diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-10-13 21:57:22 +0200 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-10-16 19:44:33 +0200 |
| commit | adb0f628e2db4cf4d248241947fec08ff4b0b785 (patch) | |
| tree | 2d770364a937e8aff646f917a97b601b61e91cb2 | |
| parent | 25a861fe9519562e3eae0bc7e5db42b49c1fa5a5 (diff) | |
Ejercicios tema 1
| -rw-r--r-- | ac/n1.lyx | 1009 |
1 files changed, 992 insertions, 17 deletions
@@ -723,6 +723,15 @@ grupo de las unidades \end_inset con el producto. + Para +\begin_inset Formula $x,y\in A$ +\end_inset + +, +\begin_inset Formula $xy\in A^{*}\iff x,y\in A^{*}$ +\end_inset + +. \end_layout \begin_layout Standard @@ -903,6 +912,183 @@ nilradical \end_layout \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{exinfo} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $a\in A$ +\end_inset + + es nilpotente entonces +\begin_inset Formula $1+(a)\subseteq A^{*}$ +\end_inset + + y, para +\begin_inset Formula $u\in A^{*}$ +\end_inset + +, +\begin_inset Formula $u+a\in U(A)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un +\begin_inset Formula $e\in A$ +\end_inset + + es +\series bold +idempotente +\series default + si +\begin_inset Formula $e^{2}=e$ +\end_inset + +, en cuyo caso +\begin_inset Formula $f\coloneqq1-e$ +\end_inset + + también lo es y +\begin_inset Formula $ef=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dados anillos +\begin_inset Formula $A_{1},\dots,A_{n}$ +\end_inset + + y +\begin_inset Formula $a=(a_{1},\dots,a_{n})\in A\coloneqq A_{1}\times\dots\times A_{n}$ +\end_inset + +, +\begin_inset Formula $a$ +\end_inset + + es invertible, cancelable, divisor de cero, nilpotente o idempotente en + +\begin_inset Formula $A$ +\end_inset + + si y sólo si lo es cada +\begin_inset Formula $a_{i}$ +\end_inset + + en +\begin_inset Formula $A_{i}$ +\end_inset + +. +\begin_inset Quotes crd +\end_inset + + +\end_layout + +\begin_layout Standard +Para +\begin_inset Formula $m\in\mathbb{Z}$ +\end_inset + + no cuadrado, definimos la +\series bold +norma +\series default + en +\begin_inset Formula $\mathbb{Z}[\sqrt{m}]$ +\end_inset + + como +\begin_inset Formula $N:\mathbb{Z}[\sqrt{m}]\to\mathbb{Z}$ +\end_inset + + dada por +\begin_inset Formula $N(a+b\sqrt{m})\coloneqq a^{2}-mb^{2}$ +\end_inset + + para +\begin_inset Formula $a,b\in\mathbb{Z}$ +\end_inset + +, y entonces: +\end_layout + +\begin_layout Enumerate +Las unidades de +\begin_inset Formula $\mathbb{Z}[\sqrt{m}]$ +\end_inset + + son los elementos de norma 1. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $m<0$ +\end_inset + + entonces +\begin_inset Formula $\mathbb{Z}[\sqrt{m}]^{*}$ +\end_inset + + es finito. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $m>0$ +\end_inset + + y +\begin_inset Formula $|\mathbb{Z}[\sqrt{m}]|^{*}>2$ +\end_inset + + entonces +\begin_inset Formula $|\mathbb{Z}[\sqrt{m}]|^{*}=|\mathbb{N}|$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{exinfo} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Dominios +\end_layout + +\begin_layout Standard Un anillo es \series bold reducido @@ -987,13 +1173,6 @@ cuerpo \end_layout \begin_layout Standard -\begin_inset Newpage pagebreak -\end_inset - - -\end_layout - -\begin_layout Standard Para \begin_inset Formula $n\geq2$ \end_inset @@ -1410,8 +1589,34 @@ La descomposición en primos de \end_layout \end_deeper -\begin_layout Section -Divisibilidad +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{exinfo} +\end_layout + +\end_inset + +Todo dominio con un número finito de ideales es un cuerpo, y en particular + lo es todo dominio finito. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{exinfo} +\end_layout + +\end_inset + + \end_layout \begin_layout Standard @@ -2157,6 +2362,71 @@ propio \end_layout \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{exinfo} +\end_layout + +\end_inset + +Dados anillos +\begin_inset Formula $A_{1},\dots,A_{n}$ +\end_inset + +, +\begin_inset Formula ${\cal L}(A_{1}\times\dots\times A_{n})=\{I_{1}\times\dots\times I_{n}\}_{I_{i}\trianglelefteq A_{i},\forall i}$ +\end_inset + +. +\begin_inset Quotes crd +\end_inset + + +\begin_inset Quotes cld +\end_inset + +Si +\begin_inset Formula $e\in A$ +\end_inset + + es idempotente, para +\begin_inset Formula $a\in A$ +\end_inset + +, +\begin_inset Formula $a\in(e)\iff a=ea$ +\end_inset + +, con lo que +\begin_inset Formula $(e)$ +\end_inset + + es un anillo con identidad +\begin_inset Formula $e$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{exinfo} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard La intersección de toda familia de ideales de \begin_inset Formula $A$ \end_inset @@ -2331,6 +2601,60 @@ ideal principal \end_inset son asociados. + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{exinfo} +\end_layout + +\end_inset + +Dado un anillo +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $b\in A$ +\end_inset + + cancelable no invertible, +\begin_inset Formula $(b,X)$ +\end_inset + + no es un ideal principal de +\begin_inset Formula $A[X]$ +\end_inset + +, y en particular +\begin_inset Formula $(X,Y)$ +\end_inset + + no es principal de +\begin_inset Formula $A[X,Y]$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{exinfo} +\end_layout + +\end_inset + + \end_layout \begin_layout Standard @@ -2438,6 +2762,43 @@ dominio de ideales principales \end_layout \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{exinfo} +\end_layout + +\end_inset + +En un DIP, +\begin_inset Formula $(a)+(b)=(\gcd\{a,b\})$ +\end_inset + + y +\begin_inset Formula $(a)\cap(b)=(\text{lcm}\{a,b\})$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{exinfo} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard No todos los ideales son finitamente generados. En efecto, dado un anillo no trivial \begin_inset Formula $A$ @@ -2524,6 +2885,7 @@ Dados subconjuntos \end_inset . + \end_layout \begin_layout Standard @@ -2700,6 +3062,76 @@ Sea \end_layout \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{exinfo} +\end_layout + +\end_inset + + +\begin_inset Formula $I,J\trianglelefteq A$ +\end_inset + + tienen +\series bold +suma directa +\series default + +\begin_inset Formula $K\trianglelefteq A$ +\end_inset + +, +\begin_inset Formula $I\oplus J=K$ +\end_inset + +, si +\begin_inset Formula $I+J=K$ +\end_inset + + e +\begin_inset Formula $I\cap J=0$ +\end_inset + +. + +\begin_inset Formula $I\oplus J=A$ +\end_inset + + si y sólo si existe un idempotente +\begin_inset Formula $e\in A$ +\end_inset + + con +\begin_inset Formula $I=(e)$ +\end_inset + + y +\begin_inset Formula $J=(1-e)$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{exinfo} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard El \series bold ideal producto @@ -2907,6 +3339,60 @@ Los elementos de \end_layout \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{exinfo} +\end_layout + +\end_inset + +Dados un DIP +\begin_inset Formula $A$ +\end_inset + + e +\begin_inset Formula $I,J_{1},J_{2}\trianglelefteq A$ +\end_inset + + con +\begin_inset Formula $I\neq0$ +\end_inset + + e +\begin_inset Formula $IJ_{1}=IJ_{2}$ +\end_inset + +, entonces +\begin_inset Formula $J_{1}=J_{2}$ +\end_inset + +. + Esto no es cierto en general si +\begin_inset Formula $A$ +\end_inset + + no es un DIP. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{exinfo} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard Dados \begin_inset Formula $I,J\trianglelefteq A$ \end_inset @@ -2984,6 +3470,62 @@ Para . \end_layout +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{exinfo} +\end_layout + +\end_inset + +Un anillo +\begin_inset Formula $A$ +\end_inset + + es +\series bold +completamente idempotente +\series default + si todo +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + + cumple +\begin_inset Formula $I=I^{2}\coloneqq I\cdot I$ +\end_inset + +, si y sólo si para todo +\begin_inset Formula $I,J\trianglelefteq A$ +\end_inset + + es +\begin_inset Formula $I\cap J=IJ$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{exinfo} +\end_layout + +\end_inset + + +\end_layout + \begin_layout Section Isomorfía \end_layout @@ -3660,6 +4202,55 @@ comaximales \end_layout \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{exinfo} +\end_layout + +\end_inset + + +\begin_inset Formula $I,J\trianglelefteq A$ +\end_inset + + son comaximales si y sólo si +\begin_inset Formula $\forall x,y\in A,(x+I)\cap(y+J)\neq\emptyset$ +\end_inset + +, en cuyo caso para +\begin_inset Formula $n,m\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $I^{n}$ +\end_inset + + y +\begin_inset Formula $J^{m}$ +\end_inset + + son comaximales. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{exinfo} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard \series bold Teorema chino de los restos: @@ -3955,7 +4546,7 @@ Veamos ahora que \end_deeper \begin_layout Section -Ideales notables +Ideales maximales \end_layout \begin_layout Standard @@ -4050,6 +4641,59 @@ espectro maximal \end_layout \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{exinfo} +\end_layout + +\end_inset + + +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + + es maximal en +\begin_inset Formula $A$ +\end_inset + + si y sólo si +\begin_inset Formula $I+(X)$ +\end_inset + + lo es en +\begin_inset Formula $A[X]$ +\end_inset + +, pero +\begin_inset Formula $I[X]$ +\end_inset + + nunca es maximal en +\begin_inset Formula $A[X]$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{exinfo} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard Una \series bold cadena @@ -4192,6 +4836,213 @@ Demostración: \end_layout \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{exinfo} +\end_layout + +\end_inset + +Llamamos +\series bold +radical de Jacobson +\series default + de un anillo +\begin_inset Formula $A$ +\end_inset + + a +\begin_inset Formula $\text{Jac}(A)\coloneqq\bigcap\text{MaxSpec}(A)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall a\in A,(1+(a)\subseteq A^{*}\implies a\in\text{Jac}(A))$ +\end_inset + +, y en particular +\begin_inset Formula $\text{Nil}(A)\subseteq\text{Jac}(A)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{Jac}(A)$ +\end_inset + + no contiene elementos idempotentes no nulos. +\end_layout + +\begin_layout Standard +Un anillo +\begin_inset Formula $A$ +\end_inset + + es +\series bold +local +\series default + si tiene un único ideal maximal +\begin_inset Formula $M$ +\end_inset + +, si y sólo si +\begin_inset Formula $A\setminus A^{*}$ +\end_inset + + es un ideal, en cuyo caso +\begin_inset Formula $M=A\setminus A^{*}$ +\end_inset + +. + Entonces decimos que +\begin_inset Formula $(A,M)$ +\end_inset + + o +\begin_inset Formula $(A,M,A/M)$ +\end_inset + + es un +\series bold +anillo local +\series default +. + Si +\begin_inset Formula $(A,M)$ +\end_inset + + es un anillo local, +\begin_inset Formula $1+M$ +\end_inset + + es un subgrupo multiplicativo de +\begin_inset Formula $A^{*}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $p\in\mathbb{Z}^{+}$ +\end_inset + + primo y +\begin_inset Formula $\mathbb{Z}_{(p)}$ +\end_inset + + el subconjunto de +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + de los racionales en cuya expresión como fracción irreducible el denominador + no es múltiplo de +\begin_inset Formula $p$ +\end_inset + +, entonces +\begin_inset Formula $(\mathbb{Z}_{(p)},(\frac{p}{1}))$ +\end_inset + + es un subanillo local de +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + con +\begin_inset Formula $\mathbb{Z}_{(p)}/(\frac{p}{1})\cong\mathbb{Z}_{p}$ +\end_inset + +, y es un DFU en el que +\begin_inset Formula $p$ +\end_inset + + es el único irreducible salvo asociados. +\end_layout + +\begin_layout Standard +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + + es +\series bold +nil +\series default + si está contenido en +\begin_inset Formula $\text{Nil}(A)$ +\end_inset + +, y en tal caso: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall a\in A,(a+I\in(A/I)^{*}\implies a\in A^{*})$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A/I$ +\end_inset + + no tiene idempotentes distintos de +\begin_inset Formula $\overline{0}$ +\end_inset + + y +\begin_inset Formula $\overline{1}$ +\end_inset + +, tampoco los tiene +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $I$ +\end_inset + + es maximal, +\begin_inset Formula $A$ +\end_inset + + es un anillo local. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{exinfo} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Ideales primos +\end_layout + +\begin_layout Standard \begin_inset Formula $I\triangleleft A$ \end_inset @@ -4568,6 +5419,133 @@ Para \end_deeper \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{exinfo} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +3. +\end_layout + +\end_inset + +Si todo ideal principal de +\begin_inset Formula $A$ +\end_inset + + es primo, +\begin_inset Formula $A$ +\end_inset + + es un cuerpo. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +4. +\end_layout + +\end_inset + +Si +\begin_inset Formula $\forall x\in A,\exists k\geq2:x^{k}=x$ +\end_inset + + entonces +\begin_inset Formula $\text{Spec}(A)=\text{MaxSpec}(A)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +5. +\end_layout + +\end_inset + + +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + + es primo si y sólo si lo es +\begin_inset Formula $I[X]$ +\end_inset + + en +\begin_inset Formula $A[X]$ +\end_inset + +, si y sólo si lo es +\begin_inset Formula $I+(X)$ +\end_inset + + en +\begin_inset Formula $A[X]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dados un homomorfismo +\begin_inset Formula $f:A\to B$ +\end_inset + + y +\begin_inset Formula $P\trianglelefteq_{\text{p}}B$ +\end_inset + +, +\begin_inset Formula $f^{-1}(P)\trianglelefteq_{\text{p}}A$ +\end_inset + +, y el recíproco se cumple si +\begin_inset Formula $f$ +\end_inset + + es suprayectivo. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{exinfo} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard Dado un conjunto ordenado \begin_inset Formula $(S,\leq)$ \end_inset @@ -4783,6 +5761,10 @@ Demostración: . \end_layout +\begin_layout Section +Radicales +\end_layout + \begin_layout Standard \begin_inset Formula $I\trianglelefteq A$ \end_inset @@ -4911,13 +5893,6 @@ radical \end_layout \begin_layout Standard -\begin_inset Newpage pagebreak -\end_inset - - -\end_layout - -\begin_layout Standard Propiedades: \end_layout |
