diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2021-06-08 19:40:00 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2021-06-08 19:40:00 +0200 |
| commit | b01bada353e42059d8c17caac88decee78860410 (patch) | |
| tree | 31a8e96dd02ed751fec2a51f80733bc69b4240e9 | |
| parent | 4875b88a90e0482e54837b5ab4be0e8071980800 (diff) | |
Algebraicas tema 5
| -rw-r--r-- | cyn/n7.lyx | 12 | ||||
| -rw-r--r-- | ealg/n.lyx | 14 | ||||
| -rw-r--r-- | ealg/n5.lyx | 1871 |
3 files changed, 1893 insertions, 4 deletions
@@ -2410,9 +2410,10 @@ Si \end_inset . -\begin_inset Newline newline -\end_inset +\end_layout +\begin_deeper +\begin_layout Standard Los no-coprimos con \begin_inset Formula $p^{n}$ \end_inset @@ -2432,6 +2433,7 @@ Los no-coprimos con . \end_layout +\end_deeper \begin_layout Enumerate Si \begin_inset Formula $\text{mcd}(n,m)=1$ @@ -2442,9 +2444,10 @@ Si \end_inset . -\begin_inset Newline newline -\end_inset +\end_layout +\begin_deeper +\begin_layout Standard Definimos \begin_inset Formula $f:\mathbb{Z}_{nm}^{*}\rightarrow\mathbb{Z}_{n}^{*}\times\mathbb{Z}_{m}^{*}$ \end_inset @@ -2520,6 +2523,7 @@ Definimos . \end_layout +\end_deeper \begin_layout Enumerate Si \begin_inset Formula $m=p_{1}^{n_{1}}\cdots p_{s}^{n_{s}}$ @@ -190,5 +190,19 @@ filename "n4.lyx" \end_layout +\begin_layout Chapter +Raíces de la unidad +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n5.lyx" + +\end_inset + + +\end_layout + \end_body \end_document diff --git a/ealg/n5.lyx b/ealg/n5.lyx new file mode 100644 index 0000000..6d812c2 --- /dev/null +++ b/ealg/n5.lyx @@ -0,0 +1,1871 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Sean +\begin_inset Formula $K$ +\end_inset + + un cuerpo y +\begin_inset Formula $n\geq2$ +\end_inset + +, un +\begin_inset Formula $\xi\in K$ +\end_inset + + es una +\series bold +raíz +\begin_inset Formula $n$ +\end_inset + +-ésima de la unidad +\series default + o +\series bold +de uno +\series default + si +\begin_inset Formula $\xi^{n}=1$ +\end_inset + +, y llamamos +\begin_inset Formula +\[ +{\cal U}_{n}(K):=\{\xi\in K:\xi^{n}=1\}=\{\xi\in K:o_{K^{*}}(\xi)\mid n\}. +\] + +\end_inset + +En efecto, el orden de +\begin_inset Formula $\xi$ +\end_inset + + en +\begin_inset Formula $K^{*}$ +\end_inset + + es el menor +\begin_inset Formula $m>0$ +\end_inset + + con +\begin_inset Formula $\xi^{m}=n$ +\end_inset + +, luego si +\begin_inset Formula $m\mid n$ +\end_inset + + entonces +\begin_inset Formula $\xi^{n}=(\xi^{m})^{n/m}=1^{n/m}=1$ +\end_inset + + y si +\begin_inset Formula $\xi^{n}=1$ +\end_inset + +, sean +\begin_inset Formula $q$ +\end_inset + + y +\begin_inset Formula $r$ +\end_inset + + el cociente y resto de +\begin_inset Formula $n/m$ +\end_inset + +, entonces +\begin_inset Formula $1=\xi^{mq+r}=(\xi^{m})^{q}\xi^{r}=\xi^{r}$ +\end_inset + +, pero como +\begin_inset Formula $r<m$ +\end_inset + + debe ser +\begin_inset Formula $r=0$ +\end_inset + + y +\begin_inset Formula $mq=n$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula ${\cal U}_{n}(K)$ +\end_inset + + es un subgrupo cíclico de +\begin_inset Formula $K^{*}$ +\end_inset + +, pues contiene al 1, es cerrado por productos ( +\begin_inset Formula $\xi^{n}=1\land\mu^{n}=1\implies(\xi\mu)^{n}=\xi^{n}\mu^{n}=1$ +\end_inset + +) y, como +\begin_inset Formula $K^{*}$ +\end_inset + + es cíclico, todos sus subgrupos también. + Una raíz +\begin_inset Formula $n$ +\end_inset + +-ésima es +\series bold +primitiva +\series default + si +\begin_inset Formula $o_{K^{*}}(\xi)=n$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Propiedades: Si +\begin_inset Formula $K$ +\end_inset + + es un cuerpo y +\begin_inset Formula $n\geq2$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Toda raíz +\begin_inset Formula $n$ +\end_inset + +-ésima de uno es raíz +\begin_inset Formula $tn$ +\end_inset + +-ésima de uno para +\begin_inset Formula $t\geq1$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula $\xi^{n}=1\implies\xi^{tn}=(\xi^{n})^{t}=1^{t}=1$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +1 no es raíz +\begin_inset Formula $n$ +\end_inset + +-ésima primitiva. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula $o(1)=1$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\text{car}K\neq2$ +\end_inset + +, +\begin_inset Formula $-1$ +\end_inset + + es raíz cuadrada primitiva de uno. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula $-1\neq1,(-1)^{2}=1$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\xi\in K$ +\end_inset + + es raíz +\begin_inset Formula $n$ +\end_inset + +-ésima primitiva de uno si y sólo si +\begin_inset Formula $|{\cal U}_{n}(K)|=n$ +\end_inset + + y +\begin_inset Formula ${\cal U}_{n}(K)=\langle\xi\rangle$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $|{\cal U}_{n}(K)|\geq|\langle\xi\rangle|=n$ +\end_inset + +, pero como +\begin_inset Formula ${\cal U}_{n}(K)$ +\end_inset + + lo forman las raíces de +\begin_inset Formula $X^{n}-1$ +\end_inset + +, +\begin_inset Formula $|{\cal U}_{n}(K)|\leq n$ +\end_inset + +, luego +\begin_inset Formula $|{\cal U}_{n}(K)|=n$ +\end_inset + + y +\begin_inset Formula $\langle\xi\rangle={\cal U}_{n}(K)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $o(\xi)=|\langle\xi\rangle|=|{\cal U}_{n}(K)|=n$ +\end_inset + +. +\end_layout + +\end_deeper +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $K$ +\end_inset + + contiene alguna raíz +\begin_inset Formula $n$ +\end_inset + +-ésima primitiva de uno si y sólo si +\begin_inset Formula $|{\cal U}_{n}(K)|=n$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $K$ +\end_inset + + es finito, contiene alguna raíz +\begin_inset Formula $n$ +\end_inset + +-ésima primitiva de uno si y sólo si +\begin_inset Formula $n\mid|K|-1$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Como +\begin_inset Formula $K^{*}$ +\end_inset + + es cíclico, tiene elementos de todos los órdenes que dividen a +\begin_inset Formula $|K^{*}|=|K|-1$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Ejemplos: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula ${\cal U}_{n}(\mathbb{C})=\langle e^{2\pi i/n}\rangle$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula +\[ +{\cal U}_{n}(\mathbb{R})=\begin{cases} +\{\pm1\}, & n\text{ es par};\\ +\{1\}, & n\text{ es impar}. +\end{cases} +\] + +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Formula ${\cal U}_{n}(\mathbb{R})\subseteq{\cal U}_{n}(\mathbb{C})$ +\end_inset + +, y si +\begin_inset Formula $k\in\{0,\dots,n-1\}$ +\end_inset + +, +\begin_inset Formula $e^{2k\pi i/n}\in\mathbb{R}\iff2k\pi/n\in\pi\mathbb{Z}\iff2k\in n\mathbb{Z}$ +\end_inset + +. + Si +\begin_inset Formula $n$ +\end_inset + + es par, esto lo cumplen +\begin_inset Formula $k=0$ +\end_inset + + y +\begin_inset Formula $k=n/2$ +\end_inset + +, y si +\begin_inset Formula $n$ +\end_inset + + es impar, solo lo cumple +\begin_inset Formula $k=0$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Ni +\begin_inset Formula $\mathbb{R}$ +\end_inset + + ni ningún subcuerpo suyo contienen raíces +\begin_inset Formula $n$ +\end_inset + +-ésimas primitivas para +\begin_inset Formula $n\geq3$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Estas tendrían orden al menos 3, pero +\begin_inset Formula $o(1)=1$ +\end_inset + + y +\begin_inset Formula $o(-1)=2$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbb{F}_{4}$ +\end_inset + + tiene 2 raíces cúbicas primitivas; +\begin_inset Formula $\mathbb{F}_{8}$ +\end_inset + + tiene 6 raíces séptimas primitivas, y +\begin_inset Formula $\mathbb{F}_{9}$ +\end_inset + + tiene 4 raíces octavas primitivas y 2 raíces cuartas primitivas. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\text{car}K=p\neq0$ +\end_inset + +, la única raíz +\begin_inset Formula $p$ +\end_inset + +-ésima es 1. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Toda raíz +\begin_inset Formula $p$ +\end_inset + +-ésima, es raíz de +\begin_inset Formula $X^{p}-1=(X-1)^{p}$ +\end_inset + + por el homomorfismo de Frobenius, luego debe ser 1. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dados un cuerpo +\begin_inset Formula $K$ +\end_inset + + y +\begin_inset Formula $n\geq2$ +\end_inset + +, existe una extensión +\begin_inset Formula $L$ +\end_inset + + de +\begin_inset Formula $K$ +\end_inset + + que contiene raíces +\begin_inset Formula $n$ +\end_inset + +-ésimas primitivas de la unidad si y sólo si +\begin_inset Formula $\text{car}K\nmid n$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $L$ +\end_inset + + un cuerpo de descomposición sobre +\begin_inset Formula $K$ +\end_inset + + de +\begin_inset Formula $X^{n}-1$ +\end_inset + +, como +\begin_inset Formula $f'=nX^{n-1}$ +\end_inset + + y +\begin_inset Formula $n\neq0$ +\end_inset + + al ser +\begin_inset Formula $\text{car}K\nmid n$ +\end_inset + +, la única raíz de +\begin_inset Formula $f'$ +\end_inset + + es 0 y por tanto +\begin_inset Formula $f$ +\end_inset + + no tiene raíces múltiples, luego tiene +\begin_inset Formula $n$ +\end_inset + + raíces raíces distintas y +\begin_inset Formula $|{\cal U}_{n}(L)|=n$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Probamos el contrarrecíproco. + Si +\begin_inset Formula $p:=\text{car}K\mid n$ +\end_inset + +, existe +\begin_inset Formula $t\in\mathbb{N}$ +\end_inset + + con +\begin_inset Formula $n=tp$ +\end_inset + + y +\begin_inset Formula $X^{n}-1=X^{tp}-1^{p}=(X^{t}-1)^{p}$ +\end_inset + + por el homomorfismo de Frobenius, luego +\begin_inset Formula $X^{n}-1$ +\end_inset + + tiene a lo sumo +\begin_inset Formula $t=n/p<n$ +\end_inset + + raíces y por tanto no tiene raíces +\begin_inset Formula $n$ +\end_inset + +-ésimas de uno primitivas. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{GyA} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si [ +\begin_inset Formula $G$ +\end_inset + + es un grupo,] +\begin_inset Formula $a$ +\end_inset + +[ +\begin_inset Formula $\in G$ +\end_inset + +] tiene orden finito y +\begin_inset Formula $n>0$ +\end_inset + +, +\begin_inset Formula +\[ +|a^{n}|=\frac{|a|}{\text{mcd}\{|a|,n\}}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{CyN} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Definimos la +\series bold +función +\begin_inset Formula $\phi$ +\end_inset + + de Euler +\series default + como +\begin_inset Formula $\phi:\mathbb{N}\rightarrow\mathbb{N}$ +\end_inset + + tal que +\begin_inset Formula $\phi(m)=|\{x\in\mathbb{N}|1\leq x\leq m\land\text{mcd}(x,m)=1\}|=|\mathbb{Z}_{m}^{*}|$ +\end_inset + +. + [...] Si +\begin_inset Formula $p$ +\end_inset + + es primo, +\begin_inset Formula $\phi(p^{n})=p^{n-1}(p-1)$ +\end_inset + +. + [...] Si +\begin_inset Formula $p$ +\end_inset + + es primo, +\begin_inset Formula $\phi(p^{n})=p^{n-1}(p-1)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si un cuerpo +\begin_inset Formula $K$ +\end_inset + + tiene una raíz +\begin_inset Formula $n$ +\end_inset + +-ésima primitiva de uno +\begin_inset Formula $\xi$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $K$ +\end_inset + + tiene exactamente +\begin_inset Formula $n$ +\end_inset + + raíces +\begin_inset Formula $n$ +\end_inset + +-ésimas de uno, +\begin_inset Formula $\xi,\xi^{2},\dots,\xi^{n}=1$ +\end_inset + +, y +\begin_inset Formula $\phi(n)$ +\end_inset + + de ellas son primitivas. + En particular +\begin_inset Formula $X^{n}-1$ +\end_inset + + se descompone completamente en +\begin_inset Formula $K[X]$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Para cada +\begin_inset Formula $d\mid n$ +\end_inset + + natural hay una raíz +\begin_inset Formula $d$ +\end_inset + +-ésima primitiva en +\begin_inset Formula $K$ +\end_inset + +, +\begin_inset Formula $\xi^{n/d}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $K$ +\end_inset + + es finito, esto se cumple para +\begin_inset Formula $n=|K|-1$ +\end_inset + +, y si +\begin_inset Formula $K\subseteq\mathbb{C}$ +\end_inset + +, se aplica cuando +\begin_inset Formula $e^{2\pi i/n}\in K$ +\end_inset + +. +\end_layout + +\begin_layout Section +Polinomios ciclotómicos +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $P$ +\end_inset + + un cuerpo primo ( +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + o +\begin_inset Formula $\mathbb{Z}_{p}$ +\end_inset + +), +\begin_inset Formula $n\geq2$ +\end_inset + + con +\begin_inset Formula $\text{car}P\nmid n$ +\end_inset + + y +\begin_inset Formula $L$ +\end_inset + + el cuerpo de descomposición sobre +\begin_inset Formula $P$ +\end_inset + + de +\begin_inset Formula $X^{n}-1$ +\end_inset + +, que contiene +\begin_inset Formula $\phi(n)$ +\end_inset + + raíces +\begin_inset Formula $n$ +\end_inset + +-ésimas primitivas de uno +\begin_inset Formula $\xi_{1},\dots,\xi_{n}$ +\end_inset + +, llamamos +\series bold + +\begin_inset Formula $n$ +\end_inset + +-ésimo polinomio ciclotómico en característica +\begin_inset Formula $\text{car}P$ +\end_inset + + +\series default + a +\begin_inset Formula +\[ +\Phi_{n}(X):=(X-\xi_{1})\cdots(X-\xi_{r})\in L[X]. +\] + +\end_inset + +Si +\begin_inset Formula $\text{car}K\nmid n$ +\end_inset + +, +\begin_inset Formula $X^{n}-1=\prod_{0<d\mid n}\Phi_{d}(X)$ +\end_inset + +, con el convenio de que +\begin_inset Formula $\Phi_{1}(X)=X-1$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{samepage} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $P$ +\end_inset + + es un cuerpo primo: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $q\neq\text{car}P$ +\end_inset + + es primo, +\begin_inset Formula $\Phi_{q}(X)=X^{q-1}+\dots+X+1$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $X^{q}-1=\prod_{d\mid q}\Phi_{d}(X)=(X-1)\Phi_{q}(X)$ +\end_inset + +, y +\begin_inset Formula $\frac{X^{q}-1}{X-1}=X^{q-1}+\dots+X+1$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $n\geq3$ +\end_inset + + es impar, +\begin_inset Formula $\Phi_{2n}(X)=\Phi_{n}(-X)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Como +\begin_inset Formula $\text{mcd}(n,2)=1$ +\end_inset + +, +\begin_inset Formula $\phi(2n)=\phi(2)\phi(n)=\phi(n)$ +\end_inset + +, luego +\begin_inset Formula $\text{gr}\Phi_{2n}=\text{gr}\Phi_{n}$ +\end_inset + + y, como ninguno tiene raíces múltiples, basta ver que +\begin_inset Formula $\Phi_{2n}(X)$ +\end_inset + + tiene las raíces de +\begin_inset Formula $\Phi_{n}(-X)$ +\end_inset + +. + Si +\begin_inset Formula $G$ +\end_inset + + es un grupo abeliano, +\begin_inset Formula $x,y\in G$ +\end_inset + + y +\begin_inset Formula $m:=o(x)$ +\end_inset + + y +\begin_inset Formula $n:=o(y)$ +\end_inset + + son coprimos, entonces +\begin_inset Formula $o(xy)=mn$ +\end_inset + +, pues +\begin_inset Formula $(xy)^{mn}=(x^{m})^{n}(y^{n})^{m}=1^{n}1^{m}=1$ +\end_inset + + y, si +\begin_inset Formula $k\in\mathbb{N}^{*}$ +\end_inset + + cumple +\begin_inset Formula $(xy)^{k}=1$ +\end_inset + +, entonces +\begin_inset Formula $x^{k}=y^{-k}\in\langle x\rangle\cap\langle y\rangle$ +\end_inset + + y por el teorema de Lagrange es +\begin_inset Formula $|\langle x\rangle\cap\langle y\rangle|\mid m,n$ +\end_inset + +, luego +\begin_inset Formula $|\langle x\rangle\cap\langle y\rangle|=1$ +\end_inset + +, +\begin_inset Formula $x^{k}=y^{-k}=1$ +\end_inset + +, +\begin_inset Formula $m,n\mid k$ +\end_inset + + y +\begin_inset Formula $\text{mcm}\{m,n\}=mn\mid k$ +\end_inset + +. + En nuestro caso, +\begin_inset Formula $o(-\xi)=n$ +\end_inset + +, pero +\begin_inset Formula $o(\xi)=o((-1)(-\xi))=o(-1)o(-\xi)$ +\end_inset + +. + Como no estamos en característica 2 ya que de estarlo +\begin_inset Formula $\Phi_{2n}$ +\end_inset + + no estaría definido, +\begin_inset Formula $o(-1)=2$ +\end_inset + +, luego +\begin_inset Formula $o(\xi)=2o(-\xi)=2n$ +\end_inset + + y +\begin_inset Formula $\xi$ +\end_inset + + es raíz de +\begin_inset Formula $\Phi_{2n}(X)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $p$ +\end_inset + + es primo y +\begin_inset Formula $k\geq1$ +\end_inset + +, entonces +\begin_inset Formula $\Phi_{p^{k}}(X)=\Phi_{p}(X^{p^{k-1}})$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\text{gr\ensuremath{\Phi_{p_{k}}=}}\phi(p^{k})=(p-1)p^{k-1}$ +\end_inset + + y +\begin_inset Formula $\text{gr}\Phi_{p}(X^{p^{k-1}})=\phi(p)p^{k-1}=(p-1)p^{k-1}$ +\end_inset + +. + Si +\begin_inset Formula $\xi$ +\end_inset + + es raíz de +\begin_inset Formula $\Phi_{p_{k}}$ +\end_inset + +, entonces +\begin_inset Formula $o(\xi)=p^{k}$ +\end_inset + + y +\begin_inset Formula $o(\xi^{p^{k-1}})=p$ +\end_inset + +, luego +\begin_inset Formula $\xi^{p^{k-1}}$ +\end_inset + + es raíz de +\begin_inset Formula $\Phi_{p}$ +\end_inset + + y +\begin_inset Formula $\xi$ +\end_inset + + es raíz de +\begin_inset Formula $\Phi^{p^{k-1}}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $n=p_{1}^{r_{1}}\cdots p_{s}^{r_{s}}$ +\end_inset + + con los +\begin_inset Formula $p_{i}$ +\end_inset + + primos distintos, +\begin_inset Formula $\Phi_{n}(X)=\Phi_{p_{1}\cdots p_{s}}(X^{p_{1}^{r_{1}-1}\cdots p_{s}^{r_{s}-1}})$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $p$ +\end_inset + + es primo y no divide a +\begin_inset Formula $n$ +\end_inset + + entonces +\begin_inset Formula $\Phi_{pn}(X)\Phi_{n}(X)=\Phi_{n}(X^{p})$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\Phi_{n}\in P[X]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{samepage} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +En general los polinomios ciclotómicos no son irreducibles, pues por ejemplo + en +\begin_inset Formula $\mathbb{Z}_{7}$ +\end_inset + + las raíces terceras primitivas son 2 y 4 y +\begin_inset Formula $\Phi_{3}(X)=(X-2)(X-4)$ +\end_inset + +. +\end_layout + +\begin_layout Section +Extensiones ciclotómicas +\end_layout + +\begin_layout Standard +Una extensión +\begin_inset Formula $K\subseteq F$ +\end_inset + + es una +\series bold +ciclotómica de orden +\begin_inset Formula $n$ +\end_inset + + +\series default + o +\begin_inset Formula $F$ +\end_inset + + es el +\begin_inset Formula $n$ +\end_inset + +-ésimo +\series bold +cuerpo ciclotómico +\series default + sobre +\begin_inset Formula $K$ +\end_inset + + si +\begin_inset Formula $F$ +\end_inset + + es el cuerpo de descomposición de +\begin_inset Formula $X^{n}-1$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + +, y +\begin_inset Formula $F$ +\end_inset + + también es el cuerpo ciclotómico sobre cualquier +\begin_inset Formula $K'$ +\end_inset + + entre +\begin_inset Formula $K$ +\end_inset + + y +\begin_inset Formula $F$ +\end_inset + +. + Cada cuerpo tiene una extensión ciclotómica de cada orden, única salvo + isomorfismos. +\end_layout + +\begin_layout Standard +Ejemplos: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbb{Q}\subseteq\mathbb{Q}(e^{2\pi i/n})$ +\end_inset + + es una extensión ciclotómica de orden +\begin_inset Formula $n$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbb{Z}_{p}\subseteq\mathbb{F}_{p^{n}}$ +\end_inset + + es ciclotómica de orden +\begin_inset Formula $p^{n}-1$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Los elementos no nulos de +\begin_inset Formula $\mathbb{F}_{p^{n}}$ +\end_inset + + son las raíces de +\begin_inset Formula $X^{p^{n}-1}-1$ +\end_inset + + sobre +\begin_inset Formula $\mathbb{Z}_{p}$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +La extensión ciclotómica de orden +\begin_inset Formula $n$ +\end_inset + + sobre +\begin_inset Formula $\mathbb{Z}_{p}$ +\end_inset + + con +\begin_inset Formula $p\nmid n$ +\end_inset + + es +\begin_inset Formula $\mathbb{F}_{p^{m}}$ +\end_inset + +, siendo +\begin_inset Formula $m$ +\end_inset + + el orden de +\begin_inset Formula $p$ +\end_inset + + en +\begin_inset Formula $\mathbb{Z}_{n}^{*}$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Las extensiones finitas de +\begin_inset Formula $\mathbb{Z}_{p}$ +\end_inset + + son de la forma +\begin_inset Formula $\mathbb{F}_{p^{k}}$ +\end_inset + +, y +\begin_inset Formula $\mathbb{F}_{p^{k}}$ +\end_inset + + contiene una raíz +\begin_inset Formula $n$ +\end_inset + +-ésima primitiva de uno si y sólo si hay elementos de orden +\begin_inset Formula $n$ +\end_inset + + en +\begin_inset Formula $\mathbb{F}_{p^{m}}^{*}\cong\mathbb{Z}_{p^{m}-1}$ +\end_inset + +, si y sólo si +\begin_inset Formula $n\mid p^{m}-1$ +\end_inset + +, si y sólo si +\begin_inset Formula $p^{m}\equiv1\bmod n$ +\end_inset + +, y el menor +\begin_inset Formula $m$ +\end_inset + + con esa propiedad es +\begin_inset Formula $o(p)$ +\end_inset + + en +\begin_inset Formula $\mathbb{Z}_{n}^{*}$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dado un cuerpo +\begin_inset Formula $K$ +\end_inset + + con +\begin_inset Formula $p:=\text{car}K\neq0$ +\end_inset + + y +\begin_inset Formula $m\in\mathbb{Z}^{+}$ +\end_inset + + con +\begin_inset Formula $p\nmid m$ +\end_inset + +, para +\begin_inset Formula $r\in\mathbb{N}$ +\end_inset + +, las extensiones ciclotómicas de órdenes +\begin_inset Formula $m$ +\end_inset + + y +\begin_inset Formula $p^{r}m$ +\end_inset + + coinciden. + En efecto, por el homomorfismo de Frobenius, +\begin_inset Formula $(\xi^{m}-1)^{p^{r}}=\xi^{p^{r}m}-1$ +\end_inset + +, luego +\begin_inset Formula $\xi$ +\end_inset + + es raíz de +\begin_inset Formula $X^{p^{r}m}-1$ +\end_inset + + si y sólo si lo es de +\begin_inset Formula $X^{m}-1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{samepage} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $\text{car}K\nmid n$ +\end_inset + + y +\begin_inset Formula $F$ +\end_inset + + es una extensión ciclotómica de orden +\begin_inset Formula $n$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $F=K(\xi)$ +\end_inset + +, siendo +\begin_inset Formula $\xi$ +\end_inset + + una raíz +\begin_inset Formula $n$ +\end_inset + +-ésima primitiva de uno. +\end_layout + +\begin_deeper +\begin_layout Standard +Como +\begin_inset Formula $\text{car}F=\text{car}K\nmid n$ +\end_inset + +, existe una extensión +\begin_inset Formula $M$ +\end_inset + + de +\begin_inset Formula $F$ +\end_inset + + con una raíz +\begin_inset Formula $n$ +\end_inset + +-ésima primitiva +\begin_inset Formula $\xi$ +\end_inset + +, luego +\begin_inset Formula $\xi\in F$ +\end_inset + +, +\begin_inset Formula $K(\xi)\subseteq F$ +\end_inset + + y, como el resto de raíces de +\begin_inset Formula $X^{n}-1$ +\end_inset + + son potencias de +\begin_inset Formula $\xi$ +\end_inset + +, +\begin_inset Formula $F\subseteq K(\xi)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\text{Gal}(F/K)$ +\end_inset + + tiene tamaño +\begin_inset Formula $[F:K]$ +\end_inset + + y es isomorfo a un subgrupo de +\begin_inset Formula $\mathbb{Z}_{n}^{*}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $|\text{Gal}(K(\xi)/K)|=[K(\xi):K]$ +\end_inset + + porque el resto de raíces de +\begin_inset Formula $X^{n}-1$ +\end_inset + + y por tanto de +\begin_inset Formula $\text{Irr}(\xi,K)$ +\end_inset + + están en +\begin_inset Formula $K(\xi)$ +\end_inset + +. + Cada +\begin_inset Formula $\sigma\in\text{Gal}(F/K)$ +\end_inset + + lleva +\begin_inset Formula $\xi$ +\end_inset + + a una raíz +\begin_inset Formula $\xi^{j}$ +\end_inset + + de +\begin_inset Formula $X^{n}-1$ +\end_inset + + que debe tener el mismo orden que +\begin_inset Formula $\xi$ +\end_inset + + por ser +\begin_inset Formula $\sigma$ +\end_inset + + inyectiva, luego +\begin_inset Formula $\sigma(\xi)=\xi^{j}$ +\end_inset + + para cierto +\begin_inset Formula $j$ +\end_inset + + coprimo con +\begin_inset Formula $n$ +\end_inset + +. + Entonces +\begin_inset Formula $f:\text{Gal}(F/K)\to\mathbb{Z}_{n}^{*}$ +\end_inset + + dada por +\begin_inset Formula $f(\sigma)=j\iff\sigma(\xi)=\xi^{j}$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + está bien definida, es inyectiva y es un homomorfismo, ya que +\begin_inset Formula $f(1)=1$ +\end_inset + + y, llamando +\begin_inset Formula $\sigma_{j}\in\text{Gal}(F/K)$ +\end_inset + + al elemento con +\begin_inset Formula $\sigma_{j}(\xi)=\xi^{j}$ +\end_inset + +, +\begin_inset Formula $f(\sigma_{j}\sigma_{k})=f(\sigma_{jk})=jk=f(\sigma_{j})f(\sigma_{k})$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $n$ +\end_inset + + es primo, +\begin_inset Formula $\text{Gal}(F/K)$ +\end_inset + + es un cíclico. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\mathbb{Z}_{n}^{*}$ +\end_inset + + es cíclico y por tanto sus subgrupos también. +\end_layout + +\end_deeper +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{samepage} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $\xi$ +\end_inset + + es una raíz +\begin_inset Formula $n$ +\end_inset + +-ésima primitiva de uno en +\begin_inset Formula $\mathbb{C}$ +\end_inset + +, +\begin_inset Formula $\Phi_{n}(X)=\text{Irr}(\xi,\mathbb{Q})$ +\end_inset + +. + Así, si +\begin_inset Formula $\xi=e^{2\pi i/n}$ +\end_inset + +, +\begin_inset Formula $[\mathbb{Q}(\xi):\mathbb{Q}]=\phi(n)$ +\end_inset + + y +\begin_inset Formula $\text{Gal}(\mathbb{Q}(\xi)/\mathbb{Q})\cong\mathbb{Z}_{n}^{*}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $n,m\in\mathbb{Z}^{+}$ +\end_inset + + son coprimos y, para +\begin_inset Formula $r\in\mathbb{Z}^{+}$ +\end_inset + +, +\begin_inset Formula $\xi_{r}\in\mathbb{C}$ +\end_inset + + es cualquier raíz +\begin_inset Formula $r$ +\end_inset + +-ésima primitiva de uno, entonces +\begin_inset Formula $\mathbb{Q}(\xi_{n})\mathbb{Q}(\xi_{m})=\mathbb{Q}(\xi_{nm})$ +\end_inset + + y +\begin_inset Formula $\mathbb{Q}(\xi_{n})\cap\mathbb{Q}(\xi_{m})=\mathbb{Q}$ +\end_inset + +. +\end_layout + +\end_body +\end_document |
