aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJuan Marín Noguera <juan.marinn@um.es>2020-11-02 20:54:34 +0100
committerJuan Marín Noguera <juan.marinn@um.es>2020-11-02 20:54:34 +0100
commit423602a2090b6145e80df98f3e02f7695f898d5f (patch)
treefef8c75fa3742c619231dd63eb8080abff6db846
parent1d550367fd010659cea26fdb52694c0e9f409df4 (diff)
Superficies para el control
-rw-r--r--gcs/n.lyx14
-rw-r--r--gcs/n2.lyx3896
2 files changed, 3910 insertions, 0 deletions
diff --git a/gcs/n.lyx b/gcs/n.lyx
index cc9cec4..6213d6f 100644
--- a/gcs/n.lyx
+++ b/gcs/n.lyx
@@ -161,5 +161,19 @@ filename "n1.lyx"
\end_layout
+\begin_layout Chapter
+Superficies
+\end_layout
+
+\begin_layout Standard
+\begin_inset CommandInset include
+LatexCommand input
+filename "n2.lyx"
+
+\end_inset
+
+
+\end_layout
+
\end_body
\end_document
diff --git a/gcs/n2.lyx b/gcs/n2.lyx
new file mode 100644
index 0000000..8980526
--- /dev/null
+++ b/gcs/n2.lyx
@@ -0,0 +1,3896 @@
+#LyX 2.3 created this file. For more info see http://www.lyx.org/
+\lyxformat 544
+\begin_document
+\begin_header
+\save_transient_properties true
+\origin unavailable
+\textclass book
+\use_default_options true
+\maintain_unincluded_children false
+\language spanish
+\language_package default
+\inputencoding auto
+\fontencoding global
+\font_roman "default" "default"
+\font_sans "default" "default"
+\font_typewriter "default" "default"
+\font_math "auto" "auto"
+\font_default_family default
+\use_non_tex_fonts false
+\font_sc false
+\font_osf false
+\font_sf_scale 100 100
+\font_tt_scale 100 100
+\use_microtype false
+\use_dash_ligatures true
+\graphics default
+\default_output_format default
+\output_sync 0
+\bibtex_command default
+\index_command default
+\paperfontsize default
+\spacing single
+\use_hyperref false
+\papersize default
+\use_geometry false
+\use_package amsmath 1
+\use_package amssymb 1
+\use_package cancel 1
+\use_package esint 1
+\use_package mathdots 1
+\use_package mathtools 1
+\use_package mhchem 1
+\use_package stackrel 1
+\use_package stmaryrd 1
+\use_package undertilde 1
+\cite_engine basic
+\cite_engine_type default
+\biblio_style plain
+\use_bibtopic false
+\use_indices false
+\paperorientation portrait
+\suppress_date false
+\justification true
+\use_refstyle 1
+\use_minted 0
+\index Index
+\shortcut idx
+\color #008000
+\end_index
+\secnumdepth 3
+\tocdepth 3
+\paragraph_separation indent
+\paragraph_indentation default
+\is_math_indent 0
+\math_numbering_side default
+\quotes_style french
+\dynamic_quotes 0
+\papercolumns 1
+\papersides 1
+\paperpagestyle default
+\tracking_changes false
+\output_changes false
+\html_math_output 0
+\html_css_as_file 0
+\html_be_strict false
+\end_header
+
+\begin_body
+
+\begin_layout Standard
+Una
+\series bold
+superficie regular
+\series default
+ es un subconjunto
+\begin_inset Formula $S\subseteq\mathbb{R}^{3}$
+\end_inset
+
+ no vacío tal que para todo
+\begin_inset Formula $p\in S$
+\end_inset
+
+ existe un abierto
+\begin_inset Formula $U\subseteq\mathbb{R}^{2}$
+\end_inset
+
+, un entorno
+\begin_inset Formula $V$
+\end_inset
+
+ de
+\begin_inset Formula $p$
+\end_inset
+
+ en
+\begin_inset Formula $S$
+\end_inset
+
+ y un homeomorfismo
+\begin_inset Formula $X:U\to V$
+\end_inset
+
+ diferenciable con diferencial
+\begin_inset Formula $dX(q)$
+\end_inset
+
+ inyectiva para todo
+\begin_inset Formula $q\in U$
+\end_inset
+
+.
+ Entonces
+\begin_inset Formula $X$
+\end_inset
+
+ es una
+\series bold
+parametrización
+\series default
+,
+\series bold
+carta
+\series default
+ o
+\series bold
+sistema de coordenadas
+\series default
+ y
+\begin_inset Formula $V$
+\end_inset
+
+ es el
+\series bold
+entorno coordenado
+\series default
+.
+ También llamamos parametrización al par
+\begin_inset Formula $(U,X)$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Que
+\begin_inset Formula $dX(q)$
+\end_inset
+
+ sea inyectiva equivale a que
+\begin_inset Formula $X_{u}(q):=dX(q)(e_{1})$
+\end_inset
+
+ y
+\begin_inset Formula $X_{v}(q):=dX(q)(e_{2})$
+\end_inset
+
+ sean linealmente independientes, lo que equivale a que el jacobiano
+\begin_inset Formula $JX(q)$
+\end_inset
+
+ tenga rango máximo.
+\end_layout
+
+\begin_layout Section
+Criterios para determinar superficies
+\end_layout
+
+\begin_layout Standard
+Claramente, para
+\begin_inset Formula $S\subseteq\mathbb{R}^{3}$
+\end_inset
+
+, si todo
+\begin_inset Formula $p\in S$
+\end_inset
+
+ tiene un entorno relativo
+\begin_inset Formula $V\subseteq S$
+\end_inset
+
+ que es una superficie, entonces
+\begin_inset Formula $S$
+\end_inset
+
+ es una superficie.
+\end_layout
+
+\begin_layout Standard
+Sean
+\begin_inset Formula $U\subseteq\mathbb{R}^{2}$
+\end_inset
+
+ abierto y
+\begin_inset Formula $f:U\to\mathbb{R}$
+\end_inset
+
+ diferenciable, el
+\series bold
+grafo
+\series default
+
+\begin_inset Formula $G(f):=\{(u,v,f(u,v))\}_{(u,v)\in U}$
+\end_inset
+
+ es una superficie regular.
+ En efecto,
+\begin_inset Formula $X:U\to G(f)$
+\end_inset
+
+ dada por
+\begin_inset Formula $X(u,v):=(u,v,f(u,v))$
+\end_inset
+
+ es continua y su inversa es la proyección sobre el plano
+\begin_inset Formula $XY$
+\end_inset
+
+, que es continua, luego
+\begin_inset Formula $X$
+\end_inset
+
+ es un homeomorfismo, y es diferenciable con
+\begin_inset Formula $X_{u}(u,v)=(1,0,\frac{\partial f}{\partial u}(u,v))$
+\end_inset
+
+ y
+\begin_inset Formula $X_{v}(u,v)=(0,1,\frac{\partial f}{\partial v}(u,v))$
+\end_inset
+
+ linealmente independientes.
+\end_layout
+
+\begin_layout Standard
+\begin_inset Note Note
+status open
+
+\begin_layout Plain Layout
+TODO Recordatorio del teorema de la función implícita.
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Sean
+\begin_inset Formula $V\subseteq\mathbb{R}^{3}$
+\end_inset
+
+ abierto,
+\begin_inset Formula $f:V\to\mathbb{R}$
+\end_inset
+
+ diferenciable y
+\begin_inset Formula $p\in V$
+\end_inset
+
+,
+\begin_inset Formula $p$
+\end_inset
+
+ es un
+\series bold
+punto crítico
+\series default
+ de
+\begin_inset Formula $f$
+\end_inset
+
+ si
+\begin_inset Formula $df(p)=0$
+\end_inset
+
+, en cuyo caso
+\begin_inset Formula $f(p)$
+\end_inset
+
+ es un
+\series bold
+valor crítico
+\series default
+.
+ Un
+\series bold
+valor regular
+\series default
+ es un
+\begin_inset Formula $a\in\mathbb{R}$
+\end_inset
+
+ que no es crítico.
+ Entonces, si
+\begin_inset Formula $a$
+\end_inset
+
+ es un valor regular de
+\begin_inset Formula $f$
+\end_inset
+
+, la
+\series bold
+superficie de nivel
+\series default
+
+\begin_inset Formula $S:=f^{-1}(\{a\})$
+\end_inset
+
+ es una superficie regular.
+
+\series bold
+Demostración:
+\series default
+ Sea
+\begin_inset Formula $p_{0}:=(x_{0},y_{0},z_{0})\in S$
+\end_inset
+
+, como
+\begin_inset Formula $df(p_{0})\neq0$
+\end_inset
+
+, al menos una de las derivadas parciales no se anula.
+ Podemos suponer
+\begin_inset Formula $\frac{\partial f}{\partial z}(p_{0})\neq0$
+\end_inset
+
+, y por el teorema de la función implícita, existen entornos
+\begin_inset Formula $U$
+\end_inset
+
+ de
+\begin_inset Formula $(x_{0},y_{0})$
+\end_inset
+
+ en
+\begin_inset Formula $\mathbb{R}^{2}$
+\end_inset
+
+ e
+\begin_inset Formula $I$
+\end_inset
+
+ de
+\begin_inset Formula $z_{0}$
+\end_inset
+
+ en
+\begin_inset Formula $\mathbb{R}$
+\end_inset
+
+ y una
+\begin_inset Formula $g:U\to I$
+\end_inset
+
+ diferenciable tales que
+\begin_inset Formula $g(x_{0},y_{0})=z_{0}$
+\end_inset
+
+; para
+\begin_inset Formula $(x,y)\in U$
+\end_inset
+
+,
+\begin_inset Formula $f(x,y,g(x,y))=a$
+\end_inset
+
+, y
+\begin_inset Formula $(U\times I)\cap f^{-1}(a)=\{(u,v,g(u,v))\}_{(u,v)\in U}$
+\end_inset
+
+, y por la proposición anterior,
+\begin_inset Formula $V:=(U\times I)\cap S=G(g)$
+\end_inset
+
+ es una superficie regular.
+ Como esto ocurre para todo
+\begin_inset Formula $p\in S$
+\end_inset
+
+,
+\begin_inset Formula $S$
+\end_inset
+
+ es una superficie regular.
+\end_layout
+
+\begin_layout Standard
+\begin_inset Newpage newpage
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Ejemplos:
+\end_layout
+
+\begin_layout Enumerate
+Dados
+\begin_inset Formula $a,b,c,d\in\mathbb{R}$
+\end_inset
+
+ con
+\begin_inset Formula $(a,b,c)\neq\mathbf{0}$
+\end_inset
+
+, el plano
+\begin_inset Formula $\pi:=\{ax+by+cz=d\}$
+\end_inset
+
+ es una superficie regular.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Sea
+\begin_inset Formula $f(x,y,z):=ax+by+cz$
+\end_inset
+
+,
+\begin_inset Formula $df(x,y,z)\equiv(a,b,c)$
+\end_inset
+
+, luego
+\begin_inset Formula $f$
+\end_inset
+
+ es diferenciable sin puntos críticos y
+\begin_inset Formula $\pi=\{f(x,y,z)=d\}$
+\end_inset
+
+ es una superficie regular.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Dados
+\begin_inset Formula $a,b,c\in\mathbb{R}^{*}$
+\end_inset
+
+, el
+\series bold
+elipsoide
+\series default
+
+\begin_inset Formula $E:=\{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1\}$
+\end_inset
+
+ es una superficie regular.
+ En particular
+\begin_inset Formula $\mathbb{S}^{2}$
+\end_inset
+
+ es una superficie regular.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Sea
+\begin_inset Formula $f(x,y,z):=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}$
+\end_inset
+
+,
+\begin_inset Formula $f$
+\end_inset
+
+ es diferenciable con
+\begin_inset Formula $df(x,y,z)\equiv(\frac{2x}{a^{2}},\frac{2y}{b^{2}},\frac{2z}{c^{2}})$
+\end_inset
+
+, luego el único punto crítico de
+\begin_inset Formula $f$
+\end_inset
+
+ es el origen y su único valor crítico es pues 0.
+ Por tanto
+\begin_inset Formula $E=\{f(x,y,z)=1\}$
+\end_inset
+
+ es una superficie regular.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+El
+\series bold
+hiperboloide de una hoja
+\series default
+
+\begin_inset Formula $H:=\{x^{2}+y^{2}-z^{2}=1\}$
+\end_inset
+
+ y el
+\series bold
+hiperboloide de dos hojas
+\series default
+
+\begin_inset Formula $H':=\{x^{2}+y^{2}-z^{2}=-1\}$
+\end_inset
+
+ son superficies regulares
+\begin_inset Note Comment
+status open
+
+\begin_layout Plain Layout
+.
+ Estas son superficies de revolución resultantes de rotar la hipérbola
+\begin_inset Formula $\{xy=1\}$
+\end_inset
+
+ alrededor de uno de sus ejes de simetría, la recta
+\begin_inset Formula $\{y=-x\}$
+\end_inset
+
+, en el caso de
+\begin_inset Formula $H$
+\end_inset
+
+, o de la recta
+\begin_inset Formula $\{y=x\}$
+\end_inset
+
+, en el caso de
+\begin_inset Formula $H'$
+\end_inset
+
+.
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Sea
+\begin_inset Formula $f(x,y,z):=x^{2}+y^{2}-z^{2}$
+\end_inset
+
+,
+\begin_inset Formula $f$
+\end_inset
+
+ es diferenciable con
+\begin_inset Formula $df(x,y,z)=(2x,2y,-2z)$
+\end_inset
+
+, luego el único punto crítico de
+\begin_inset Formula $f$
+\end_inset
+
+ es el origen y su único valor crítico es 0, con lo que
+\begin_inset Formula $H=\{f(x,y,z)=1\}$
+\end_inset
+
+ y
+\begin_inset Formula $H'=\{f(x,y,z)=-1\}$
+\end_inset
+
+ son superficies regulares.
+\begin_inset Note Comment
+status open
+
+\begin_layout Plain Layout
+La recta
+\begin_inset Formula $\ell_{1}:=\{y=-x\}$
+\end_inset
+
+ en
+\begin_inset Formula $\mathbb{R}^{2}$
+\end_inset
+
+ tiene un vector ortogonal unitario
+\begin_inset Formula $v_{1}:=\frac{1}{\sqrt{2}}(1,1)$
+\end_inset
+
+, y dado un punto
+\begin_inset Formula $p:=(x,\frac{1}{x})$
+\end_inset
+
+ de la hipérbola, su simétrico por
+\begin_inset Formula $\ell_{1}$
+\end_inset
+
+,
+\begin_inset Formula $p_{1}:=p-2\langle p,v_{1}\rangle v_{1}=(x,\frac{1}{x})-(x+\frac{1}{x})(1,1)=(-\frac{1}{x},-x)$
+\end_inset
+
+, también está en la hipérbola, y
+\begin_inset Formula $\ell_{1}$
+\end_inset
+
+ es efectivamente un eje de simetría.
+ Análogamente,
+\begin_inset Formula $v_{2}:=\frac{1}{\sqrt{2}}(1,-1)$
+\end_inset
+
+ es unitario y ortogonal a
+\begin_inset Formula $\ell_{2}:=\{y=x\}$
+\end_inset
+
+, y el simétrico de
+\begin_inset Formula $p$
+\end_inset
+
+ por
+\begin_inset Formula $\ell_{2}$
+\end_inset
+
+ es
+\begin_inset Formula $p_{2}:=p-2\langle p,v_{2}\rangle v_{2}=(x,\frac{1}{x})-(x-\frac{1}{x})(1,-1)=(\frac{1}{x},x)$
+\end_inset
+
+, que también está en la hipérbola.
+\end_layout
+
+\begin_layout Plain Layout
+Finalmente,
+\begin_inset Note Note
+status open
+
+\begin_layout Plain Layout
+TODO Ver que efectivamente salen las superficies buscadas.
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Dados
+\begin_inset Formula $a>r>0$
+\end_inset
+
+, el toro
+\begin_inset Formula $\mathbb{T}^{2}:=\{(\sqrt{x^{2}+y^{2}}-a)^{2}+z^{2}=r^{2}\}$
+\end_inset
+
+ es una superficie regular, y se obtiene de girar sobre el eje
+\begin_inset Formula $Z$
+\end_inset
+
+ la circunferencia en el plano
+\begin_inset Formula $YZ$
+\end_inset
+
+ de radio
+\begin_inset Formula $r$
+\end_inset
+
+ y centro
+\begin_inset Formula $(0,a,0)$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Dicha circunferencia es
+\begin_inset Formula $S=\{x=0,(y-a)^{2}+z^{2}=r^{2}\}$
+\end_inset
+
+.
+ Dado un punto
+\begin_inset Formula $(0,y,z)$
+\end_inset
+
+ de la circunferencia, al girar el punto, se obtienen puntos
+\begin_inset Formula $(x,y,z)$
+\end_inset
+
+ con
+\begin_inset Formula $x^{2}+y^{2}$
+\end_inset
+
+ constante y
+\begin_inset Formula $z$
+\end_inset
+
+ constante, y como la distancia del centro de rotación al centro de la circunfer
+encia es siempre
+\begin_inset Formula $a$
+\end_inset
+
+, la ecuación que define el toro es
+\begin_inset Formula $(\sqrt{x^{2}+y^{2}}-a)^{2}+z^{2}=r^{2}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Sea ahora
+\begin_inset Formula $f(x,y,z):=(\sqrt{x^{2}+y^{2}}-a)^{2}+z^{2}$
+\end_inset
+
+, entonces
+\begin_inset Formula
+\[
+df(x,y,z)\equiv\begin{pmatrix}2(\sqrt{x^{2}+y^{2}}-a)\frac{x}{\sqrt{x^{2}+y^{2}}} & 2(\sqrt{x^{2}+y^{2}}-a)\frac{y}{\sqrt{x^{2}+y^{2}}} & 2z\end{pmatrix}.
+\]
+
+\end_inset
+
+Así, los puntos críticos cumplen
+\begin_inset Formula $z=0$
+\end_inset
+
+ y, bien
+\begin_inset Formula $x^{2}+y^{2}=a^{2}$
+\end_inset
+
+, bien
+\begin_inset Formula $x,y=0$
+\end_inset
+
+.
+ Los valores críticos son pues
+\begin_inset Formula $f(0,0,0)=a^{2}$
+\end_inset
+
+ y, para el caso
+\begin_inset Formula $x^{2}+y^{2}=a^{2}$
+\end_inset
+
+,
+\begin_inset Formula $f(x,y,0)=(\sqrt{a^{2}}-a)^{2}=0$
+\end_inset
+
+, luego
+\begin_inset Formula $S=\{f(x,y,z)=r^{2}\}$
+\end_inset
+
+ es una superficie regular.
+\end_layout
+
+\end_deeper
+\begin_layout Standard
+Sean
+\begin_inset Formula $S\subseteq\mathbb{R}^{3}$
+\end_inset
+
+,
+\begin_inset Formula $U\subseteq\mathbb{R}^{2}$
+\end_inset
+
+ abierto,
+\begin_inset Formula $X:U\to S$
+\end_inset
+
+ una función diferenciable con diferencial inyectiva en todo punto y
+\begin_inset Formula $q_{0}\in U$
+\end_inset
+
+, existen un entorno
+\begin_inset Formula $U'\subseteq U$
+\end_inset
+
+ de
+\begin_inset Formula $q_{0}$
+\end_inset
+
+ y una proyección
+\begin_inset Formula $\pi:\mathbb{R}^{3}\to\mathbb{R}^{2}$
+\end_inset
+
+ sobre uno de los planos coordenados de forma que
+\begin_inset Formula $\pi\circ X:U'\to(\pi\circ X)(U')$
+\end_inset
+
+ es un difeomorfismo.
+
+\series bold
+Demostración:
+\series default
+ Como
+\begin_inset Formula $dX(q_{0})$
+\end_inset
+
+ es inyectiva,
+\begin_inset Formula $JX(q_{0})$
+\end_inset
+
+ tiene un menor de orden 2 con determinante no nulo, que podemos suponer
+ que es el formado por las dos primeras filas, y tomamos correspondientemente
+ la proyección
+\begin_inset Formula $\pi(x,y,z):=(x,y)$
+\end_inset
+
+.
+ Entonces
+\begin_inset Formula
+\[
+d(\pi\circ X)(q_{0})=d\pi(X(q_{0}))\circ dX(q_{0})\equiv\begin{pmatrix}\frac{\partial x}{\partial u}(q_{0}) & \frac{\partial x}{\partial v}(q_{0})\\
+\frac{\partial y}{\partial u}(q_{0}) & \frac{\partial y}{\partial v}(q_{0})
+\end{pmatrix}
+\]
+
+\end_inset
+
+es un isomorfismo de espacios vectoriales, y por el teorema de la función
+ inversa, existe un entorno
+\begin_inset Formula $U'\subseteq U$
+\end_inset
+
+ de
+\begin_inset Formula $q_{0}$
+\end_inset
+
+ tal que
+\begin_inset Formula $(\pi\circ X)(U')=:U''$
+\end_inset
+
+ es abierto y
+\begin_inset Formula $\pi\circ X:U'\to U''$
+\end_inset
+
+ es un difeomorfismo.
+\end_layout
+
+\begin_layout Standard
+Dados una superficie regular
+\begin_inset Formula $S$
+\end_inset
+
+ y
+\begin_inset Formula $p_{0}\in S$
+\end_inset
+
+, existen un entorno
+\begin_inset Formula $V$
+\end_inset
+
+ de
+\begin_inset Formula $p_{0}$
+\end_inset
+
+ en
+\begin_inset Formula $S$
+\end_inset
+
+ y una función
+\begin_inset Formula $f:U\subseteq\mathbb{R}^{2}\to\mathbb{R}$
+\end_inset
+
+ diferenciable tales que
+\begin_inset Formula $V\in\{\{z=f(x,y)\},\{y=f(x,z)\},\{x=f(y,z)\}\}$
+\end_inset
+
+.
+
+\series bold
+Demostración:
+\series default
+ Sean
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ una parametrización de
+\begin_inset Formula $S$
+\end_inset
+
+ con
+\begin_inset Formula $p_{0}\in V:=X(U)$
+\end_inset
+
+,
+\begin_inset Formula $q_{0}:=X^{-1}(p_{0})$
+\end_inset
+
+, el resultado anterior nos da un entorno
+\begin_inset Formula $U'\subseteq U$
+\end_inset
+
+ de
+\begin_inset Formula $q_{0}$
+\end_inset
+
+ y una proyección
+\begin_inset Formula $\pi$
+\end_inset
+
+ en un plano coordenado (por ejemplo, el
+\begin_inset Formula $XY$
+\end_inset
+
+) de forma que
+\begin_inset Formula $\pi\circ X:U'\to(U'':=(\pi\circ X)(U'))$
+\end_inset
+
+ es un difeomorfismo.
+ Sea ahora
+\begin_inset Formula $V:=X(U')$
+\end_inset
+
+,
+\begin_inset Formula $\pi:V\to U''$
+\end_inset
+
+ viene dada por la composición de funciones inyectivas
+\begin_inset Formula $\pi=(\pi\circ X)\circ X^{-1}$
+\end_inset
+
+ y por tanto es inyectiva con inversa dada por
+\begin_inset Formula $\pi^{-1}(x,y,z)=(x,y,f(x,y,z))$
+\end_inset
+
+ para algún
+\begin_inset Formula $f:U''\to\mathbb{R}$
+\end_inset
+
+, que es diferenciable por ser la composición de funciones diferenciables
+
+\begin_inset Formula $\pi^{-1}=X\circ(\pi\circ X)^{-1}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Ejemplos:
+\end_layout
+
+\begin_layout Enumerate
+El cono
+\begin_inset Formula $C:=\{x^{2}+y^{2}=z^{2}\}$
+\end_inset
+
+ no es una superficie regular.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Sea
+\begin_inset Formula $V$
+\end_inset
+
+ un entorno del
+\begin_inset Formula $0\in C$
+\end_inset
+
+, que podemos tomar de la forma
+\begin_inset Formula $B_{\infty}(0,r)$
+\end_inset
+
+.
+ Entonces
+\begin_inset Formula $(\frac{r}{2},0,\frac{r}{2}),(-\frac{r}{2},0,\frac{r}{2})\in V\cap C$
+\end_inset
+
+, luego
+\begin_inset Formula $V\cap C$
+\end_inset
+
+ no es un grafo en la coordenada
+\begin_inset Formula $x$
+\end_inset
+
+, y análogamente tampoco lo es en la coordenada
+\begin_inset Formula $y$
+\end_inset
+
+ ni en la
+\begin_inset Formula $z$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+\begin_inset Formula $C\setminus\{0\}$
+\end_inset
+
+ sí es una superficie regular.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Sea
+\begin_inset Formula $f:\mathbb{R}^{3}\setminus\{0\}\to\mathbb{R}$
+\end_inset
+
+ dada por
+\begin_inset Formula $f(x,y,z):=x^{2}+y^{2}-z^{2}$
+\end_inset
+
+, entonces
+\begin_inset Formula $df(x,y,z)\equiv(2x,2y,-2z)$
+\end_inset
+
+, luego el único punto crítico es 0 y, como este no está en el dominio,
+
+\begin_inset Formula $f$
+\end_inset
+
+ no tiene valores críticos, y
+\begin_inset Formula $C\setminus\{0\}=\{f(x,y,z)=0\}$
+\end_inset
+
+ es una superficie regular.
+\end_layout
+
+\end_deeper
+\begin_layout Standard
+Sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular,
+\begin_inset Formula $U\subseteq\mathbb{R}^{2}$
+\end_inset
+
+ un abierto no vacío y
+\begin_inset Formula $X:U\subseteq\mathbb{R}^{2}\to S$
+\end_inset
+
+ una función diferenciable inyectiva con diferencial inyectiva en todo punto,
+ entonces
+\begin_inset Formula $X$
+\end_inset
+
+ es un homeomorfismo y por tanto una parametrización de
+\begin_inset Formula $S$
+\end_inset
+
+.
+
+\series bold
+Demostración:
+\series default
+ Sean
+\begin_inset Formula $q_{0}\in U$
+\end_inset
+
+ y
+\begin_inset Formula $p_{0}:=X(q_{0})$
+\end_inset
+
+, existen un entorno
+\begin_inset Formula $U'\subseteq U$
+\end_inset
+
+ de
+\begin_inset Formula $p_{0}$
+\end_inset
+
+ y una proyección
+\begin_inset Formula $\pi$
+\end_inset
+
+ en un plano coordenado de forma que
+\begin_inset Formula $\pi\circ X:U'\to(U'':=(\pi\circ X)(U'))$
+\end_inset
+
+ es un homeomorfismo.
+ Como
+\begin_inset Formula $X$
+\end_inset
+
+ es inyectiva,
+\begin_inset Formula $X:U'\to(V':=X(U'))$
+\end_inset
+
+ es biyectiva, y queda ver que
+\begin_inset Formula $X^{-1}:V'\to U'$
+\end_inset
+
+ es continua, pero
+\begin_inset Formula $X^{-1}=(\pi\circ X)^{-1}\circ\pi$
+\end_inset
+
+ es composición de funciones continuas.
+\end_layout
+
+\begin_layout Standard
+Ejemplos:
+\end_layout
+
+\begin_layout Enumerate
+Sean
+\begin_inset Formula $U:=(0,\pi)\times(0,2\pi)$
+\end_inset
+
+ y
+\begin_inset Formula $X:\mathbb{R}^{2}\to\mathbb{S}^{2}$
+\end_inset
+
+ dada por
+\begin_inset Formula $X(\theta,\varphi):=(\sin\theta\cos\varphi,\sin\theta\sin\varphi,\cos\theta)$
+\end_inset
+
+,
+\begin_inset Formula $X|_{U}$
+\end_inset
+
+ es una parametrización de la esfera que cubre todo salvo el meridiano
+\begin_inset Formula $\varphi=0$
+\end_inset
+
+,
+\begin_inset Formula $M:=X([0,\pi],0)$
+\end_inset
+
+.
+ Llamamos
+\series bold
+colatitud
+\series default
+ a
+\begin_inset Formula $\theta$
+\end_inset
+
+ y
+\series bold
+longitud
+\series default
+ a
+\begin_inset Formula $\varphi$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+\begin_inset Formula $X$
+\end_inset
+
+ es diferenciable y, dado un
+\begin_inset Formula $(\theta,\varphi)\in U$
+\end_inset
+
+,
+\begin_inset Formula
+\[
+JX(\theta,\varphi)=\begin{pmatrix}\cos\theta\cos\varphi & -\sin\theta\sin\varphi\\
+\cos\theta\sin\varphi & \sin\theta\cos\varphi\\
+-\sin\theta & 0
+\end{pmatrix}.
+\]
+
+\end_inset
+
+Como
+\begin_inset Formula $\sin\theta\neq0$
+\end_inset
+
+, si
+\begin_inset Formula $\cos\varphi\neq0$
+\end_inset
+
+, el menor formado por las dos últimas filas tiene determinante
+\begin_inset Formula $\sin^{2}\theta\cos\varphi\neq0$
+\end_inset
+
+, y si
+\begin_inset Formula $\cos\varphi=0$
+\end_inset
+
+, entonces
+\begin_inset Formula $\sin\varphi\in\{\pm1\}$
+\end_inset
+
+ y el menor resultante de eliminar la segunda fila tiene determinante
+\begin_inset Formula $-\sin^{2}\theta\sin\varphi\neq0$
+\end_inset
+
+.
+ Por tanto
+\begin_inset Formula $dX(\theta,\varphi)$
+\end_inset
+
+ es inyectiva.
+ Además, dados
+\begin_inset Formula $(\theta,\varphi),(\theta',\varphi')\in U$
+\end_inset
+
+, si
+\begin_inset Formula $X(\theta,\varphi)=X(\theta',\varphi')$
+\end_inset
+
+,
+\begin_inset Formula $\theta=\theta'$
+\end_inset
+
+ porque el coseno es inyectivo en
+\begin_inset Formula $(0,\pi)$
+\end_inset
+
+, pero entonces, como
+\begin_inset Formula $\sin\theta\neq0$
+\end_inset
+
+,
+\begin_inset Formula $(\cos\varphi,\sin\varphi)=(\cos\varphi',\sin\varphi')$
+\end_inset
+
+, y como
+\begin_inset Formula $\varphi,\varphi'\in(0,2\pi)$
+\end_inset
+
+, se tiene
+\begin_inset Formula $\varphi=\varphi'$
+\end_inset
+
+ y
+\begin_inset Formula $X|_{U}$
+\end_inset
+
+ es inyectiva.
+ Esto prueba que
+\begin_inset Formula $X|_{U}$
+\end_inset
+
+ es una parametrización.
+\end_layout
+
+\begin_layout Standard
+Respecto a la imagen, es fácil ver que para cualesquiera
+\begin_inset Formula $\theta,\varphi\in\mathbb{R}$
+\end_inset
+
+,
+\begin_inset Formula $X(\theta,\varphi)\in\mathbb{S}^{2}$
+\end_inset
+
+.
+ Para ver que ningún punto de
+\begin_inset Formula $M$
+\end_inset
+
+ está en la imagen, nótese que el argumento de inyectividad es aplicable
+ para todo
+\begin_inset Formula $\varphi\in[0,2\pi)$
+\end_inset
+
+ siempre que
+\begin_inset Formula $\theta\in(0,\pi)$
+\end_inset
+
+, lo que nos deja solo con
+\begin_inset Formula $X(0,0)=(0,0,1)$
+\end_inset
+
+ y
+\begin_inset Formula $X(1,0)=(0,0,-1)$
+\end_inset
+
+, que no están en
+\begin_inset Formula $X(U)$
+\end_inset
+
+ porque los
+\begin_inset Formula $(x,y,z)\in X(U)$
+\end_inset
+
+ cumplen
+\begin_inset Formula $x^{2}+y^{2}=\sin^{2}\theta(\cos^{2}\varphi+\sin^{2}\varphi)=\sin^{2}\theta>0$
+\end_inset
+
+.
+
+\end_layout
+
+\begin_layout Standard
+Finalmente, dado
+\begin_inset Formula $(x,y,z)\in\mathbb{S}^{2}\setminus M$
+\end_inset
+
+, sean
+\begin_inset Formula $\theta:=\arccos z$
+\end_inset
+
+ y
+\begin_inset Formula $\varphi:=\arccos\frac{x}{\sin\theta}=\arccos\frac{x}{\sqrt{1-z^{2}}}$
+\end_inset
+
+ (usando que
+\begin_inset Formula $\theta\neq\pm1$
+\end_inset
+
+), de modo que
+\begin_inset Formula $\cos\theta=\cos\arccos z=z$
+\end_inset
+
+ y
+\begin_inset Formula $\sin\theta\cos\varphi=\sin\theta\cdot\frac{x}{\sin\theta}=x$
+\end_inset
+
+.
+ Entonces, si
+\begin_inset Formula $y\geq0$
+\end_inset
+
+,
+\begin_inset Formula
+\[
+\sin\theta\sin\varphi=\sin\theta\sqrt{1-\cos^{2}\varphi}=\sin\theta\sqrt{1-\frac{x^{2}}{1-z^{2}}}=\sin\theta\sqrt{\frac{1-z^{2}-x^{2}}{1-z^{2}}}=\sin\theta\frac{|y|}{\sin\theta}=y,
+\]
+
+\end_inset
+
+ por lo que
+\begin_inset Formula $X(\theta,\varphi)=(x,y,z)$
+\end_inset
+
+.
+ Si
+\begin_inset Formula $y\neq0$
+\end_inset
+
+,
+\begin_inset Formula $\sin\theta\cos(2\pi-\varphi)=\sin\theta\cos\varphi=x$
+\end_inset
+
+, pero sin embargo
+\begin_inset Formula $\sin\theta\sin(2\pi-\varphi)=-\sin\theta\sin\varphi=-\sin\theta\frac{|y|}{\sin\theta}=y$
+\end_inset
+
+ y
+\begin_inset Formula $X(\theta,\varphi)=(x,y,z)$
+\end_inset
+
+.
+ Esto prueba la sobreyectividad.
+
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Sean
+\begin_inset Formula $S:=\{x^{2}+y^{2}+(z-1)^{2}=1\}$
+\end_inset
+
+,
+\begin_inset Formula $N:=(0,0,2)$
+\end_inset
+
+ y
+\begin_inset Formula $\pi:S\setminus\{N\}\to\mathbb{R}^{2}$
+\end_inset
+
+ la función que a cada
+\begin_inset Formula $p\in S\setminus\{N\}$
+\end_inset
+
+ le asocia la intersección del plano
+\begin_inset Formula $XY$
+\end_inset
+
+ con la recta que pasa por
+\begin_inset Formula $p$
+\end_inset
+
+ y
+\begin_inset Formula $N$
+\end_inset
+
+, llamada
+\series bold
+proyección estereográfica
+\series default
+.
+ Entonces
+\begin_inset Formula $\pi^{-1}$
+\end_inset
+
+ es una parametrización de
+\begin_inset Formula $S$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Dado un
+\begin_inset Formula $p\in\mathbb{S}^{2}\setminus\{N\}$
+\end_inset
+
+, los puntos de
+\begin_inset Formula $\overline{Np}$
+\end_inset
+
+ son de la forma
+\begin_inset Formula $(\mu x,\mu y,2+\mu(z-2))$
+\end_inset
+
+, para algún
+\begin_inset Formula $\mu\in\mathbb{R}$
+\end_inset
+
+.
+ Para el punto que corta al plano
+\begin_inset Formula $XY$
+\end_inset
+
+,
+\begin_inset Formula $2+\mu(z-2)=0$
+\end_inset
+
+, luego
+\begin_inset Formula $\mu=\frac{-2}{z-2}=\frac{2}{2-z}$
+\end_inset
+
+ y
+\begin_inset Formula
+\[
+\pi(x,y,z)=\left(\frac{2x}{2-z},\frac{2y}{2-z}\right).
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Sea
+\begin_inset Formula
+\[
+X(u,v):=\left(\frac{4u}{u^{2}+v^{2}+4},\frac{4v}{u^{2}+v^{2}+4},\frac{2(u^{2}+v^{2})}{u^{2}+v^{2}+4}\right),
+\]
+
+\end_inset
+
+dado
+\begin_inset Formula $(u,v)\in\mathbb{R}^{2}$
+\end_inset
+
+, si
+\begin_inset Formula $(x,y,z):=X(u,v)$
+\end_inset
+
+,
+\begin_inset Formula $2-z=2-\frac{2(u^{2}+v^{2})}{u^{2}+v^{2}+4}=\frac{2(u^{2}+v^{2}+4)-2(u^{2}+v^{2})}{u^{2}+v^{2}+4}=\frac{8}{u^{2}+v^{2}+4}$
+\end_inset
+
+, luego
+\begin_inset Formula
+\[
+\pi(X(u,v))=\pi(x,y,z)=\left(\frac{\frac{8u}{u^{2}+v^{2}+4}}{\frac{8}{u^{2}+v^{2}+4}},\frac{\frac{8v}{u^{2}+v^{2}+4}}{\frac{8}{u^{2}+v^{2}+4}}\right)=(u,v).
+\]
+
+\end_inset
+
+Recíprocamente, dado
+\begin_inset Formula $(x,y,z)\in\mathbb{S}^{2}\setminus\{N\}$
+\end_inset
+
+, si
+\begin_inset Formula $(u,v):=\pi(x,y,z)$
+\end_inset
+
+,
+\begin_inset Formula
+\begin{align*}
+u^{2}+v^{2}+4 & =\left(\frac{2x}{2-z}\right)^{2}+\left(\frac{2y}{2-z}\right)^{2}+4=\frac{4(x^{2}+y^{2})+4(2-z)^{2}}{(2-z)^{2}}\\
+ & =\frac{4(x^{2}+y^{2}+z^{2}-4z+4)}{(2-z)^{2}}=\frac{4(x^{2}+y^{2}+(z-1)^{2}-2z+3)}{(2-z)^{2}}\\
+ & =\frac{4(4-2z)}{(2-z)^{2}}=\frac{8}{2-z},
+\end{align*}
+
+\end_inset
+
+luego
+\begin_inset Formula
+\begin{align*}
+X(\pi(x,y,z)) & =X(u,v)=\left(\frac{4\frac{2x}{2-z}}{\frac{8}{2-z}},\frac{4\frac{2x}{2-z}}{\frac{8}{2-z}},\frac{2\frac{4x^{2}+4y^{2}}{(2-z)^{2}}}{\frac{8}{2-z}}\right)=\left(x,y,\frac{x^{2}+y^{2}}{2-z}\right)\\
+ & =\left(x,y,\frac{1-(z-1)^{2}}{2-z}\right)=\left(x,y,\frac{2z-z^{2}}{2-z}\right)=(x,y,z).
+\end{align*}
+
+\end_inset
+
+Esto prueba que
+\begin_inset Formula $X$
+\end_inset
+
+ y
+\begin_inset Formula $\pi$
+\end_inset
+
+ son una inversa de la otra.
+ Además,
+\end_layout
+
+\begin_layout Standard
+\begin_inset Formula
+\begin{align*}
+JX(u,v) & =\begin{pmatrix}\frac{4(u^{2}+v^{2}+4)-8u^{2}}{(u^{2}+v^{2}+4)^{2}} & \frac{-8uv}{(u^{2}+v^{2}+4)^{2}}\\
+\frac{-8uv}{(u^{2}+v^{2}+4)^{2}} & \frac{4(u^{2}+v^{2}+4)-8v^{2}}{(u^{2}+v^{2}+4)^{2}}\\
+\frac{4u(u^{2}+v^{2}+4)-4u(u^{2}+v^{2})}{(u^{2}+v^{2}+4)^{2}} & \frac{4v(u^{2}+v^{2}+4)-4v(u^{2}+v^{2})}{(u^{2}+v^{2}+4)^{2}}
+\end{pmatrix}\\
+ & =\frac{4}{(u^{2}+v^{2}+4)^{2}}\begin{pmatrix}-u^{2}+v^{2}+4 & -2uv\\
+-2uv & u^{2}-v^{2}+4\\
+4u & 4v
+\end{pmatrix}.
+\end{align*}
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Si tomamos la submatriz formada por las dos últimas filas, el determinante
+ es
+\begin_inset Formula
+\begin{multline*}
+\frac{4}{(u^{2}+v^{2}+4)^{2}}\begin{vmatrix}-2uv & u^{2}-v^{2}+4\\
+4u & 4v
+\end{vmatrix}=\frac{64u}{(u^{2}+v^{2}+4)^{4}}\begin{vmatrix}-2v & u^{2}-v^{2}+4\\
+1 & v
+\end{vmatrix}=\\
+=\frac{64u}{(u^{2}+v^{2}+4)^{4}}(-2v^{2}-u^{2}+v^{2}-4)=\frac{-64u}{(u^{2}+v^{2}+4)^{3}},
+\end{multline*}
+
+\end_inset
+
+que es no nulo si y sólo si
+\begin_inset Formula $u\neq0$
+\end_inset
+
+.
+ Cuando
+\begin_inset Formula $u=0$
+\end_inset
+
+, tomamos la submatriz formada por la primera y tercera filas, con determinante
+\begin_inset Formula
+\[
+\frac{16}{(v^{2}+4)^{4}}\begin{vmatrix}v^{2}+4 & 0\\
+0 & 4v
+\end{vmatrix}=\frac{64v}{(v^{2}+4)^{3}},
+\]
+
+\end_inset
+
+que es no nulo si y sólo
+\begin_inset Formula $v\neq0$
+\end_inset
+
+.
+ Finalmente, cuando
+\begin_inset Formula $u,v=0$
+\end_inset
+
+, la submatriz formada por las dos primeras filas tiene determinante
+\begin_inset Formula
+\[
+\frac{16}{256}\begin{vmatrix}4 & 0\\
+0 & 4
+\end{vmatrix}=1\neq0,
+\]
+
+\end_inset
+
+por lo que en ningún punto se anulan los 3 determinantes simultáneamente
+ y
+\begin_inset Formula $JX(u,v)$
+\end_inset
+
+ tiene rango máximo.
+\end_layout
+
+\end_deeper
+\begin_layout Section
+Funciones diferenciables en superficies
+\end_layout
+
+\begin_layout Standard
+Sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular y
+\begin_inset Formula $(U_{1},X_{1})$
+\end_inset
+
+ y
+\begin_inset Formula $(U_{2},X_{2})$
+\end_inset
+
+ parametrizaciones con
+\begin_inset Formula $V:=X_{1}(U_{1})\cap X_{2}(U_{2})\neq\emptyset$
+\end_inset
+
+, llamamos
+\series bold
+cambio de coordenadas
+\series default
+ de
+\begin_inset Formula $X_{1}$
+\end_inset
+
+ a
+\begin_inset Formula $X_{2}$
+\end_inset
+
+ a
+\begin_inset Formula $F:=X_{2}^{-1}\circ X_{1}:X_{1}^{-1}(V)\to X_{2}^{-1}(V)$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Como
+\series bold
+teorema
+\series default
+,
+\begin_inset Formula $F$
+\end_inset
+
+ es un difeomorfismo.
+
+\series bold
+Demostración:
+\series default
+ Sea
+\begin_inset Formula $F:=X_{2}^{-1}\circ X_{1}$
+\end_inset
+
+.
+ Dados
+\begin_inset Formula $p\in V$
+\end_inset
+
+,
+\begin_inset Formula $q_{1}:=X_{1}^{-1}(V)$
+\end_inset
+
+ y
+\begin_inset Formula $q_{2}:=X_{2}^{-1}(p)$
+\end_inset
+
+, existe un entorno
+\begin_inset Formula $U'_{2}\subseteq X_{2}^{-1}(V)$
+\end_inset
+
+ de
+\begin_inset Formula $q_{2}$
+\end_inset
+
+ y una proyección
+\begin_inset Formula $\pi$
+\end_inset
+
+ sobre un plano coordenado de forma que
+\begin_inset Formula $\pi\circ X_{2}|_{U'_{2}}$
+\end_inset
+
+ es un difeomorfismo.
+ Como
+\begin_inset Formula $F$
+\end_inset
+
+ es un homeomorfismo y
+\begin_inset Formula $F(q_{1})=q_{2}\in U'_{2}$
+\end_inset
+
+,
+\begin_inset Formula $U'_{1}:=F^{-1}(U'_{2})$
+\end_inset
+
+ es un entorno de
+\begin_inset Formula $q_{1}$
+\end_inset
+
+, por lo que para
+\begin_inset Formula $q\in U'_{1}$
+\end_inset
+
+,
+\begin_inset Formula $((\pi\circ X_{2})\circ F)(q)=(\pi\circ X_{2}\circ X_{2}^{-1}\circ X_{1})(q)=(\pi\circ X_{1})(q)$
+\end_inset
+
+.
+ Entonces
+\begin_inset Formula $F|_{U'_{1}}=(\pi\circ X_{2})^{-1}\circ\pi\circ X_{1}$
+\end_inset
+
+, que es diferenciable por ser composición de funciones diferenciables,
+ y como
+\begin_inset Formula $q_{1}$
+\end_inset
+
+ es arbitrario,
+\begin_inset Formula $F$
+\end_inset
+
+ es diferenciable en todo
+\begin_inset Formula $X_{1}^{-1}(V)$
+\end_inset
+
+.
+ Por simetría,
+\begin_inset Formula $F^{-1}=X_{1}\circ X_{2}^{-1}$
+\end_inset
+
+ también es diferenciable, luego
+\begin_inset Formula $F$
+\end_inset
+
+ es un difeomorfismo.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+begin{samepage}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Una función
+\begin_inset Formula $f:S\to\mathbb{R}^{m}$
+\end_inset
+
+ es
+\series bold
+diferenciable
+\series default
+ en
+\begin_inset Formula $S$
+\end_inset
+
+ si para toda parametrización
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ en
+\begin_inset Formula $S$
+\end_inset
+
+,
+\begin_inset Formula $f\circ X$
+\end_inset
+
+ es diferenciable en
+\begin_inset Formula $U$
+\end_inset
+
+, si y sólo si para todo
+\begin_inset Formula $p\in S$
+\end_inset
+
+ existe una parametrización
+\begin_inset Formula $(U_{p},X_{p})$
+\end_inset
+
+ en
+\begin_inset Formula $S$
+\end_inset
+
+ con
+\begin_inset Formula $p\in X_{p}(U_{p})$
+\end_inset
+
+ tal que
+\begin_inset Formula $f\circ X_{p}$
+\end_inset
+
+ es diferenciable en
+\begin_inset Formula $U_{p}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Itemize
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\implies]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+Obvio.
+\end_layout
+
+\begin_layout Itemize
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\impliedby]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+Sea
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ una parametrización cualquiera en
+\begin_inset Formula $S$
+\end_inset
+
+, para
+\begin_inset Formula $q\in U$
+\end_inset
+
+ y
+\begin_inset Formula $p:=X(q)$
+\end_inset
+
+, existe una parametrización
+\begin_inset Formula $(U_{p},X_{p})$
+\end_inset
+
+ que cumple las condiciones.
+ Sean
+\begin_inset Formula $q':=U_{p}^{-1}(p)$
+\end_inset
+
+ y
+\begin_inset Formula $V:=X(U)\cap X_{p}(U_{p})$
+\end_inset
+
+,
+\begin_inset Formula $f\circ X|_{X^{-1}(V)}=(f\circ X_{p})\circ(X_{p}^{-1}\circ X)|_{X^{-1}(V)}$
+\end_inset
+
+, que es composición de funciones diferenciables, luego
+\begin_inset Formula $f\circ X$
+\end_inset
+
+ es diferenciable en
+\begin_inset Formula $X^{-1}(V)$
+\end_inset
+
+, que contiene a
+\begin_inset Formula $q$
+\end_inset
+
+, y por ser
+\begin_inset Formula $q$
+\end_inset
+
+ arbitrario, es diferenciable en todo
+\begin_inset Formula $U$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+end{samepage}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Subsection
+Propiedades
+\end_layout
+
+\begin_layout Standard
+Sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular y
+\begin_inset Formula $f:S\to\mathbb{R}^{m}$
+\end_inset
+
+:
+\end_layout
+
+\begin_layout Enumerate
+Si existen
+\begin_inset Formula $W\subseteq\mathbb{R}^{3}$
+\end_inset
+
+ abierto con
+\begin_inset Formula $S\subseteq W$
+\end_inset
+
+ y
+\begin_inset Formula $\tilde{f}:W\to\mathbb{R}^{m}$
+\end_inset
+
+ diferenciable con
+\begin_inset Formula $\tilde{f}|_{S}=f$
+\end_inset
+
+, entonces
+\begin_inset Formula $f$
+\end_inset
+
+ es diferenciable.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Sea
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ una parametrización de
+\begin_inset Formula $S$
+\end_inset
+
+, entonces
+\begin_inset Formula $f\circ X=\tilde{f}\circ X:U\to\mathbb{R}^{m}$
+\end_inset
+
+ es diferenciable por ser composición de funciones diferenciables.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Si
+\begin_inset Formula $f$
+\end_inset
+
+ es diferenciable, es continua.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Sean
+\begin_inset Formula $p\in S$
+\end_inset
+
+ y
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ una parametrización de
+\begin_inset Formula $S$
+\end_inset
+
+ con
+\begin_inset Formula $p\in X(U)$
+\end_inset
+
+,
+\begin_inset Formula $f\circ X$
+\end_inset
+
+ es diferenciable y por tanto continua, pero como
+\begin_inset Formula $X$
+\end_inset
+
+ es un homeomorfismo,
+\begin_inset Formula $X^{-1}$
+\end_inset
+
+ es continua y
+\begin_inset Formula $f=(f\circ X)\circ X^{-1}$
+\end_inset
+
+ es continua en
+\begin_inset Formula $p$
+\end_inset
+
+.
+ Como
+\begin_inset Formula $p$
+\end_inset
+
+ es arbitrario,
+\begin_inset Formula $f$
+\end_inset
+
+ es continua en todo
+\begin_inset Formula $S$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Si
+\begin_inset Formula $f=:(f_{1},\dots,f_{m})$
+\end_inset
+
+,
+\begin_inset Formula $f$
+\end_inset
+
+ es diferenciable si y sólo si cada
+\begin_inset Formula $f_{i}$
+\end_inset
+
+ lo es.
+\end_layout
+
+\begin_deeper
+\begin_layout Enumerate
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\implies]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+Dada una parametrización
+\begin_inset Formula $(U,X)$
+\end_inset
+
+, como
+\begin_inset Formula $f\circ X$
+\end_inset
+
+ es diferenciable, cada
+\begin_inset Formula $(f\circ X)_{i}=f_{i}\circ X$
+\end_inset
+
+ también.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\impliedby]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+Dada una parametrización
+\begin_inset Formula $(U,X)$
+\end_inset
+
+, como cada
+\begin_inset Formula $f_{i}\circ X=(f\circ X)_{i}$
+\end_inset
+
+ es diferenciable,
+\begin_inset Formula $f\circ X$
+\end_inset
+
+ también lo es.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Si
+\begin_inset Formula $f_{1},f_{2}:S\to\mathbb{R}^{m}$
+\end_inset
+
+ son diferenciables,
+\begin_inset Formula $f_{1}+f_{2}$
+\end_inset
+
+ también lo es.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Dada una parametrización
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ de
+\begin_inset Formula $S$
+\end_inset
+
+,
+\begin_inset Formula $f_{1}\circ X$
+\end_inset
+
+ y
+\begin_inset Formula $f_{2}\circ X$
+\end_inset
+
+ son diferenciables, luego
+\begin_inset Formula $(f_{1}\circ X)+(f_{2}\circ X)=(f_{1}+f_{2})\circ X$
+\end_inset
+
+ también.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Si
+\begin_inset Formula $f$
+\end_inset
+
+ y
+\begin_inset Formula $g:S\to\mathbb{R}$
+\end_inset
+
+ son diferenciables,
+\begin_inset Formula $fg$
+\end_inset
+
+ también.
+ Si además
+\begin_inset Formula $g$
+\end_inset
+
+ no se anula,
+\begin_inset Formula $f/g$
+\end_inset
+
+ es diferenciable.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Dada una parametrización
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ de
+\begin_inset Formula $S$
+\end_inset
+
+,
+\begin_inset Formula $f\circ X$
+\end_inset
+
+ y
+\begin_inset Formula $g\circ X$
+\end_inset
+
+ son diferenciables, luego
+\begin_inset Formula $(f\circ X)(g\circ X)=(fg)\circ X$
+\end_inset
+
+ también y, si
+\begin_inset Formula $g$
+\end_inset
+
+ no se anula,
+\begin_inset Formula $(f\circ X)/(g\circ X)=(f/g)\circ X$
+\end_inset
+
+ también.
+\end_layout
+
+\end_deeper
+\begin_layout Standard
+Ejemplos:
+\end_layout
+
+\begin_layout Enumerate
+Sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular y
+\begin_inset Formula $p_{0}\in\mathbb{R}^{3}$
+\end_inset
+
+,
+\begin_inset Formula $f(p):=|p-p_{0}|^{2}$
+\end_inset
+
+ es diferenciable en
+\begin_inset Formula $S$
+\end_inset
+
+, pero la función distancia,
+\begin_inset Formula $g(p):=|p-p_{0}|$
+\end_inset
+
+, es diferenciable en
+\begin_inset Formula $S$
+\end_inset
+
+ si y sólo si
+\begin_inset Formula $p_{0}\notin S$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Como
+\begin_inset Formula $f$
+\end_inset
+
+ es polinómica, es diferenciable en todo
+\begin_inset Formula $\mathbb{R}^{3}$
+\end_inset
+
+ y por tanto en
+\begin_inset Formula $S$
+\end_inset
+
+.
+ Entonces
+\begin_inset Formula $g$
+\end_inset
+
+ es diferenciable en todo
+\begin_inset Formula $\mathbb{R}^{3}\setminus\{p_{0}\}$
+\end_inset
+
+, luego lo es en
+\begin_inset Formula $S$
+\end_inset
+
+ si
+\begin_inset Formula $p_{0}\notin S$
+\end_inset
+
+, pero si
+\begin_inset Formula $p_{0}\in S$
+\end_inset
+
+, dada una parametrización
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ de
+\begin_inset Formula $S$
+\end_inset
+
+ con
+\begin_inset Formula $p_{0}\in X(U)$
+\end_inset
+
+,
+\begin_inset Formula $(g\circ X)(q)=|X(q)-p_{0}|=|X(q)-X(q_{0})|$
+\end_inset
+
+ para algún
+\begin_inset Formula $q_{0}\in U$
+\end_inset
+
+.
+ Entonces
+\begin_inset Formula $\frac{\partial(g\circ X)}{\partial q}=\frac{\sum_{i=1}^{3}(X_{i}(q)-X_{i}(q_{0}))X'_{i}(q)}{|X(q)-X(q_{0})|}$
+\end_inset
+
+, que no está definida en
+\begin_inset Formula $q_{0}$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Dado un vector
+\begin_inset Formula $v$
+\end_inset
+
+ unitario, la
+\series bold
+función altura
+\series default
+,
+\begin_inset Formula $h(p):=\langle p,v\rangle$
+\end_inset
+
+, representa la distancia de
+\begin_inset Formula $p$
+\end_inset
+
+ al plano ortogonal a
+\begin_inset Formula $v$
+\end_inset
+
+ por el origen y es diferenciable en toda superficie regular
+\begin_inset Formula $S$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Por ser
+\begin_inset Formula $h$
+\end_inset
+
+ polinómica y por tanto diferenciable en todo
+\begin_inset Formula $\mathbb{R}^{3}$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Subsection
+Funciones diferenciables entre dos superficies
+\end_layout
+
+\begin_layout Standard
+Dadas dos superficies
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $S_{2}$
+\end_inset
+
+ y
+\begin_inset Formula $F:S_{1}\to S_{2}$
+\end_inset
+
+,
+\begin_inset Formula $F$
+\end_inset
+
+ es diferenciable si y sólo si para cualesquiera parametrizaciones
+\begin_inset Formula $(U_{1},X_{1})$
+\end_inset
+
+ de
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $(U_{2},X_{2})$
+\end_inset
+
+ de
+\begin_inset Formula $S_{2}$
+\end_inset
+
+ con
+\begin_inset Formula $F(X_{1}(U_{1}))\cap X_{2}(U_{2})\neq\emptyset$
+\end_inset
+
+, la
+\series bold
+expresión en coordenadas
+\series default
+ de
+\begin_inset Formula $F$
+\end_inset
+
+,
+\begin_inset Formula $X_{2}^{-1}\circ F\circ X_{1}$
+\end_inset
+
+, es diferenciable en su dominio.
+\end_layout
+
+\begin_layout Itemize
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\impliedby]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+Queremos ver que
+\begin_inset Formula $F:S_{1}\to\mathbb{R}^{3}$
+\end_inset
+
+ es diferenciable.
+ Dados
+\begin_inset Formula $p\in S$
+\end_inset
+
+,
+\begin_inset Formula $(U_{1},X_{1})$
+\end_inset
+
+ una parametrización de
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ con
+\begin_inset Formula $p\in X_{1}(U_{1})$
+\end_inset
+
+ y
+\begin_inset Formula $(U_{2},X_{2})$
+\end_inset
+
+ una de
+\begin_inset Formula $S_{2}$
+\end_inset
+
+ con
+\begin_inset Formula $F(p)\in X_{2}(U_{2})$
+\end_inset
+
+,
+\begin_inset Formula $\tilde{F}:=X_{2}^{-1}\circ F\circ X_{1}$
+\end_inset
+
+ es diferenciable en su dominio
+\begin_inset Formula $U:=U_{1}\cap X_{1}^{-1}(F^{-1}(X_{2}^{-1}(U_{2})))$
+\end_inset
+
+, luego
+\begin_inset Formula $F\circ X_{1}|_{U}=X_{2}\circ X_{2}^{-1}\circ F\circ X_{1}|_{U}=X_{2}\circ\tilde{F}$
+\end_inset
+
+ también lo es y la parametrización
+\begin_inset Formula $(U,X_{1}|_{U})$
+\end_inset
+
+ cubre a
+\begin_inset Formula $p$
+\end_inset
+
+ y cumple las condiciones.
+\end_layout
+
+\begin_layout Itemize
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\implies]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+Si
+\begin_inset Formula $(U_{1},X_{1})$
+\end_inset
+
+ es una parametrización de
+\begin_inset Formula $S_{1}$
+\end_inset
+
+, entonces
+\begin_inset Formula $G:=F\circ X_{1}:U_{1}\to S_{2}$
+\end_inset
+
+ es diferenciable.
+ Sea entonces
+\begin_inset Formula $(U_{2},X_{2})$
+\end_inset
+
+ una parametrización de
+\begin_inset Formula $S$
+\end_inset
+
+ con
+\begin_inset Formula $G(U_{1})\cap X_{2}(U_{2})\neq\emptyset$
+\end_inset
+
+, como
+\begin_inset Formula $G$
+\end_inset
+
+ es continua, el dominio de la expresión en coordenadas
+\begin_inset Formula $\tilde{F}:=X_{2}^{-1}\circ G$
+\end_inset
+
+,
+\begin_inset Formula $U:=U_{1}\cap G^{-1}(X_{2}(U_{2}))$
+\end_inset
+
+, es un abierto no vacío.
+ Queremos ver que
+\begin_inset Formula $\tilde{F}:U\to U_{2}$
+\end_inset
+
+ es diferenciable.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Para cada
+\begin_inset Formula $q\in U$
+\end_inset
+
+, si
+\begin_inset Formula $p:=G(q)\in V_{2}$
+\end_inset
+
+, existe una parametrización
+\begin_inset Formula $(U_{p},X_{p})$
+\end_inset
+
+ con
+\begin_inset Formula $p\in V_{p}:=X_{p}(U_{p})$
+\end_inset
+
+ de tipo grafo, por ejemplo de la forma
+\begin_inset Formula $X_{p}(u,v)=(u,v,f(u,v))$
+\end_inset
+
+ para una cierta
+\begin_inset Formula $f:U_{p}\to\mathbb{R}$
+\end_inset
+
+, y podemos suponer
+\begin_inset Formula $V_{p}\subseteq V_{2}$
+\end_inset
+
+.
+ Entonces
+\begin_inset Formula
+\[
+\tilde{F}|_{G^{-1}(V_{p})}=X_{2}^{-1}\circ G=(X_{2}^{-1}\circ X_{p})\circ X_{p}^{-1}\circ G|_{G^{-1}(V_{p})},
+\]
+
+\end_inset
+
+ pero
+\begin_inset Formula $X_{2}^{-1}\circ X_{p}$
+\end_inset
+
+ es diferenciable por ser un cambio de coordenadas,
+\begin_inset Formula $X_{p}^{-1}$
+\end_inset
+
+ lo es por ser una proyección ortogonal en un plano coordenado y
+\begin_inset Formula $G$
+\end_inset
+
+ lo es por hipótesis.
+ Como
+\begin_inset Formula $q\in G^{-1}(V_{p})$
+\end_inset
+
+ y
+\begin_inset Formula $q$
+\end_inset
+
+ es arbitrario,
+\begin_inset Formula $\tilde{F}$
+\end_inset
+
+ es diferenciable en todo
+\begin_inset Formula $U$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Standard
+Si
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $S_{2}$
+\end_inset
+
+ son superficies regulares,
+\begin_inset Formula $F:S_{1}\to S_{2}$
+\end_inset
+
+ es diferenciable si y sólo si para todo
+\begin_inset Formula $p\in S_{1}$
+\end_inset
+
+ existen parametrizaciones
+\begin_inset Formula $(U_{1},X_{1})$
+\end_inset
+
+ de
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ en
+\begin_inset Formula $p$
+\end_inset
+
+ y
+\begin_inset Formula $(U_{2},X_{2})$
+\end_inset
+
+ de
+\begin_inset Formula $S_{2}$
+\end_inset
+
+ en
+\begin_inset Formula $F(p)$
+\end_inset
+
+ tales que
+\begin_inset Formula $X_{2}^{-1}\circ F\circ X_{1}$
+\end_inset
+
+ es diferenciable en su dominio.
+\end_layout
+
+\begin_layout Itemize
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\implies]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+Consecuencia directa del resultado anterior.
+\end_layout
+
+\begin_layout Itemize
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\impliedby]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+Dado
+\begin_inset Formula $p\in S_{1}$
+\end_inset
+
+, sean
+\begin_inset Formula $(U_{1},X_{1})$
+\end_inset
+
+ y
+\begin_inset Formula $(U_{2},X_{2})$
+\end_inset
+
+ las parametrizaciones mencionadas y
+\begin_inset Formula $U:=X_{1}^{-1}(F^{-1}(X_{2}(U_{2})))$
+\end_inset
+
+, que es abierto, entonces
+\begin_inset Formula $F\circ X_{1}|_{U}=X_{2}\circ(X_{2}^{-1}\circ F\circ X_{1})|_{U}$
+\end_inset
+
+ es diferenciable por ser composición de diferenciables, luego
+\begin_inset Formula $(U,X_{1}|_{U})$
+\end_inset
+
+ es una parametrización de
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ en
+\begin_inset Formula $p$
+\end_inset
+
+ con
+\begin_inset Formula $F\circ X_{1}$
+\end_inset
+
+ diferenciable.
+\end_layout
+
+\begin_layout Subsection
+Difeomorfismos entre superficies
+\end_layout
+
+\begin_layout Standard
+Dadas dos superficies regulares
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $S_{2}$
+\end_inset
+
+,
+\begin_inset Formula $F:S_{1}\to S_{2}$
+\end_inset
+
+ es un
+\series bold
+difeomorfismo
+\series default
+ si una biyección diferenciable con inversa
+\begin_inset Formula $S_{2}\to S_{1}$
+\end_inset
+
+ diferenciable.
+
+\begin_inset Formula $S_{1}$
+\end_inset
+
+ es
+\series bold
+difeomorfa
+\series default
+ a
+\begin_inset Formula $S_{2}$
+\end_inset
+
+,
+\begin_inset Formula $S_{1}\approx S_{2}$
+\end_inset
+
+, si existe un difeomorfismo entre ellas.
+\end_layout
+
+\begin_layout Standard
+Dadas dos variedades diferenciales
+\begin_inset Formula $X$
+\end_inset
+
+ e
+\begin_inset Formula $Y$
+\end_inset
+
+,
+\begin_inset Formula $X$
+\end_inset
+
+ es
+\series bold
+localmente difeomorfa
+\series default
+ a
+\begin_inset Formula $Y$
+\end_inset
+
+ si todo
+\begin_inset Formula $x\in X$
+\end_inset
+
+ tiene un entorno difeomorfo a un abierto de
+\begin_inset Formula $Y$
+\end_inset
+
+.
+ Dada una superficie regular
+\begin_inset Formula $S$
+\end_inset
+
+ con una parametrización
+\begin_inset Formula $(U,X)$
+\end_inset
+
+,
+\begin_inset Formula $X:U\to X(U)$
+\end_inset
+
+ es un difeomorfismo, y en particular
+\begin_inset Formula $S$
+\end_inset
+
+ es localmente difeomorfa a un plano.
+
+\series bold
+Demostración:
+\series default
+ Tomamos el plano
+\begin_inset Formula $\pi:=\mathbb{R}^{2}\times\{0\}$
+\end_inset
+
+.
+ Dados
+\begin_inset Formula $p\in S$
+\end_inset
+
+, una parametrización
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ de
+\begin_inset Formula $S$
+\end_inset
+
+ en
+\begin_inset Formula $p$
+\end_inset
+
+,
+\begin_inset Formula $V:=X(U)$
+\end_inset
+
+ e
+\begin_inset Formula $i:\mathbb{R}^{2}\to\pi$
+\end_inset
+
+ dada por
+\begin_inset Formula $i(u,v):=(u,v,0)$
+\end_inset
+
+, tomamos
+\begin_inset Formula $f:=i\circ X^{-1}:V\to i(U)$
+\end_inset
+
+, y como
+\begin_inset Formula $f^{-1}=X\circ\pi_{z}|_{i(U)}$
+\end_inset
+
+ es una biyección diferenciable por ser composición de biyecciones diferenciable
+s, queda ver que
+\begin_inset Formula $f$
+\end_inset
+
+ es diferenciable, pero tomando la parametrización
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ de
+\begin_inset Formula $V$
+\end_inset
+
+,
+\begin_inset Formula $f\circ X=i:U\to i(U)$
+\end_inset
+
+ es diferenciable.
+\end_layout
+
+\begin_layout Section
+Plano tangente
+\end_layout
+
+\begin_layout Standard
+Sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular,
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ una curva diferenciable,
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ una parametrización de
+\begin_inset Formula $S$
+\end_inset
+
+ con
+\begin_inset Formula $\alpha(I)\cap(V:=X(U))\neq\emptyset$
+\end_inset
+
+ y
+\begin_inset Formula $J:=\{t\in I:\alpha(t)\in V\}$
+\end_inset
+
+, entonces
+\begin_inset Formula $\tilde{\alpha}:J\to U$
+\end_inset
+
+ dada por
+\begin_inset Formula $\tilde{\alpha}(t):=X^{-1}(\alpha(t))$
+\end_inset
+
+ es una curva en
+\begin_inset Formula $\mathbb{R}^{2}$
+\end_inset
+
+ llamada
+\series bold
+expresión en coordenadas
+\series default
+ de
+\begin_inset Formula $\alpha$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular y
+\begin_inset Formula $p\in S$
+\end_inset
+
+, un
+\begin_inset Formula $v\in\mathbb{R}^{3}$
+\end_inset
+
+ es un
+\series bold
+vector tangente
+\series default
+ a
+\begin_inset Formula $S$
+\end_inset
+
+ en
+\begin_inset Formula $p$
+\end_inset
+
+ si existe una curva diferenciable
+\begin_inset Formula $\alpha:(-\varepsilon,\varepsilon)\to S$
+\end_inset
+
+ con
+\begin_inset Formula $\alpha(0)=p$
+\end_inset
+
+ y
+\begin_inset Formula $\alpha'(0)=v$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Llamamos
+\series bold
+plano tangente
+\series default
+ a
+\begin_inset Formula $S$
+\end_inset
+
+ en
+\begin_inset Formula $p$
+\end_inset
+
+,
+\begin_inset Formula $T_{p}S$
+\end_inset
+
+, al conjunto de vectores tangentes a
+\begin_inset Formula $S$
+\end_inset
+
+ en
+\begin_inset Formula $p$
+\end_inset
+
+.
+ Dados una parametrización
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ de
+\begin_inset Formula $S$
+\end_inset
+
+ en
+\begin_inset Formula $p$
+\end_inset
+
+ y
+\begin_inset Formula $q:=X^{-1}(p)$
+\end_inset
+
+,
+\begin_inset Formula $T_{p}S=dX(q)(\mathbb{R}^{2})$
+\end_inset
+
+, un plano vectorial en
+\begin_inset Formula $\mathbb{R}^{3}$
+\end_inset
+
+ del que
+\begin_inset Formula $\{X_{u}(q),X_{v}(q)\}$
+\end_inset
+
+ es una base.
+\end_layout
+
+\begin_layout Itemize
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\supseteq]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+Sean
+\begin_inset Formula $v\in dX(q)(\mathbb{R}^{2})$
+\end_inset
+
+,
+\begin_inset Formula $w\in\mathbb{R}^{2}$
+\end_inset
+
+ con
+\begin_inset Formula $v=dX(q)(w)$
+\end_inset
+
+,
+\begin_inset Formula $\tilde{\alpha}(t):=q+tw$
+\end_inset
+
+ definida en un entorno de la forma
+\begin_inset Formula $(-\varepsilon,\varepsilon)$
+\end_inset
+
+ con imagen en
+\begin_inset Formula $U$
+\end_inset
+
+ y
+\begin_inset Formula $\alpha:=X\circ\tilde{\alpha}:(-\varepsilon,\varepsilon)\to S$
+\end_inset
+
+,
+\begin_inset Formula $\alpha$
+\end_inset
+
+ es una curva diferenciable con
+\begin_inset Formula $\alpha(0)=p$
+\end_inset
+
+ y
+\begin_inset Formula $\alpha'(0)=dX(\tilde{\alpha}(0))(\tilde{\alpha}'(0))=dX(q)(w)=v$
+\end_inset
+
+, luego
+\begin_inset Formula $v\in T_{p}S$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Itemize
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\subseteq]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+Sea
+\begin_inset Formula $v\in T_{p}S$
+\end_inset
+
+, existe una curva diferenciable
+\begin_inset Formula $\alpha:(-\varepsilon,\varepsilon)\to S$
+\end_inset
+
+ con
+\begin_inset Formula $\alpha(0)=p$
+\end_inset
+
+ y
+\begin_inset Formula $\alpha'(0)=v$
+\end_inset
+
+ con expresión en coordenadas
+\begin_inset Formula $\tilde{\alpha}:J\subseteq I\to U$
+\end_inset
+
+, pero entonces
+\begin_inset Formula $\tilde{\alpha}(0)=X^{-1}(\alpha(0))=q$
+\end_inset
+
+ y
+\begin_inset Formula $dX(q)(\tilde{\alpha}'(0))=dX(\tilde{\alpha}(0))(\tilde{\alpha}'(0))=(X\circ\tilde{\alpha})'(0)=\alpha'(0)=v$
+\end_inset
+
+, luego
+\begin_inset Formula $v\in dX(q)(\mathbb{R}^{2})$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Llamamos
+\series bold
+recta normal
+\series default
+ a una superficie regular
+\begin_inset Formula $S$
+\end_inset
+
+ en un punto
+\begin_inset Formula $p\in S$
+\end_inset
+
+ a
+\begin_inset Formula $(T_{p}S)^{\bot}$
+\end_inset
+
+.
+ Entonces el
+\series bold
+vector normal
+\series default
+ (
+\series bold
+unitario
+\series default
+) a
+\begin_inset Formula $S$
+\end_inset
+
+ en
+\begin_inset Formula $p$
+\end_inset
+
+ es un vector unitario
+\begin_inset Formula $N(p)$
+\end_inset
+
+ tal que
+\begin_inset Formula $(T_{p}S)^{\bot}=\text{span}\{N(p)\}$
+\end_inset
+
+, unívocamente determinado salvo el signo, y dado por
+\begin_inset Formula
+\[
+N(X(q))=\pm\frac{X_{u}(q)\wedge X_{v}(q)}{|X_{u}(q)\wedge X_{v}(q)|}.
+\]
+
+\end_inset
+
+Tomando signo positivo, la base
+\begin_inset Formula $\{X_{u}(q),X_{v}(q),N(q)\}$
+\end_inset
+
+ está orientada positivamente.
+\end_layout
+
+\begin_layout Section
+Primera forma fundamental
+\end_layout
+
+\begin_layout Standard
+Dados una superficie regular
+\begin_inset Formula $S$
+\end_inset
+
+ y
+\begin_inset Formula $p\in S$
+\end_inset
+
+, definimos el producto escalar
+\begin_inset Formula $\langle\cdot,\cdot\rangle_{p}:=\langle\cdot,\cdot\rangle|_{T_{p}S}$
+\end_inset
+
+ como el producto escalar usual restringido al plano tangente.
+ Llamamos
+\series bold
+primera forma fundamental
+\series default
+ de
+\begin_inset Formula $S$
+\end_inset
+
+ en
+\begin_inset Formula $p$
+\end_inset
+
+ a
+\begin_inset Formula ${\cal I}_{p}:T_{p}S\to\mathbb{R}$
+\end_inset
+
+ dada por
+\begin_inset Formula ${\cal I}_{p}(v):=\langle v,v\rangle_{p}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Llamamos
+\series bold
+coeficientes de la primera forma fundamental
+\series default
+ de una parametrización
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ de
+\begin_inset Formula $S$
+\end_inset
+
+ a
+\begin_inset Formula $E:=\langle X_{u},X_{u}\rangle$
+\end_inset
+
+,
+\begin_inset Formula $F:=\langle X_{u},X_{v}\rangle$
+\end_inset
+
+ y
+\begin_inset Formula $G:=\langle X_{v},X_{v}\rangle$
+\end_inset
+
+, de modo que para
+\begin_inset Formula $q\in U$
+\end_inset
+
+,
+\begin_inset Formula $p:=X(q)$
+\end_inset
+
+ y
+\begin_inset Formula $w\in T_{p}S$
+\end_inset
+
+, si
+\begin_inset Formula $u,v\in\mathbb{R}$
+\end_inset
+
+ son tales que
+\begin_inset Formula $w=uX_{u}(q)+vX_{v}(q)$
+\end_inset
+
+, entonces
+\begin_inset Formula
+\[
+{\cal I}_{p}(v)=u^{2}E(q)+2uvF(q)+v^{2}G(q).
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Ejemplos:
+\end_layout
+
+\begin_layout Enumerate
+Sean
+\begin_inset Formula $U\subseteq\mathbb{R}^{2}$
+\end_inset
+
+ abierto,
+\begin_inset Formula $f:U\to\mathbb{R}^{2}$
+\end_inset
+
+ diferenciable,
+\begin_inset Formula $S:=G(f)$
+\end_inset
+
+,
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ la parametrización de
+\begin_inset Formula $S$
+\end_inset
+
+ dada por
+\begin_inset Formula $X(u,v):=(u,v,f(u,v))$
+\end_inset
+
+,
+\begin_inset Formula $f_{u}:=\frac{\partial f}{\partial u}$
+\end_inset
+
+ y
+\begin_inset Formula $f_{v}:=\frac{\partial f}{\partial v}$
+\end_inset
+
+, entonces
+\begin_inset Formula $E=1+f_{u}^{2}$
+\end_inset
+
+,
+\begin_inset Formula $F=f_{u}f_{v}$
+\end_inset
+
+ y
+\begin_inset Formula $G=1+f_{v}^{2}$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+\begin_inset Formula $X_{u}=(1,0,f_{u})$
+\end_inset
+
+ y
+\begin_inset Formula $X_{v}=(0,1,f_{v})$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Sean
+\begin_inset Formula $p,v,w\in\mathbb{R}^{3}$
+\end_inset
+
+,
+\begin_inset Formula $S:=p+\langle v,w\rangle$
+\end_inset
+
+ un plano y
+\begin_inset Formula $(\mathbb{R}^{2},X)$
+\end_inset
+
+ una parametrización de
+\begin_inset Formula $S$
+\end_inset
+
+ con
+\begin_inset Formula $X(t,u)=p+tv+uw$
+\end_inset
+
+, entonces
+\begin_inset Formula $E=|v|^{2}$
+\end_inset
+
+,
+\begin_inset Formula $F=\langle v,w\rangle$
+\end_inset
+
+ y
+\begin_inset Formula $G=|w|^{2}$
+\end_inset
+
+.
+ En particular, si
+\begin_inset Formula $(v,w)$
+\end_inset
+
+ es una base ortonormal,
+\begin_inset Formula $E=G=1$
+\end_inset
+
+ y
+\begin_inset Formula $F=0$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+\begin_inset Formula $X_{u}=(v_{1},v_{2},v_{3})=v$
+\end_inset
+
+ y, análogamente,
+\begin_inset Formula $X_{v}=w$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Dados
+\begin_inset Formula $r>0$
+\end_inset
+
+, el cilindro
+\begin_inset Formula $C:=\{(x,y,z):x^{2}+y^{2}=r^{2}\}$
+\end_inset
+
+ y la parametrización
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ de
+\begin_inset Formula $C$
+\end_inset
+
+ dada por
+\begin_inset Formula $U:=(0,2\pi)\times\mathbb{R}$
+\end_inset
+
+ y
+\begin_inset Formula $X(u,v):=(r\cos u,r\sin u,v)$
+\end_inset
+
+, entonces
+\begin_inset Formula $E=r^{2}$
+\end_inset
+
+,
+\begin_inset Formula $F=0$
+\end_inset
+
+ y
+\begin_inset Formula $G=1$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+\begin_inset Formula $X_{u}=(-r\sin u,r\cos u,0)$
+\end_inset
+
+ y
+\begin_inset Formula $X_{v}=(0,0,v)$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Sean
+\begin_inset Formula $a>0$
+\end_inset
+
+ y
+\begin_inset Formula $\alpha(u):=(\cos u,\sin u,au)$
+\end_inset
+
+, el
+\series bold
+helicoide
+\series default
+ es la superficie regular obtenida de trazar, desde cada punto de
+\begin_inset Formula $\alpha(\mathbb{R})$
+\end_inset
+
+, una recta paralela al plano
+\begin_inset Formula $XY$
+\end_inset
+
+ que pasa por el eje
+\begin_inset Formula $Z$
+\end_inset
+
+.
+ Una parametrización es pues
+\begin_inset Formula $(\mathbb{R}^{2},X)$
+\end_inset
+
+ con
+\begin_inset Formula $X(u,v):=(v\cos u,v\sin u,au)$
+\end_inset
+
+, y entonces
+\begin_inset Formula $E=a^{2}+v^{2}$
+\end_inset
+
+,
+\begin_inset Formula $F=0$
+\end_inset
+
+ y
+\begin_inset Formula $G=1$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+\begin_inset Formula $X_{u}=(-v\sin u,v\cos u,a)$
+\end_inset
+
+ y
+\begin_inset Formula $X_{v}=(\cos u,\sin u,0)$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Standard
+Sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular,
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ una parametrización de
+\begin_inset Formula $S$
+\end_inset
+
+ y
+\begin_inset Formula $E$
+\end_inset
+
+,
+\begin_inset Formula $F$
+\end_inset
+
+ y
+\begin_inset Formula $G$
+\end_inset
+
+ los coeficientes de su primera forma fundamental:
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $E,G>0$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+\begin_inset Formula $X_{u},X_{v}\neq0$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+\begin_inset Formula $EG-F^{2}=|X_{u}\land X_{v}|^{2}>0$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+\begin_inset Formula $|X_{u}\land X_{v}|^{2}+\langle X_{u},X_{v}\rangle^{2}=|X_{u}|^{2}|X_{v}|^{2}\sin^{2}\theta+|X_{u}|^{2}|X_{v}|^{2}\cos^{2}\theta=|X_{u}|^{2}|X_{v}|^{2}$
+\end_inset
+
+ para un cierto ángulo
+\begin_inset Formula $\theta$
+\end_inset
+
+, luego
+\begin_inset Formula $EG-F^{2}=|X_{u}|^{2}|X_{v}|^{2}-\langle X_{u},X_{v}\rangle^{2}=|X_{u}\land X_{v}|^{2}>0$
+\end_inset
+
+, pues
+\begin_inset Formula $X_{u}$
+\end_inset
+
+ y
+\begin_inset Formula $X_{v}$
+\end_inset
+
+ son linealmente independientes.
+\end_layout
+
+\end_deeper
+\begin_layout Subsection
+Elemento de arco
+\end_layout
+
+\begin_layout Standard
+Sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular,
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ una parametrización de
+\begin_inset Formula $S$
+\end_inset
+
+,
+\begin_inset Formula $\alpha:I\to X(U)$
+\end_inset
+
+ una curva con
+\begin_inset Formula $0\in I$
+\end_inset
+
+,
+\begin_inset Formula $\tilde{\alpha}:=(u,v):I\to U$
+\end_inset
+
+ su expresión en coordenadas y
+\begin_inset Formula $s(t):=L_{0}^{t}(\alpha)$
+\end_inset
+
+, entonces
+\begin_inset Formula $\dot{s}^{2}(t)=E(\tilde{\alpha}(t))\dot{u}^{2}(t)+2F(\tilde{\alpha}(t))\dot{u}(t)\dot{v}(t)+G(\tilde{\alpha}(t))\dot{v}^{2}(t)$
+\end_inset
+
+, lo que suele escribirse como
+\begin_inset Formula
+\[
+(ds)^{2}=E(du)^{2}+2Fdudv+G(dv)^{2},
+\]
+
+\end_inset
+
+y se dice que
+\begin_inset Formula $ds$
+\end_inset
+
+ es el
+\series bold
+elemento de arco
+\series default
+ o
+\series bold
+de línea
+\series default
+ de
+\begin_inset Formula $S$
+\end_inset
+
+.
+ En efecto,
+\begin_inset Formula
+\begin{align*}
+s(t) & =\int_{0}^{t}|\alpha'(r)|dr=\int_{0}^{t}\sqrt{{\cal I}_{\alpha(r)}(\alpha'(r))}dr\\
+ & =\int_{0}^{t}\sqrt{E(\tilde{\alpha}(r))u'(r)^{2}+2F(\tilde{\alpha}(r))u'(r)v'(r)+G(\tilde{\alpha}(r))v'(r)^{2}}dr.
+\end{align*}
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Subsection
+Parametrizaciones ortogonales
+\end_layout
+
+\begin_layout Standard
+Sean
+\begin_inset Formula $S$
+\end_inset
+
+ una superficie regular,
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ una parametrización de
+\begin_inset Formula $S$
+\end_inset
+
+,
+\begin_inset Formula $(u_{0},v_{0})\in U$
+\end_inset
+
+ y
+\begin_inset Formula $\alpha:I\to S$
+\end_inset
+
+ y
+\begin_inset Formula $\beta:J\to S$
+\end_inset
+
+ las
+\series bold
+curvas coordenadas
+\series default
+ para
+\begin_inset Formula $(u_{0},v_{0})$
+\end_inset
+
+, dadas por
+\begin_inset Formula $\alpha(u):=X(u,v_{0})$
+\end_inset
+
+ y
+\begin_inset Formula $\beta(v):=X(u_{0},v)$
+\end_inset
+
+.
+ Si
+\begin_inset Formula $E$
+\end_inset
+
+,
+\begin_inset Formula $F$
+\end_inset
+
+ y
+\begin_inset Formula $G$
+\end_inset
+
+ son los coeficientes de la primera forma fundamental,
+\begin_inset Formula $\alpha$
+\end_inset
+
+ y
+\begin_inset Formula $\beta$
+\end_inset
+
+ se cortan en
+\begin_inset Formula $X(u_{0},v_{0})$
+\end_inset
+
+ formando un ángulo
+\begin_inset Formula
+\[
+\theta:=\arccos\frac{F}{\sqrt{EG}}.
+\]
+
+\end_inset
+
+Así, estas curvas son ortogonales si y sólo si
+\begin_inset Formula $F=0$
+\end_inset
+
+, y si esto ocurre en todo
+\begin_inset Formula $(u_{0},v_{0})\in U$
+\end_inset
+
+,
+\begin_inset Formula $X$
+\end_inset
+
+ es una
+\series bold
+parametrización ortogonal
+\series default
+.
+\end_layout
+
+\begin_layout Subsection
+Áreas
+\end_layout
+
+\begin_layout Standard
+Una
+\series bold
+región
+\series default
+ de una superficie regular
+\begin_inset Formula $S$
+\end_inset
+
+ es un subconjunto
+\begin_inset Formula $R\subseteq S$
+\end_inset
+
+ conexo y relativamente compacto tal que cada componente conexa de su frontera
+ es una curva regular salvo en un número finito de puntos y homeomorfa a
+
+\begin_inset Formula $\mathbb{S}^{1}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Si
+\begin_inset Formula $R$
+\end_inset
+
+ es una región de
+\begin_inset Formula $S$
+\end_inset
+
+ tal que existe una parametrización
+\begin_inset Formula $(U,X)$
+\end_inset
+
+ con
+\begin_inset Formula $R\subseteq X(U)$
+\end_inset
+
+, definimos el
+\series bold
+área
+\series default
+ de
+\begin_inset Formula $R$
+\end_inset
+
+ como
+\begin_inset Formula
+\[
+A(R):=\int_{X^{-1}(R)}|X_{u}\wedge X_{v}|du\,dv=\int_{X^{-1}(R)}\sqrt{EG-F^{2}}du\,dv.
+\]
+
+\end_inset
+
+El área no depende de la parametrización.
+
+\series bold
+Demostración:
+\series default
+ Sean
+\begin_inset Formula $(\overline{U},\overline{X})$
+\end_inset
+
+ otra parametrización de
+\begin_inset Formula $S$
+\end_inset
+
+ con
+\begin_inset Formula $R\subseteq\overline{X}(\overline{U})$
+\end_inset
+
+ y
+\begin_inset Formula $h:=(\overline{u},\overline{v}):=\overline{X}^{-1}\circ X$
+\end_inset
+
+, como
+\begin_inset Formula $X(u,v)=\overline{X}(\overline{u}(u,v),\overline{v}(u,v))$
+\end_inset
+
+, se tiene
+\begin_inset Formula $X_{u}=\overline{X}_{u}\frac{\partial\overline{u}}{\partial u}+\overline{X}_{v}\frac{\partial\overline{v}}{\partial u}$
+\end_inset
+
+ y
+\begin_inset Formula $X_{v}=\overline{X}_{u}\frac{\partial\overline{u}}{\partial v}+\overline{X}_{v}\frac{\partial\overline{v}}{\partial v}$
+\end_inset
+
+, y usando la antisimetría del producto vectorial,
+\begin_inset Formula
+\begin{align*}
+X_{u}\land X_{v} & =\frac{\partial\overline{u}}{\partial u}\frac{\partial\overline{v}}{\partial v}(\overline{X}_{u}\land\overline{X}_{v})+\frac{\partial\overline{v}}{\partial u}\frac{\partial\overline{u}}{\partial v}(\overline{X}_{v}\wedge\overline{X}_{u})\\
+ & =\left(\frac{\partial\overline{u}}{\partial u}\frac{\partial\overline{v}}{\partial v}-\frac{\partial\overline{v}}{\partial u}\frac{\partial\overline{u}}{\partial v}\right)(\overline{X}_{u}\land\overline{X}_{v})=\det(Jh)(\overline{X}_{u}\land\overline{X}_{v}).
+\end{align*}
+
+\end_inset
+
+Por tanto
+\begin_inset Formula $|\overline{X}_{u}\wedge\overline{X}_{v}|=|\det(Jh)|^{-1}|X_{u}\wedge X_{v}|=|\det(Jh^{-1})||X_{u}\land X_{v}|$
+\end_inset
+
+, y entonces, por el teorema del cambio de variable,
+\begin_inset Formula
+\[
+\iint_{\overline{X}^{-1}(R)}|\overline{X}_{u}\land\overline{X}_{v}|d\overline{u}\,d\overline{v}=\iint_{\overline{X}^{-1}(R)}|X_{u}\wedge X_{v}||\det(Jh^{-1})|d\overline{u}\,d\overline{v}=\iint_{X^{-1}(R)}|X_{u}\wedge X_{v}|du\,dv.
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset Note Note
+status open
+
+\begin_layout Plain Layout
+TODO Toro de revolución
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\end_body
+\end_document