin_inset Formula $Y_{0}$ +\end_inset + + es de codimensión 1 en +\begin_inset Formula $Y$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +La +\series bold +propiedad de intersección +\series default + si toda familia de bolas cerradas de +\begin_inset Formula $X$ +\end_inset + + que cumple la propiedad de intersección débil tiene intersección no vacía. +\end_layout + +\begin_layout Enumerate +La +\series bold +propiedad de intersección binaria +\series default + si toda familia de bolas cerradas de +\begin_inset Formula $X$ +\end_inset + + que se cortan dos a dos tiene intersección no vacía. +\end_layout + +\begin_layout Enumerate +La +\series bold +propiedad de proyección +\series default + si para todo +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio normado que contiene a +\begin_inset Formula $X$ +\end_inset + + como subespacio existe +\begin_inset Formula $P\in{\cal L}(Y,X)$ +\end_inset + + con +\begin_inset Formula $\Vert P\Vert=1$ +\end_inset + + suprayectiva e idempotente, que llamamos una +\series bold +proyección +\series default + de +\begin_inset Formula $Y$ +\end_inset + + sobre +\begin_inset Formula $X$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $X$ +\end_inset + + cumple la propiedad de extensión si y sólo si cumple la propiedad de extensión + inmediata, en cuyo caso +\begin_inset Formula $X$ +\end_inset + + es de Banach. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un espacio compacto +\begin_inset Formula $K$ +\end_inset + + es +\series bold +stoniano +\series default + si la clausura de cada abierto de +\begin_inset Formula $K$ +\end_inset + + es un abierto. + +\end_layout + +\begin_layout Standard +Dado un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio de Banach +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Las propiedades de extensión, intersección y proyección son equivalentes. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +Teorema de Nachbin-Goodner-Kelly-Hasumi: +\series default + Estas propiedades equivalen a que +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + sea isométricamente isomorfo a +\begin_inset Formula $({\cal C}(K,\mathbb{K}),\Vert\cdot\Vert_{\infty})$ +\end_inset + + para algún compacto stoniano +\begin_inset Formula $K$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\mathbb{K}=\mathbb{R}$ +\end_inset + +, estas equivalen a la propiedad de intersección binaria. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\mathbb{K}=\mathbb{C}$ +\end_inset + +, estas equivalen a la propiedad de intersección pero limitando las subfamilias + de las familias de bolas a que sean de cardinal 3. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Teorema de la acotación uniforme +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $X$ +\end_inset + + un espacio topológico, +\begin_inset Formula $S\subseteq X$ +\end_inset + + es +\series bold +denso en ninguna parte +\series default + o +\series bold +raro +\series default + si su clausura tiene interior vacío, +\begin_inset Formula $\mathring{\overline{S}}=\emptyset$ +\end_inset + +, +\series bold +de primera categoría +\series default + si es unión numerable de conjuntos raros, +\series bold +de segunda categoría +\series default + en otro caso y +\series bold + +\begin_inset Formula $G_{\delta}$ +\end_inset + + +\series default + si es intersección numerable de abiertos. + +\begin_inset Formula $T$ +\end_inset + + es de segunda categoría en sí mismo si y sólo si la intersección numerable + de abiertos densos en no vacía. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un espacio topológico es +\series bold +de Baire +\series default + si la intersección numerable de abiertos densos es densa, en cuyo caso + es de segunda categoría en sí mismo. + +\series bold +Teorema de Baire: +\series default + Todo espacio métrico completo es de Baire. + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $(X,d)$ +\end_inset + + un espacio métrico, +\begin_inset Formula $(G_{n})_{n}$ +\end_inset + + una sucesión de abiertos densos y +\begin_inset Formula $V\subseteq M$ +\end_inset + + abierto arbitrario, queremos definir una sucesión de bolas +\begin_inset Formula $(\overline{B(x_{n},r_{n})})_{n}$ +\end_inset + + cada una contenida en +\begin_inset Formula $V\cap G_{n}\cap\overline{B(x_{n-1},r_{n-1})}$ +\end_inset + + y con +\begin_inset Formula $r_{n}<\frac{1}{2^{n}}$ +\end_inset + +. + Como +\begin_inset Formula $G_{0}$ +\end_inset + + es denso, +\begin_inset Formula $V\cap G_{0}\neq\emptyset$ +\end_inset + + y existen +\begin_inset Formula $x_{0}\in M$ +\end_inset + + y +\begin_inset Formula $r_{0}\in(0,1)$ +\end_inset + + con +\begin_inset Formula $\overline{B(x_{0},r_{0})}\subseteq V\cap G_{0}$ +\end_inset + +, y para +\begin_inset Formula $n>0$ +\end_inset + +, como +\begin_inset Formula $G_{n}$ +\end_inset + + es denso, por inducción existen +\begin_inset Formula $x_{n}\in M$ +\end_inset + + y +\begin_inset Formula $r_{n}\in(0,\frac{1}{2^{n}})$ +\end_inset + + con +\begin_inset Formula $\overline{B(x_{n},r_{n})}\subseteq V\cap B(x_{n-1},r_{n-1})\cap G_{n}$ +\end_inset + +. + Entonces +\begin_inset Formula $(x_{n})_{n}$ +\end_inset + + es de Cauchy por ser +\begin_inset Formula $x_{m}\in B(x_{n},r_{n})$ +\end_inset + + para +\begin_inset Formula $m\geq n$ +\end_inset + + y +\begin_inset Formula $\lim_{n}r_{n}=0$ +\end_inset + +, luego existe +\begin_inset Formula $L\coloneqq\lim_{n}x_{n}\in V\cap\bigcap_{n}G_{n}$ +\end_inset + + y +\begin_inset Formula $\bigcap_{n}G_{n}$ +\end_inset + + es denso. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $(X,d)$ +\end_inset + + no es completo esto no se cumple; por ejemplo, en +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + con la métrica inducida por la de +\begin_inset Formula $\mathbb{R}$ +\end_inset + +, para cada +\begin_inset Formula $q\in\mathbb{Q}$ +\end_inset + +, +\begin_inset Formula $\mathbb{Q}\setminus\{q\}$ +\end_inset + + es denso, pero la intersección numerable +\begin_inset Formula $\bigcap_{q\in\mathbb{Q}}\mathbb{Q}\setminus\{q\}=\emptyset$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Con esto, si +\begin_inset Formula $X$ +\end_inset + + es de Banach, su dimensión algebraica es finita o no numerable. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de la acotación uniforme: +\series default + Sean +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + espacios normados, +\begin_inset Formula $\{A_{i}\}_{i\in I}\subseteq{\cal L}(X,Y)$ +\end_inset + + y +\begin_inset Formula $B\coloneqq\{x\in X\mid\sup_{i\in I}\Vert A_{i}(x)\Vert<\infty\}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $B$ +\end_inset + + es de segunda categoría, +\begin_inset Formula $\sup_{i\in I}\Vert A_{i}\Vert<\infty$ +\end_inset + + y +\begin_inset Formula $B=\emptyset$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $X$ +\end_inset + + es de Banach, bien +\begin_inset Formula $\sup_{i\in I}\Vert A_{i}\Vert<\infty$ +\end_inset + + o +\begin_inset Formula $B^{\complement}$ +\end_inset + + es +\begin_inset Formula $G_{\delta}$ +\end_inset + + denso en +\begin_inset Formula $X$ +\end_inset + +, de modo que o +\begin_inset Formula $\sup_{i\in I}\Vert A_{i}\Vert<\infty$ +\end_inset + + o +\begin_inset Formula $B$ +\end_inset + + es de primera categoría en +\begin_inset Formula $X$ +\end_inset + +, pero no ambas. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +La completitud es necesaria para la segunda parte del teorema, pues +\begin_inset Formula $\{f_{n}\}_{n}\subseteq(c_{00},\Vert\cdot\Vert_{\infty})^{*}$ +\end_inset + + dada por +\begin_inset Formula $f_{n}(x)\coloneqq\sum_{i=1}^{n}x_{i}$ +\end_inset + + es puntualmente acotada pero cada +\begin_inset Formula $\Vert f_{n}\Vert=n$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $X$ +\end_inset + + es un espacio de Banach, +\begin_inset Formula $Y$ +\end_inset + + un espacio completo y +\begin_inset Formula $\{T_{n}\}_{n}\subseteq{\cal L}(X,Y)$ +\end_inset + + tal que para +\begin_inset Formula $x\in X$ +\end_inset + + existe +\begin_inset Formula $T(x)\coloneqq\lim_{n}T_{n}(x)$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate + +\series bold +Teorema de Banach-Steinhaus: +\series default + +\begin_inset Formula $T$ +\end_inset + + es lineal y continua con +\begin_inset Formula +\[ +\Vert T\Vert\leq\liminf_{n}\Vert T_{n}\Vert\leq\sup_{n}\Vert T_{n}\Vert<\infty. +\] + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Es lineal por serlo el límite. + +\begin_inset Formula $(T_{n}x)_{n}$ +\end_inset + + es acotada para +\begin_inset Formula $x\in X$ +\end_inset + + y, por el teorema de la acotación uniforme, +\begin_inset Formula $\sup_{n}\Vert T_{n}\Vert<\infty$ +\end_inset + +, y si +\begin_inset Formula $x\in B_{X}$ +\end_inset + +, +\begin_inset Formula $\Vert Tx\Vert=\lim_{n}\Vert T_{n}x\Vert\leq\liminf_{n}\Vert T_{n}\Vert\leq\sup_{n}\Vert T_{n}\Vert$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $(T_{n})_{n}$ +\end_inset + + converge uniformemente a +\begin_inset Formula $T$ +\end_inset + + en los subconjuntos compactos de +\begin_inset Formula $X$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + espacios normados: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A\subseteq X$ +\end_inset + + es acotado si y sólo si para +\begin_inset Formula $f\in X^{*}$ +\end_inset + +, +\begin_inset Formula $f(A)$ +\end_inset + + es acotado. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $X$ +\end_inset + + es de Banach, +\begin_inset Formula $A\subseteq X^{*}$ +\end_inset + + es acotado si y sólo si +\begin_inset Formula $\{f(x)\}_{f\in A}$ +\end_inset + + es acotado. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $T:X\to Y$ +\end_inset + + es lineal, +\begin_inset Formula $T$ +\end_inset + + es continua si y sólo si +\begin_inset Formula $\forall g\in Y^{*},g\circ T\in X^{*}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Funciones holomorfas vectoriales +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $\Omega\subseteq\mathbb{C}$ +\end_inset + + abierto y +\begin_inset Formula $(_{\mathbb{C}}X,\Vert\cdot\Vert)$ +\end_inset + + de Banach, +\begin_inset Formula $f:\Omega\to X$ +\end_inset + + es +\series bold +débilmente holomorfa +\series default + en +\begin_inset Formula $\Omega$ +\end_inset + + si para +\begin_inset Formula $g\in X^{*}$ +\end_inset + +, +\begin_inset Formula $g\circ f:\Omega\to\mathbb{C}$ +\end_inset + + es holomorfa, y es +\series bold +holomorfa +\series default + en +\begin_inset Formula $\Omega$ +\end_inset + + si +\begin_inset Formula +\[ +\forall a\in\Omega,\exists f'(a)\coloneqq\lim_{z\to a}\frac{f(z)-f(a)}{z-a}. +\] + +\end_inset + + +\series bold +Teorema de Dunford: +\series default + +\begin_inset Formula $f$ +\end_inset + + es holomorfa si y sólo si es débilmente holomorfa. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Liouville: +\series default + Si +\begin_inset Formula $(_{\mathbb{C}}X,\Vert\cdot\Vert)$ +\end_inset + + es de Banach y +\begin_inset Formula $f:\mathbb{C}\to X$ +\end_inset + + es holomorfa con +\begin_inset Formula $g\circ f$ +\end_inset + + acotada para cada +\begin_inset Formula $g\in X^{*}$ +\end_inset + +, entonces +\begin_inset Formula $f$ +\end_inset + + es constante. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{reminder}{FVC} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Toda curva +\begin_inset Formula $\gamma:[a,b]\to\mathbb{C}^{*}$ +\end_inset + + tiene argumentos continuos, y si +\begin_inset Formula $\theta$ +\end_inset + + y +\begin_inset Formula $\theta'$ +\end_inset + + son argumentos continuos de +\begin_inset Formula $\gamma$ +\end_inset + +, entonces +\begin_inset Formula $\theta(b)-\theta(a)=\theta'(b)-\theta'(a)$ +\end_inset + +. + [...] Sean +\begin_inset Formula $\gamma:[a,b]\to\mathbb{C}$ +\end_inset + + una curva, +\begin_inset Formula $z\notin\gamma^{*}$ +\end_inset + +[ +\begin_inset Formula $\coloneqq\text{Im}\gamma$ +\end_inset + +] y +\begin_inset Formula $\theta$ +\end_inset + + un argumento de +\begin_inset Formula $\gamma-z$ +\end_inset + +, llamamos [...] +\series bold +índice +\series default + de +\begin_inset Formula $\gamma$ +\end_inset + + respecto de +\begin_inset Formula $z$ +\end_inset + + a +\begin_inset Formula +\[ +\text{Ind}_{\gamma}(z):=\frac{\theta(b)-\theta(a)}{2\pi}. +\] + +\end_inset + +[...] Una +\series bold +cadena +\series default + es una expresión de la forma +\begin_inset Formula $\Gamma\coloneqq m_{1}\gamma_{1}+\dots+m_{q}\gamma_{q}$ +\end_inset + + donde los +\begin_inset Formula $m_{i}$ +\end_inset + + son enteros y los +\begin_inset Formula $\gamma_{i}$ +\end_inset + + son caminos. + Llamamos +\series bold +soporte +\series default + de +\begin_inset Formula $\Gamma$ +\end_inset + + a +\begin_inset Formula $\Gamma^{*}\coloneqq\bigcup_{k}\gamma_{k}^{*}$ +\end_inset + + [...]. + Un +\series bold +ciclo +\series default + es una cadena formada por caminos cerrados, y llamamos +\series bold +índice +\series default + de +\begin_inset Formula $z\notin\Gamma^{*}$ +\end_inset + + respecto al ciclo +\begin_inset Formula $\Gamma$ +\end_inset + + a +\begin_inset Formula $\text{Ind}_{\Gamma}(z)\coloneqq\sum_{k}m_{k}\text{Ind}_{\gamma_{k}}(z)$ +\end_inset + +. + [...] Dado un abierto +\begin_inset Formula $\Omega$ +\end_inset + +, un ciclo +\begin_inset Formula $\Gamma$ +\end_inset + + en +\begin_inset Formula $\Omega$ +\end_inset + + es +\series bold +nulhomólogo +\series default + respecto de +\begin_inset Formula $\Omega$ +\end_inset + + si +\begin_inset Formula $\forall z\in\mathbb{C}\setminus\Omega,\text{Ind}_{\Gamma}(z)=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{reminder} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, sean +\begin_inset Formula $\Omega\subseteq\mathbb{C}$ +\end_inset + + abierto, +\begin_inset Formula $_{\mathbb{C}}X$ +\end_inset + + de Banach y +\begin_inset Formula $f:\Omega\to X$ +\end_inset + + holomorfa: +\end_layout + +\begin_layout Enumerate + +\series bold +Teorema de Cauchy: +\series default + Sea +\begin_inset Formula $\Gamma$ +\end_inset + + un ciclo +\begin_inset Formula $\Omega$ +\end_inset + +-nulhomólogo, +\begin_inset Formula +\[ +\int_{\Gamma}f=0. +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +Fórmula de Cauchy: +\series default + Para +\begin_inset Formula $z\in\mathbb{C}\setminus\text{Im}\Gamma$ +\end_inset + +, +\begin_inset Formula +\[ +f(z)\text{Ind}_{\Gamma}(z)=\frac{1}{2\pi\text{i}}\int_{\Gamma}\frac{f(w)}{w-z}\dif w. +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $a\in\Omega$ +\end_inset + +, existe +\begin_inset Formula $ $ +\end_inset + + +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $a\in\Omega$ +\end_inset + +, si +\begin_inset Formula $\Gamma:[0,2\pi]\to\mathbb{C}$ +\end_inset + + viene dado por +\begin_inset Formula $\Gamma(\theta)=a+\rho\text{e}^{\text{i}\theta}$ +\end_inset + + y, para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula +\[ +a_{n}\coloneqq\frac{f^{(n)}(a)}{n!}=\frac{1}{2\pi\text{i}}\int_{\Gamma}\frac{f(w)}{(w-a)^{n+1}}\dif w\in X, +\] + +\end_inset + +existe +\begin_inset Formula $\rho>0$ +\end_inset + + con +\begin_inset Formula $\overline{B(a,\rho)}\subseteq\Omega$ +\end_inset + + tal que +\begin_inset Formula $f(z)=\sum_{n}a_{n}(z-a)^{n}$ +\end_inset + +, y la serie converge uniforme y absolutamente en compactos de +\begin_inset Formula $B(a,\rho)$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Métodos de sumabilidad +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $A\in\mathbb{K}^{\mathbb{N}\times\mathbb{N}}$ +\end_inset + +, la sucesión +\begin_inset Formula $(x_{m})_{m}$ +\end_inset + + en +\begin_inset Formula $\mathbb{K}$ +\end_inset + + es +\series bold + +\begin_inset Formula $A$ +\end_inset + +-convergente +\series default + a +\begin_inset Formula $z\in\mathbb{K}$ +\end_inset + + si para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $\sum_{m}A_{nm}x_{m}$ +\end_inset + + converge a un cierto +\begin_inset Formula $y_{n}$ +\end_inset + + e +\begin_inset Formula $(y_{n})_{n}$ +\end_inset + + converge a +\begin_inset Formula $z$ +\end_inset + +, y +\begin_inset Formula $A$ +\end_inset + + es un +\series bold +método de sumabilidad permanente +\series default + si para +\begin_inset Formula $\{x_{m}\}_{m}\subseteq\mathbb{K}$ +\end_inset + + convergente, +\begin_inset Formula $(\sum_{m}A_{nm}x_{m})_{n}$ +\end_inset + + es convergente y +\begin_inset Formula $\lim_{n}y_{n}=\lim_{m}x_{m}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +La +\series bold +sucesión de medias de Césaro +\series default + de una sucesión +\begin_inset Formula $(x_{n})_{n}$ +\end_inset + + es +\begin_inset Formula +\[ +\left(\frac{x_{1}+\dots+x_{n}}{n}\right)_{n}, +\] + +\end_inset + +y +\begin_inset Formula $(x_{n})_{n}$ +\end_inset + + es +\series bold +convergente Césaro +\series default + si su sucesión de medias de Césaro converge. + Toda sucesión convergente es convergente Césaro, pero el recíproco no se + cumple. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Así, la +\series bold +matriz de Césaro +\series default +, +\begin_inset Formula +\[ +\left(\frac{1}{i}\chi_{\{j\leq i\}}\right)_{i,j\geq1}=\begin{pmatrix}1\\ +\frac{1}{2} & \frac{1}{2}\\ +\frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ +\vdots & \vdots & \vdots & \ddots +\end{pmatrix}\in\mathbb{K}^{\mathbb{N}\times\mathbb{N}}, +\] + +\end_inset + +es un método de sumabilidad permanente. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Toeplitsz: +\series default + +\begin_inset Formula $A\in\mathbb{K}^{\mathbb{N}\times\mathbb{N}}$ +\end_inset + + es un método de sumabilidad permanente si y sólo si +\begin_inset Formula $\sup_{n}\sum_{m}|A_{nm}|<\infty$ +\end_inset + +, +\begin_inset Formula $\forall m\in\mathbb{N},\lim_{n}A_{nm}=0$ +\end_inset + + y +\begin_inset Formula $\lim_{n}\sum_{m}A_{nm}=1$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Convergencia puntual de series de Fourier de funciones continuas +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $X\coloneqq\{f\in{\cal C}([-\pi,\pi])\mid f(\pi)=f(-\pi)\}$ +\end_inset + +; para +\begin_inset Formula $k\in\mathbb{Z}$ +\end_inset + + y +\begin_inset Formula $f\in L^{2}([-\pi,\pi])$ +\end_inset + +, +\begin_inset Formula +\[ +\hat{f}(k)\coloneqq\sum_{k=-n}^{n}\frac{1}{2\pi}\int_{-\pi}^{\pi}f(t)\text{e}^{-\text{i}kt}\dif t +\] + +\end_inset + +el +\begin_inset Formula $k$ +\end_inset + +-ésimo coeficiente de Fourier de +\begin_inset Formula $f$ +\end_inset + + y, para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $s_{n}:L^{2}([-\pi,\pi])\to\mathbb{R}$ +\end_inset + + dada por +\begin_inset Formula +\[ +s_{n}(f)(x)\coloneqq\sum_{k=-n}^{n}\hat{f}(k)\text{e}^{\text{i}kx}, +\] + +\end_inset + +entonces: +\end_layout + +\begin_layout Enumerate +Como +\series bold +teorema +\series default +, existe +\begin_inset Formula $F$ +\end_inset + + +\begin_inset Formula $G_{\delta}$ +\end_inset + + denso en +\begin_inset Formula $X$ +\end_inset + + tal que para +\begin_inset Formula $f\in F$ +\end_inset + +, +\begin_inset Formula $\{x\in[-\pi,\pi]\mid\sup_{n}|s_{n}(f)(x)|\}$ +\end_inset + + es +\begin_inset Formula $G_{\delta}$ +\end_inset + + no numerable y denso en +\begin_inset Formula $[-\pi,\pi]$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $f\in X$ +\end_inset + + de clase +\begin_inset Formula ${\cal C}^{1}$ +\end_inset + + y +\begin_inset Formula $x\in[-\pi,\pi]$ +\end_inset + +, +\begin_inset Formula $\lim_{n}s_{n}(f)(x)=f(x)$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Para todo +\begin_inset Formula $f\in L^{2}([-\pi,\pi])$ +\end_inset + + y casi todo +\begin_inset Formula $x\in[-\pi,\pi]$ +\end_inset + +, +\begin_inset Formula $\lim_{n}s_{n}(f)(x)=f(x)$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Teorema de la aplicación abierta +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $X$ +\end_inset + + es un espacio normado, +\begin_inset Formula $A\subseteq X$ +\end_inset + + es +\series bold +CS-compacto +\series default + si para +\begin_inset Formula $\{x_{n}\}_{n}\subseteq A$ +\end_inset + + y +\begin_inset Formula $\{\lambda_{n}\}_{n}\subseteq[0,1]$ +\end_inset + + con +\begin_inset Formula $\sum_{n}\lambda_{n}=1$ +\end_inset + +, +\begin_inset Formula $\sum_{n}\lambda_{n}x_{n}$ +\end_inset + + converge a un punto de +\begin_inset Formula $A$ +\end_inset + +, y es +\series bold +CS-cerrado +\series default + si para +\begin_inset Formula $\{x_{n}\}_{n}\subseteq A$ +\end_inset + + y +\begin_inset Formula $\{\lambda_{n}\}_{n}\subseteq[0,1]$ +\end_inset + + con +\begin_inset Formula $\sum_{n}\lambda_{n}=1$ +\end_inset + +, si +\begin_inset Formula $\sum_{n}\lambda_{n}x_{n}$ +\end_inset + + converge, lo hace un punto de +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $X$ +\end_inset + + es un espacio normado: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $X$ +\end_inset + + es de Banach, +\begin_inset Formula $B_{X}$ +\end_inset + + es CS-compacta. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Todo cerrado convexo es CS-cerrado. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Todo CS-compacto es CS-cerrado y acotado, y el recíproco se cumple si +\begin_inset Formula $X$ +\end_inset + + es de Banach. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A\subseteq X$ +\end_inset + + es CS-cerrado, +\begin_inset Formula $\mathring{A}=\mathring{\overline{A}}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + espacios normados y +\begin_inset Formula $T\in{\cal L}(X,Y)$ +\end_inset + +, si +\begin_inset Formula $A\subseteq X$ +\end_inset + + es CS-compacto, +\begin_inset Formula $T(A)$ +\end_inset + + también. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de la aplicación abierta: +\series default + Sean +\begin_inset Formula $X$ +\end_inset + + un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio de Banach, +\begin_inset Formula $Y$ +\end_inset + + un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio normado y +\begin_inset Formula $T\in{\cal L}(X,Y)$ +\end_inset + +, si +\begin_inset Formula $\text{Im}T$ +\end_inset + + es de segunda categoría en +\begin_inset Formula $Y$ +\end_inset + +, +\begin_inset Formula $T$ +\end_inset + + es suprayectiva y abierta e +\begin_inset Formula $Y$ +\end_inset + + es un espacio de Banach. + +\series bold +Demostración: +\series default + Como +\begin_inset Formula $B_{X}$ +\end_inset + + es CS-compacto, +\begin_inset Formula $T(B_{X})$ +\end_inset + + también y por tanto es CS-cerrado, y si fuera raro, como el producto por + un +\begin_inset Formula $n>0$ +\end_inset + + es un homeomorfismo, +\begin_inset Formula $nT(B_{X})$ +\end_inset + + sería raro y +\begin_inset Formula $T(X)=T(\bigcup_{n\in\mathbb{N}^{*}}nB_{X})=\bigcup_{n\in\mathbb{N}^{*}}nT(B_{X})$ +\end_inset + + sería de primera categoría +\begin_inset Formula $\#$ +\end_inset + +, por lo que +\begin_inset Formula $\mathring{\overbrace{T(B_{X})}}=\mathring{\overline{T(B_{X})}}\neq\emptyset$ +\end_inset + + y existen +\begin_inset Formula $y_{0}\in Y$ +\end_inset + + y +\begin_inset Formula $r>0$ +\end_inset + + con +\begin_inset Formula $B(y_{0},r)\subseteq T(B_{X})$ +\end_inset + +, pero una bola cerrada en el origen es simétrica y +\begin_inset Formula $T$ +\end_inset + + conserva simetrías, luego +\begin_inset Formula $B(-y_{0},r)\subseteq T(B_{X})$ +\end_inset + + y +\begin_inset Formula $B(0,r)\subseteq\frac{1}{2}B_{Y}(-y_{0},r)+\frac{1}{2}B_{Y}(y_{0},r)\subseteq\frac{1}{2}T(B_{X})+\frac{1}{2}T(B_{X})\subseteq T(B_{X})$ +\end_inset + +. + Así, si +\begin_inset Formula $A\subseteq X$ +\end_inset + + es abierto, para +\begin_inset Formula $x\in X$ +\end_inset + + existe +\begin_inset Formula $\delta>0$ +\end_inset + + con +\begin_inset Formula $\overline{B(x,\delta)}=x+\delta B_{X}\subseteq A$ +\end_inset + + y +\begin_inset Formula $B(Tx,\delta r)=Tx+\delta B(0,r)\subseteq Tx+\delta T(B_{X})=T(x+\delta B_{X})\subseteq T(A)$ +\end_inset + +, por lo que +\begin_inset Formula $T$ +\end_inset + + es abierta, y para +\begin_inset Formula $y\in Y$ +\end_inset + +, +\begin_inset Formula $y\in B(0,2\Vert y\Vert)=\frac{2\Vert y\Vert}{r}B(0,r)\subseteq T(\frac{2}{r}\Vert y\Vert B_{X})\subseteq T(X)$ +\end_inset + + y +\begin_inset Formula $T$ +\end_inset + + es suprayectiva. + Finalmente, sea +\begin_inset Formula $\{y_{n}\}_{n}\subseteq Y$ +\end_inset + + con +\begin_inset Formula $\sum_{n}\Vert y_{n}\Vert<\infty$ +\end_inset + +, existe +\begin_inset Formula $\{x_{n}\}_{n}\subseteq X$ +\end_inset + + con cada +\begin_inset Formula $Tx_{n}=y_{n}$ +\end_inset + + y +\begin_inset Formula $\Vert x_{n}\Vert\leq\frac{2}{r}\Vert y_{n}\Vert$ +\end_inset + +, con lo que +\begin_inset Formula $\sum_{n}\Vert x_{n}\Vert<\infty$ +\end_inset + + y, por ser +\begin_inset Formula $X$ +\end_inset + + completo, existe +\begin_inset Formula $x'\coloneqq\sum_{n}x_{n}$ +\end_inset + +, y por la continuidad de +\begin_inset Formula $T$ +\end_inset + +, +\begin_inset Formula $Tx'=\sum_{n}y_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Entonces, si +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + son de Banach, +\begin_inset Formula $T\in{\cal L}(X,Y)$ +\end_inset + + es suprayectiva si y sólo si es abierta. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Para esto último hace falta que +\begin_inset Formula $Y$ +\end_inset + + sea completo; la identidad +\begin_inset Formula $I\in{\cal L}({\cal C}^{1}([0,1]),|\cdot|),({\cal C}^{1}([0,1]),\Vert\cdot\Vert_{\infty}))$ +\end_inset + + con +\begin_inset Formula $|x|\coloneqq\Vert x\Vert_{\infty}+\Vert x'\Vert_{\infty}$ +\end_inset + +, el dominio es completo e +\begin_inset Formula $I$ +\end_inset + + es suprayectiva pero no abierta. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +También hace falta que +\begin_inset Formula $X$ +\end_inset + + sea completo; si +\begin_inset Formula $(e_{i})_{i\in I}$ +\end_inset + + es una base algebraica no numerable de +\begin_inset Formula $\ell^{p}$ +\end_inset + + y +\begin_inset Formula $X$ +\end_inset + + es +\begin_inset Formula $\ell^{p}$ +\end_inset + + con la norma +\begin_inset Formula $\left|\sum_{i}a_{i}e_{i}\right|\coloneqq\sum_{i}|a_{i}|$ +\end_inset + +, donde la suma es finita, la identidad +\begin_inset Formula $I\in{\cal L}(X,\ell^{p})$ +\end_inset + + es suprayectiva pero no abierta. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema del homomorfismo de Banach: +\series default + Sean +\begin_inset Formula $X$ +\end_inset + + un espacio de Banach e +\begin_inset Formula $Y$ +\end_inset + + un espacio normado, +\begin_inset Formula $T\in{\cal L}(X,Y)$ +\end_inset + + es un +\series bold +homomorfismo topológico +\series default + si la restricción a la imagen +\begin_inset Formula $T:X\to\text{Im}T$ +\end_inset + + es abierta, si y sólo si +\begin_inset Formula $\text{Im}T$ +\end_inset + + es completo. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{reminder}{TS} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula ${\cal T}$ +\end_inset + + y +\begin_inset Formula ${\cal T}'$ +\end_inset + + son +\series bold +comparables +\series default + si +\begin_inset Formula ${\cal T}\subseteq{\cal T}'$ +\end_inset + + o +\begin_inset Formula ${\cal T}'\subseteq{\cal T}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{reminder} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + son espacios de Banach y +\begin_inset Formula $T:X\to Y$ +\end_inset + + es un isomorfismo algebraico continuo o abierto, +\begin_inset Formula $T$ +\end_inset + + es un isomorfismo topológico. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Dos normas completas en +\begin_inset Formula $X$ +\end_inset + + que definen topologías comparables son equivalentes. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si un espacio de Banach +\begin_inset Formula $X$ +\end_inset + + es suma directa interna +\begin_inset Formula $M\oplus N$ +\end_inset + + con +\begin_inset Formula $M$ +\end_inset + + y +\begin_inset Formula $N$ +\end_inset + + cerrados, entonces +\begin_inset Formula $X$ +\end_inset + + es suma directa topológica de +\begin_inset Formula $M$ +\end_inset + + y +\begin_inset Formula $N$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Técnica de perturbaciones +\end_layout + +\begin_layout Standard +El problema de Cauchy +\begin_inset Formula +\[ +\left\{ \begin{array}{rl} +a_{n}(t)x^{(n)}(t)+\dots+a_{1}(t)\dot{x}(t)+a_{0}x(t) & =y(t),\\ +x(a),\dot{x}(a),\dots,x^{(n-1)}(a) & =0 +\end{array}\right. +\] + +\end_inset + +con +\begin_inset Formula $a_{i},y\in{\cal C}([a,b])$ +\end_inset + + tiene solución única +\begin_inset Formula $x\in{\cal C}^{(n)}([a,b])$ +\end_inset + + y sus soluciones dependen continuamente del término independiente. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Teorema de la gráfica cerrada +\end_layout + +\begin_layout Standard +Una función +\begin_inset Formula $f:X\to Y$ +\end_inset + + entre espacios topológicos Hausdorff tiene +\series bold +gráfica cerrada +\series default + si +\begin_inset Formula $\text{Graf}f\coloneqq\{(x,f(x))\}_{x\in X}$ +\end_inset + + es cerrado en +\begin_inset Formula $X\times Y$ +\end_inset + +. + Si +\begin_inset Formula $f$ +\end_inset + + es continua, tiene gráfica cerrada. + El recíproco no es cierto; si +\begin_inset Formula $X$ +\end_inset + + tiene dos topologías Hausdorff +\begin_inset Formula ${\cal T}\prec{\cal S}$ +\end_inset + +, +\begin_inset Formula $1_{X}:(X,{\cal T})\to(X,{\cal S})$ +\end_inset + + no es continua pero tiene gráfica cerrada. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de la gráfica cerrada: +\series default + Sean +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + espacios de Banach, +\begin_inset Formula $T:X\to Y$ +\end_inset + + lineal es continua si y sólo si tiene gráfica cerrada. + +\series bold +Demostración: +\series default + Como +\begin_inset Formula $x\mapsto(x,Tx)$ +\end_inset + + es lineal, +\begin_inset Formula $\text{Graf}T$ +\end_inset + + es un espacio vectorial, las proyecciones canónicas +\begin_inset Formula $P_{1}:\text{Graf}T\to X$ +\end_inset + + y +\begin_inset Formula $P_{2}:\text{Graf}T\to Y$ +\end_inset + + son lineales y continuas en +\begin_inset Formula $X\times Y$ +\end_inset + + con la topología producto generada por +\begin_inset Formula $\Vert\cdot\Vert_{1}$ +\end_inset + +, y como +\begin_inset Formula $P_{1}$ +\end_inset + + es biyectiva y por tanto un isomorfismo algebraico, si +\begin_inset Formula $\text{Graf}T$ +\end_inset + + es cerrada, es completa al serlo +\begin_inset Formula $X\times Y$ +\end_inset + + y +\begin_inset Formula $P_{1}$ +\end_inset + + es un isomorfismo topológico, con lo que +\begin_inset Formula $T=P_{2}\circ P_{1}^{-1}$ +\end_inset + + es continua. +\end_layout + +\begin_layout Standard +Aquí hace falta que +\begin_inset Formula $X$ +\end_inset + + sea completo; la derivada +\begin_inset Formula $T:({\cal C}^{1}([0,1]),\Vert\cdot\Vert_{\infty})\to({\cal C}([0,1]),\Vert\cdot\Vert_{\infty})$ +\end_inset + + es lineal con gráfica cerrada pero no continua. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +También hace falta que +\begin_inset Formula $Y$ +\end_inset + + sea completo; si +\begin_inset Formula $(e_{i})_{i\in I}$ +\end_inset + + es una base algebraica no numerable de +\begin_inset Formula $\ell^{p}$ +\end_inset + + con cada +\begin_inset Formula $\Vert e_{i}\Vert=1$ +\end_inset + + y +\begin_inset Formula $X$ +\end_inset + + es +\begin_inset Formula $\ell^{p}$ +\end_inset + + con la norma +\begin_inset Formula $\left|\sum_{i}a_{i}e_{i}\right|\coloneqq\sum_{i}|a_{i}|$ +\end_inset + + siendo la suma finita, la identidad +\begin_inset Formula $\ell^{p}\to X$ +\end_inset + + tiene gráfica cerrada pero no es continua. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Separación de puntos +\end_layout + +\begin_layout Standard +Un conjunto de funciones +\begin_inset Formula $F\subseteq B^{A}$ +\end_inset + + +\series bold +separa +\series default + los puntos de +\begin_inset Formula $A$ +\end_inset + + si +\begin_inset Formula $\forall x,y\in A,(x\neq y\implies\exists f\in F:f(x)\neq f(y))$ +\end_inset + +. + Si +\begin_inset Formula $X$ +\end_inset + + es de Banach con las normas +\begin_inset Formula $\Vert\cdot\Vert$ +\end_inset + + y +\begin_inset Formula $\Vert\cdot\Vert'$ +\end_inset + + y +\begin_inset Formula $F\subseteq(X,\Vert\cdot\Vert)^{*}\cap(X,\Vert\cdot\Vert')^{*}$ +\end_inset + + separa los puntos de +\begin_inset Formula $X$ +\end_inset + +, entonces +\begin_inset Formula $\Vert\cdot\Vert$ +\end_inset + + y +\begin_inset Formula $\Vert\cdot\Vert'$ +\end_inset + + son equivalentes, y en particular +\begin_inset Formula $(X,\Vert\cdot\Vert)^{*}=(X,\Vert\cdot\Vert')^{*}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dos normas completas en el mismo espacio vectorial producen el mismo dual + topológico si y sólo si son equivalentes. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Subsection +Bases de Schauder +\end_layout + +\begin_layout Standard +Una +\series bold +base de Schauder +\series default + en un espacio normado +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + es una sucesión +\begin_inset Formula $\{x_{n}\}_{n}\subseteq S_{X}$ +\end_inset + + tal que +\begin_inset Formula $\forall x\in X,\exists!\{\lambda_{n}\}_{n}\subseteq\mathbb{K}:x=\sum_{n}\lambda_{n}x_{n}$ +\end_inset + +. + La sucesión +\begin_inset Formula $(e_{n})_{n}$ +\end_inset + + de vectores que valen 1 en la coordenada +\begin_inset Formula $n$ +\end_inset + +-ésima y 0 en el resto es base de Schauder de +\begin_inset Formula $c_{0}$ +\end_inset + + y +\begin_inset Formula $\ell^{p}$ +\end_inset + + para +\begin_inset Formula $p\in[1,\infty)$ +\end_inset + +, y +\begin_inset Formula $({\cal C}([0,1]),\Vert\cdot\Vert_{\infty})$ +\end_inset + + y +\begin_inset Formula $(L^{p}([0,1]),\Vert\cdot\Vert_{p})$ +\end_inset + + también admiten bases de Schauder. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Todo espacio normado con base de Schauder es separable, pero el recíproco + no se cumple. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de las bases de Schauder de Banach: +\series default + Si +\begin_inset Formula $X$ +\end_inset + + es un espacio de Banach con base de Schauder +\begin_inset Formula $(x_{n})_{n}$ +\end_inset + +, las +\series bold +funciones coordenada +\series default + +\begin_inset Formula $f_{n}:X\to\mathbb{K}$ +\end_inset + + dadas por +\begin_inset Formula $f_{n}(\sum_{n}\lambda_{n}x_{n})\coloneqq\lambda_{n}$ +\end_inset + + son continuas, y de hecho existe +\begin_inset Formula $M>0$ +\end_inset + + con +\begin_inset Formula $\Vert f_{n}\Vert\leq M$ +\end_inset + + para cada +\begin_inset Formula $n$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Pares duales +\end_layout + +\begin_layout Standard +Un +\series bold +par dual +\series default + es un par +\begin_inset Formula $\langle F,G\rangle$ +\end_inset + + de +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacios vectoriales con una función bilineal +\begin_inset Formula $\langle\cdot,\cdot\rangle:F\times G\to\mathbb{K}$ +\end_inset + + tal que +\begin_inset Formula $\forall y\in G,(\langle\cdot,y\rangle=0\implies y=0)$ +\end_inset + + y +\begin_inset Formula $\forall x\in G,(\langle x,\cdot\rangle=0\implies x=0)$ +\end_inset + +. + Llamamos +\series bold +topología débil de +\begin_inset Formula $F$ +\end_inset + + inducida por +\begin_inset Formula $G$ +\end_inset + + +\series default +, +\begin_inset Formula $\sigma(F,G)$ +\end_inset + +, a la topología más gruesa en +\begin_inset Formula $F$ +\end_inset + + para la que las +\begin_inset Formula $\{\langle\cdot,y\rangle\}_{y\in G}$ +\end_inset + + son continuas, generada por la familia de seminormas +\begin_inset Formula $\{|\langle\cdot,y\rangle|\}_{y\in G}$ +\end_inset + +, y +\series bold +topología débil de +\begin_inset Formula $G$ +\end_inset + + inducida por +\begin_inset Formula $F$ +\end_inset + + +\series default +, +\begin_inset Formula $\sigma(G,F)$ +\end_inset + +, a la topología más gruesa en +\begin_inset Formula $F$ +\end_inset + + para la que las +\begin_inset Formula $\{\langle x,\cdot\rangle\}_{x\in F}$ +\end_inset + + son continuas, generada por la familia de seminormas +\begin_inset Formula $\{|\langle f,\cdot\rangle|\}_{x\in F}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $E$ +\end_inset + + es un espacio vectorial y +\begin_inset Formula $E^{*}$ +\end_inset + + su dual algebraico, +\begin_inset Formula $\langle E,E^{*}\rangle$ +\end_inset + + es un par dual con la +\series bold +aplicación bilineal natural +\series default + +\begin_inset Formula $\langle x,f\rangle\coloneqq f(x)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $E$ +\end_inset + + es un e.l.c., +\begin_inset Formula $\langle E,E'\rangle$ +\end_inset + + es un par dual con la aplicación bilineal natural, el +\series bold +par dual canónico +\series default +, y llamamos +\series bold +topología débil de +\begin_inset Formula $E$ +\end_inset + + +\series default + a +\begin_inset Formula $\sigma(E,E')$ +\end_inset + + y +\series bold +topología débil* de +\begin_inset Formula $E'$ +\end_inset + + +\series default + a +\begin_inset Formula $\sigma(E',E)$ +\end_inset + +, que es Hausdorff e inducida por +\begin_inset Formula ${\cal T}_{\text{p}}(E)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $I$ +\end_inset + + es un conjunto, +\begin_inset Formula $\langle\mathbb{K}^{I},\mathbb{K}^{(I)}\rangle$ +\end_inset + + es un par dual con +\begin_inset Formula $\langle(\lambda_{i})_{i\in I},(\xi_{i})_{i\in I}\rangle=\sum_{i\in I}\lambda_{i}\xi_{i}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $K$ +\end_inset + + es compacto, +\begin_inset Formula $E\coloneqq(C(K),\Vert\cdot\Vert_{\infty})$ +\end_inset + + y +\begin_inset Formula $F\coloneqq\text{span}\{f\mapsto f(x)\}_{x\in K}\leq(C(K),\Vert\cdot\Vert_{\infty})^{*}$ +\end_inset + +, +\begin_inset Formula $\langle E,F\rangle$ +\end_inset + + es un par dual con la aplicación bilineal natural, y +\begin_inset Formula $\sigma(E,F)={\cal T}_{\text{p}}(K)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\langle F,G\rangle$ +\end_inset + + es un par dual, una forma lineal +\begin_inset Formula $f:F\to\mathbb{K}$ +\end_inset + + es +\begin_inset Formula $\sigma(F,G)$ +\end_inset + +-continua si y sólo si existe +\begin_inset Formula $y\in G$ +\end_inset + +, necesariamente único, con +\begin_inset Formula $f=\langle\cdot,y\rangle$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $E$ +\end_inset + + es un e.l.c., +\begin_inset Formula $(E,\sigma(E,E'))'=E'$ +\end_inset + + e, identificando +\begin_inset Formula $x\in E$ +\end_inset + + con +\begin_inset Formula $\hat{x}\in E''$ +\end_inset + + dada por +\begin_inset Formula $\hat{x}(f)\coloneqq f(x)$ +\end_inset + +, +\begin_inset Formula $(E',\sigma(E',E))'=E$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\langle F,G\rangle$ +\end_inset + + es un par dual con función bilineal +\begin_inset Formula $\langle\cdot,\cdot\rangle$ +\end_inset + + y +\begin_inset Formula $H\leq G$ +\end_inset + +, +\begin_inset Formula $\langle\cdot,\cdot\rangle$ +\end_inset + + induce un par dual en +\begin_inset Formula $\langle F,H\rangle$ +\end_inset + + si y sólo si +\begin_inset Formula $G=\overline{H}$ +\end_inset + + en +\begin_inset Formula $\sigma(G,F)$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $E$ +\end_inset + + es un e.l.c., +\begin_inset Formula $E'$ +\end_inset + + es +\begin_inset Formula $\sigma(E^{*},E)$ +\end_inset + +-denso en el dual algebraico +\begin_inset Formula $E^{*}$ +\end_inset + +, con lo que las formas lineales se aproximan por formas lineales continuas. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dado un par dual +\begin_inset Formula $\langle F,G\rangle$ +\end_inset + +, llamamos +\series bold +polar +\series default + ( +\series bold +absoluta +\series default +) de +\begin_inset Formula $A\subseteq F$ +\end_inset + + a +\begin_inset Formula $A^{\circ}\coloneqq\{y\in G\mid\sup_{x\in A}|\langle x,y\rangle|\leq1\}$ +\end_inset + + y +\series bold +bipolar +\series default + de +\begin_inset Formula $A$ +\end_inset + + a +\begin_inset Formula $A^{\circ\circ}\subseteq F$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + es un espacio normado, +\begin_inset Formula $B_{X}^{\circ}=B_{X^{*}}$ +\end_inset + + y +\begin_inset Formula $B_{X}^{\circ\circ}=B_{X}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\langle F,G\rangle$ +\end_inset + + es un par dual y +\begin_inset Formula $M\leq F$ +\end_inset + +, +\begin_inset Formula $M^{\circ}=\{y\in G\mid\langle M,y\rangle=0\}\eqqcolon M^{\bot}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $\langle F,G\rangle$ +\end_inset + + un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-par dual, +\begin_inset Formula $A,B,A_{i}\subseteq F$ +\end_inset + + para +\begin_inset Formula $i\in I$ +\end_inset + + y +\begin_inset Formula $\alpha\in\mathbb{K}^{*}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A^{\circ}$ +\end_inset + + es absolutamente convexo y cerrado en +\begin_inset Formula $\sigma(G,F)$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $B\subseteq A\implies A^{\circ}\subseteq B^{\circ}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(\alpha A)^{\circ}=\alpha^{-1}A^{\circ}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A\subseteq A^{\circ\circ}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A^{\circ}\subseteq A^{\circ\circ\circ}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(\bigcup_{i\in I}A_{i})^{\circ}=\bigcap_{i\in I}A_{i}^{\circ}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema del bipolar: +\series default + Si +\begin_inset Formula $\langle F,G\rangle$ +\end_inset + + es un par dual y +\begin_inset Formula $A\subseteq F$ +\end_inset + +, +\begin_inset Formula $A^{\circ\circ}=\overline{\Gamma(A)}$ +\end_inset + + en +\begin_inset Formula $\sigma(F,G)$ +\end_inset + + (la envoltura absolutamente convexa cerrada). +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $E$ +\end_inset + + es un e.l.c., +\begin_inset Formula $M\subseteq E'$ +\end_inset + + es +\series bold +equicontinuo +\series default + si +\begin_inset Formula $\forall\varepsilon>0,\exists U\in{\cal E}(0_{E}):\forall f\in M,\forall x\in U,|f(x)|<\varepsilon$ +\end_inset + +, y una +\series bold +familia fundamental de equicontinuos +\series default + es un +\begin_inset Formula ${\cal E}\subseteq{\cal P}(E')$ +\end_inset + + con los elementos equicontinuos tal que para +\begin_inset Formula $M\subseteq E'$ +\end_inset + + equicontinuo existe +\begin_inset Formula $N\in{\cal E}$ +\end_inset + + que contiene a +\begin_inset Formula $M$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $(E,{\cal T})$ +\end_inset + + es un e.l.c.: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $U\in{\cal E}(0)$ +\end_inset + +, +\begin_inset Formula $U^{\circ}\subseteq E'$ +\end_inset + + es equicontinuo, y si +\begin_inset Formula $M\subseteq E'$ +\end_inset + + es equicontinuo, +\begin_inset Formula $M^{\circ}\in{\cal E}(0)$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula ${\cal U}$ +\end_inset + + es base de entornos de 0 en +\begin_inset Formula $E$ +\end_inset + +, +\begin_inset Formula $\{U^{\circ}\}_{U\in{\cal U}}$ +\end_inset + + es una familia fundamental de equicontinuos. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula ${\cal E}$ +\end_inset + + es una familia fundamental de equicontinuos, +\begin_inset Formula $\{M^{\circ}\}_{M\in{\cal E}}$ +\end_inset + + es una base de entornos de 0. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula ${\cal T}$ +\end_inset + + es la topología de convergencia uniforme sobre los equicontinuos de +\begin_inset Formula $E'$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $\langle F,G\rangle$ +\end_inset + + un par dual y +\begin_inset Formula ${\cal S}\subseteq{\cal P}(G)$ +\end_inset + + una familia de subconjuntos +\begin_inset Formula $\sigma(F,G)$ +\end_inset + +-cerrados absolutamente convexos, en +\begin_inset Formula $\sigma(F,G)$ +\end_inset + +, +\begin_inset Formula +\[ +\left(\bigcap{\cal S}\right)^{\circ}=\overline{\Gamma\left(\bigcup_{S\in{\cal S}}S^{\circ}\right)}. +\] + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Alaoglu-Bourbaki: +\series default + Si +\begin_inset Formula $E$ +\end_inset + + es un e.l.c., todo equicontinuo +\begin_inset Formula $H$ +\end_inset + + de +\begin_inset Formula $E'$ +\end_inset + + es relativamente compacto en +\begin_inset Formula $\sigma(E',E)$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Así, si +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + es un espacio normado, +\begin_inset Formula $B_{X^{*}}$ +\end_inset + + es compacta en +\begin_inset Formula $\sigma(X^{*},X)$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Lema de aproximación: +\series default + Sean +\begin_inset Formula $E$ +\end_inset + + es un e.l.c., +\begin_inset Formula $S\subseteq E$ +\end_inset + + cerrado y absolutamente convexo y +\begin_inset Formula $f:E\to\mathbb{K}$ +\end_inset + + lineal, +\begin_inset Formula $f|_{S}$ +\end_inset + + es continua si y sólo si +\begin_inset Formula $\forall\varepsilon>0,\exists g\in E':\sup_{x\in S}|g(x)-f(x)|<\varepsilon$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de completitud de Grothendieck: +\series default + Sean +\begin_inset Formula $E$ +\end_inset + + un e.l.c. + y +\begin_inset Formula ${\cal E}$ +\end_inset + + el conjunto de los equicontinuos de +\begin_inset Formula $E'$ +\end_inset + +, +\begin_inset Formula $\hat{E}\coloneqq\{x\in(E')^{*}\mid\forall M\in{\cal E},x|_{M}\text{ continuo en }\sigma(E',E)\}$ +\end_inset + + con la topología de convergencia uniforme sobre +\begin_inset Formula ${\cal E}$ +\end_inset + + es un modelo para la compleción de +\begin_inset Formula $E$ +\end_inset + +, es decir, +\begin_inset Formula $E$ +\end_inset + + es denso en +\begin_inset Formula $\hat{E}$ +\end_inset + + y +\begin_inset Formula $\hat{E}$ +\end_inset + + es completo. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Así: +\end_layout + +\begin_layout Enumerate +Un e.l.c. + +\begin_inset Formula $E$ +\end_inset + + es completo si y sólo si toda +\begin_inset Formula $y:E'\to\mathbb{K}$ +\end_inset + + lineal +\begin_inset Formula $\sigma(E',E)$ +\end_inset + +-continua sobre los equicontinuos de +\begin_inset Formula $E'$ +\end_inset + + es +\begin_inset Formula $\sigma(E',E)$ +\end_inset + +-continua en +\begin_inset Formula $E'$ +\end_inset + +, si y sólo si está en +\begin_inset Formula $E$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Un +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + normado es de Banach si y sólo si toda +\begin_inset Formula $x:X^{*}\to\mathbb{K}$ +\end_inset + + lineal +\begin_inset Formula $\sigma(X^{*},X)$ +\end_inset + +-continua en +\begin_inset Formula $B_{X^{*}}$ +\end_inset + + es +\begin_inset Formula $\sigma(X^{*},X)$ +\end_inset + +-continua en +\begin_inset Formula $X^{*}$ +\end_inset + +, si y sólo si está en +\begin_inset Formula $E$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + es normado, +\begin_inset Formula $K\coloneqq(B_{X^{*}},\sigma(X^{*},X))$ +\end_inset + + e +\begin_inset Formula $\iota:X\hookrightarrow C(K)$ +\end_inset + + es la identificación estándar en el bidual: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\iota:(X,\Vert\cdot\Vert)\hookrightarrow(C(K),\Vert\cdot\Vert_{\infty})$ +\end_inset + + e +\begin_inset Formula $\iota:(X,\Vert\cdot\Vert)\hookrightarrow(C(K),{\cal T}_{\text{p}}(K))$ +\end_inset + + son isomorfismos isométricos sobre su imagen. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $X$ +\end_inset + + es de Banach, +\begin_inset Formula $(X,\sigma(X,X^{*}))$ +\end_inset + + se identifica con un subespacio cerrado de +\begin_inset Formula $(C(K),{\cal T}_{\text{p}}(K))$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Espacios reflexivos +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + es un espacio normado y +\begin_inset Formula ${\cal T}$ +\end_inset + + la topología asociada a +\begin_inset Formula $\Vert\cdot\Vert$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\sigma(X,X^{*})$ +\end_inset + + es más gruesa que +\begin_inset Formula ${\cal T}$ +\end_inset + + y +\begin_inset Formula $\sigma(X^{*},X)$ +\end_inset + + es más gruesa que la asociada a la norma dual. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\sigma(X,X^{*})$ +\end_inset + + es metrizable si y sólo si +\begin_inset Formula $X$ +\end_inset + + es dimensión finita, en cuyo caso es igual a +\begin_inset Formula ${\cal T}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A\subseteq X$ +\end_inset + + convexo es cerrado en +\begin_inset Formula $\sigma(X,X^{*})$ +\end_inset + + si y sólo si lo es en +\begin_inset Formula ${\cal T}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un espacio de Banach es +\series bold +reflexivo +\series default + si la identificación estándar +\begin_inset Formula $\hat{}:X\to X^{**}$ +\end_inset + + es suprayectiva. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $p\in(1,\infty)$ +\end_inset + + y +\begin_inset Formula $(\Omega,\Sigma,\mu)$ +\end_inset + + es un espacio de medida, +\begin_inset Formula $(L^{p}(\mu),\Vert\cdot\Vert_{p})$ +\end_inset + + es reflexivo. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(c_{0},\Vert\cdot\Vert_{\infty})$ +\end_inset + + no es reflexivo. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Goldstine: +\series default + Sea +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + normado, +\begin_inset Formula $B_{X}$ +\end_inset + + es denso en +\begin_inset Formula $(B_{X^{**}},\sigma(X^{**},X^{*}))$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de caracterización de la reflexividad: +\series default + Un espacio de Banach +\begin_inset Formula $X$ +\end_inset + + es reflexivo si y sólo si +\begin_inset Formula $B_{X}$ +\end_inset + + es compacta en +\begin_inset Formula $\sigma(X,X^{*})$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $X$ +\end_inset + + es un espacio de Banach: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $X$ +\end_inset + + es separable si y sólo si +\begin_inset Formula $(B_{X^{*}},\sigma(X^{*},X))$ +\end_inset + + es metrizable. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $X^{*}$ +\end_inset + + es separable si y solo si +\begin_inset Formula $(B_{X},\sigma(X,X^{*}))$ +\end_inset + + es metrizable. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $X^{*}$ +\end_inset + +es separable, +\begin_inset Formula $X$ +\end_inset + + es separable. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $X$ +\end_inset + + es un espacio reflexivo: +\end_layout + +\begin_layout Enumerate +Todo subespacio cerrado es reflexivo. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $X$ +\end_inset + + es separable si y sólo si lo es +\begin_inset Formula $X^{*}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un espacio de Banach +\begin_inset Formula $X$ +\end_inset + + es reflexivo si y sólo si lo es +\begin_inset Formula $X^{*}$ +\end_inset + + con la norma dual. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Ejemplos: +\end_layout + +\begin_layout Enumerate +Todo espacio de dimensión finita es reflexivo. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\ell^{1}$ +\end_inset + + y +\begin_inset Formula $\ell^{\infty}$ +\end_inset + + son reflexivos. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Ni +\begin_inset Formula $({\cal C}([a,b]),\Vert\cdot\Vert_{\infty})$ +\end_inset + + ni su dual son reflexivos. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Ni +\begin_inset Formula $L^{1}([a,b])$ +\end_inset + + ni +\begin_inset Formula $L^{\infty}([a,b])$ +\end_inset + + son reflexivos. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un espacio normado +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + es +\series bold +uniformemente convexo +\series default + si +\begin_inset Formula +\[ +\forall\varepsilon>0,\exists\delta>0:\forall x,y\in B_{X},\left(\Vert x-y\Vert\geq\varepsilon\implies\left\Vert \frac{x+y}{2}\right\Vert \leq1-\delta\right), +\] + +\end_inset + +si y sólo si +\begin_inset Formula +\[ +\forall\{x_{n}\}_{n},\{y_{n}\}_{n}\subseteq B_{X},\left(\lim_{n}\left\Vert \frac{x_{n}+y_{n}}{2}\right\Vert =1\implies\lim_{n}\Vert x_{n}-y_{n}\Vert=0\right), +\] + +\end_inset + +en cuyo caso +\begin_inset Formula $\Vert\cdot\Vert$ +\end_inset + + es +\series bold +uniformemente convexa +\series default +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Toda norma uniformemente convexa es estrictamente convexa. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Todo espacio prehilbertiano es uniformemente convexo. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +En un espacio normado +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + +, +\begin_inset Formula $f:X\to\mathbb{R}$ +\end_inset + + es +\series bold +uniformemente diferenciable Fréchet +\series default + en +\begin_inset Formula $x\in X$ +\end_inset + + si existe +\begin_inset Formula $\lim_{t\to0}\sup_{h\in B_{X}}\frac{f(x+th)-f(x)}{t}$ +\end_inset + +. + +\series bold + Primer teorema de Šmulian: +\series default + Un espacio de Banach +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + es uniformemente convexo si y sólo si para +\begin_inset Formula $f\in B_{X^{*}}$ +\end_inset + +, la norma dual es uniformemente diferenciable Fréchet en todo +\begin_inset Formula $B_{X^{*}}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Milman: +\series default + Todo espacio de Banach con norma uniformemente convexa es reflexivo. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $X$ +\end_inset + + es un espacio de Banach y +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, un +\series bold + +\begin_inset Formula $\varepsilon$ +\end_inset + +-árbol diádico +\series default + con +\series bold +raíz +\series default + +\begin_inset Formula $x\in X$ +\end_inset + + de longitud +\begin_inset Formula $N\in\mathbb{N}\cup\{\infty\}$ +\end_inset + + es una familia +\begin_inset Formula $\{x_{s}\}_{s\in\bigcup_{i=0}^{n}\{\pm1\}^{n}}\subseteq X$ +\end_inset + + tal que +\begin_inset Formula $x_{\emptyset}=x$ +\end_inset + + y, para +\begin_inset Formula $s\in\bigcup_{i=0}^{n-1}\{\pm1\}^{n}$ +\end_inset + +, +\begin_inset Formula $x_{s}=\frac{x_{s(-1)}+x_{s1}}{2}$ +\end_inset + + y +\begin_inset Formula $\Vert x_{s(-1)}-x_{s1}\Vert\geq\varepsilon$ +\end_inset + +. + Un espacio de Banach +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + es +\series bold +superreflexivo +\series default + si para +\begin_inset Formula $\varepsilon>0$ +\end_inset + + existe +\begin_inset Formula $N\in\mathbb{N}$ +\end_inset + + tal que todo +\begin_inset Formula $\varepsilon$ +\end_inset + +-árbol diádico contenido en +\begin_inset Formula $B_{X}$ +\end_inset + + tiene longitud máxima +\begin_inset Formula $N$ +\end_inset + +, si y sólo si +\begin_inset Formula $X$ +\end_inset + + admite una norma uniformemente convexa equivalente a +\begin_inset Formula $\Vert\cdot\Vert$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $p\in(1,\infty)$ +\end_inset + + y +\begin_inset Formula $(\Omega,\Sigma,\mu)$ +\end_inset + + es un espacio de medida, +\begin_inset Formula $L^{p}(\Omega,\Sigma,\mu)$ +\end_inset + + es uniformemente convexo y reflexivo, y si +\begin_inset Formula $q\in(1,\infty)$ +\end_inset + + es tal que +\begin_inset Formula $\frac{1}{p}+\frac{1}{q}=1$ +\end_inset + +, +\begin_inset Formula $\Phi:L^{q}(\mu)\to L^{p}(\mu)^{*}$ +\end_inset + + dado por +\begin_inset Formula +\[ +\Phi(g)(f)\coloneqq\int_{\Omega}fg\dif\mu +\] + +\end_inset + + es un isomorfismo isométrico. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Propiedad de Schur: +\series default + En +\begin_inset Formula $\ell^{1}$ +\end_inset + +, las sucesiones convergentes en la topología asociada a la norma y en +\begin_inset Formula $\sigma(\ell^{1},\ell^{\infty})$ +\end_inset + + son las mismas, pese a que son topologías distintas. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Segundo teorema de Šmulian: +\series default + Si +\begin_inset Formula $(X,\Vert\cdot\Vert)$ +\end_inset + + es normado, un subespacio de +\begin_inset Formula $(X,\sigma(X,X^{*}))$ +\end_inset + + es compacto si y sólo si es compacto por sucesiones. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un subconjunto de +\begin_inset Formula $(\ell^{1},\Vert\cdot\Vert_{1})$ +\end_inset + + es débilmente compacto (compacto con la topología débil) si y sólo si es + compacto. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\end_body +\end_document |
