diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2021-06-07 23:36:13 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2021-06-07 23:36:13 +0200 |
| commit | cd672890234ff0f3d3a25f6f1ce1682f6aac1474 (patch) | |
| tree | d04f79aa60f09f7598c94c86399779f8d0ab5a1a | |
| parent | 7dd11d8b5881731b5c21daa918c62d381709d88b (diff) | |
GGS tema 8
| -rw-r--r-- | ggs/n.lyx | 38 | ||||
| -rw-r--r-- | ggs/n7.lyx | 2 | ||||
| -rw-r--r-- | ggs/n8.lyx | 615 |
3 files changed, 654 insertions, 1 deletions
@@ -147,6 +147,30 @@ Bloque 1. . \end_layout +\begin_layout Itemize +3Blue1Brown. + +\emph on +\lang english +A quick trick for computing eigenvalues—Essence of linear algebra, Chapter + 15 +\emph default +\lang spanish + ( +\begin_inset Flex URL +status open + +\begin_layout Plain Layout + +https://www.youtube.com/watch?v=e50Bj7jn9IQ +\end_layout + +\end_inset + +). + +\end_layout + \begin_layout Chapter Campos paralelos \end_layout @@ -245,5 +269,19 @@ filename "n7.lyx" \end_layout +\begin_layout Chapter +Variaciones del área +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n8.lyx" + +\end_inset + + +\end_layout + \end_body \end_document @@ -273,7 +273,7 @@ soporte \end_inset es -\begin_inset Formula $\text{sop}f:=\{x\in D:f(x)\neq0\}$ +\begin_inset Formula $\text{sop}f:=\overline{\{x\in D:f(x)\neq0\}}$ \end_inset . diff --git a/ggs/n8.lyx b/ggs/n8.lyx new file mode 100644 index 0000000..4bda440 --- /dev/null +++ b/ggs/n8.lyx @@ -0,0 +1,615 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Una superficie regular +\begin_inset Formula $S$ +\end_inset + + es +\series bold +minimal +\series default + si su curvatura media +\begin_inset Formula $H\equiv0$ +\end_inset + +. + Entonces, para +\begin_inset Formula $p\in S$ +\end_inset + +, +\begin_inset Formula $K(p)\leq0$ +\end_inset + +, con igualdad si y sólo si +\begin_inset Formula $p$ +\end_inset + + es +\series bold +totalmente geodésico +\series default +, es decir, +\begin_inset Formula $A_{p}=0$ +\end_inset + +. + En efecto, por el vídeo de 3Blue1Brown +\begin_inset Foot +status open + +\begin_layout Plain Layout + +\emph on +\lang english +A quick trick for computing eigenvalues +\emph default +\lang spanish + ( +\begin_inset Flex URL +status open + +\begin_layout Plain Layout + +https://www.youtube.com/watch?v=e50Bj7jn9IQ +\end_layout + +\end_inset + +). + También puedes usar la forma tradicional si quieres, pero perderías la + oportunidad de usar el minuto 4:48. +\end_layout + +\end_inset + +, las curvaturas principales de +\begin_inset Formula $S$ +\end_inset + + en +\begin_inset Formula $p$ +\end_inset + + son +\begin_inset Formula $\{\lambda_{1},\lambda_{2}\}=\{H(p)\pm\sqrt{H(p)^{2}-K(p)}\}=\{\pm\sqrt{-K(p)}\}$ +\end_inset + +, pero +\begin_inset Formula $A_{p}$ +\end_inset + + es autoadjunto y por tanto diagonalizable en +\begin_inset Formula $\mathbb{R}$ +\end_inset + +, luego +\begin_inset Formula $\sqrt{-K(p)}\in\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $K(p)\leq0$ +\end_inset + +, y +\begin_inset Formula $K(p)=0\iff\lambda_{1}=\lambda_{2}=0\iff A_{p}=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Toda superficie compacta tiene un punto esférico, por lo que no existen + superficies minimales compactas. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $S\subseteq\mathbb{R}^{3}$ +\end_inset + + una superficie regular y +\begin_inset Formula $(U,X)$ +\end_inset + + una parametrización de +\begin_inset Formula $S$ +\end_inset + +, una +\series bold +variación +\series default + de +\begin_inset Formula $X$ +\end_inset + + es una función diferenciable +\begin_inset Formula $\Phi:U\times(-\varepsilon,\varepsilon)\to\mathbb{R}^{3}$ +\end_inset + + tal que, llamando +\begin_inset Formula $\Phi_{t}(q):=\Phi(q,t)$ +\end_inset + +, +\begin_inset Formula $\Phi_{0}=X$ +\end_inset + + y, para +\begin_inset Formula $t\in(-\varepsilon,\varepsilon)$ +\end_inset + +, +\begin_inset Formula $(U,\Phi_{t})$ +\end_inset + + es una parametrización. + Para +\begin_inset Formula $((u,v),t)\in U\times(-\varepsilon,\varepsilon)$ +\end_inset + +, +\begin_inset Formula +\[ +\left(\frac{\partial\Phi_{t}}{\partial u}\wedge\frac{\partial\Phi_{t}}{\partial v}\right)(u,v)\neq0, +\] + +\end_inset + +pues +\begin_inset Formula $(d\Phi_{t})_{(u,v)}$ +\end_inset + + es un isomorfismo lineal. +\end_layout + +\begin_layout Standard +El +\series bold +campo variacional +\series default + de +\begin_inset Formula $X$ +\end_inset + + es +\begin_inset Formula $\xi:U\to\mathbb{R}$ +\end_inset + + dada por +\begin_inset Formula +\[ +\xi(u,v):=\frac{\partial\Phi}{\partial t}(u,v,0). +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Dada una parametrización +\begin_inset Formula $(U,X)$ +\end_inset + + y +\begin_inset Formula $\varphi:U\to\mathbb{R}$ +\end_inset + + diferenciable, la +\series bold +variación normal de +\begin_inset Formula $X$ +\end_inset + + determinada por +\begin_inset Formula $\varphi$ +\end_inset + + +\series default + es una variación +\begin_inset Formula $\Phi:U\times(-\varepsilon,\varepsilon)\to\mathbb{R}^{3}$ +\end_inset + + dada por +\begin_inset Formula +\[ +\Phi(u,v,t)=X(u,v)+t\varphi(u,v)N(X(u,v)), +\] + +\end_inset + +donde +\begin_inset Formula +\[ +N(X(u,v))=\frac{\frac{\partial X}{\partial u}\wedge\frac{\partial X}{\partial v}}{\left\Vert \frac{\partial X}{\partial u}\wedge\frac{\partial X}{\partial v}\right\Vert }(u,v) +\] + +\end_inset + +y +\begin_inset Formula $\varepsilon>0$ +\end_inset + + es lo suficientemente pequeño para que cada +\begin_inset Formula $\Phi_{t}$ +\end_inset + + sea una parametrización. + Si +\begin_inset Formula $\varphi$ +\end_inset + + tiene soporte compacto, dicho +\begin_inset Formula $\varepsilon$ +\end_inset + + existe. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración +\series default + parcial +\series bold +: +\series default + Para +\begin_inset Formula $(u,v)\notin\text{sop}\varphi$ +\end_inset + + no hay problema. + Para +\begin_inset Formula $(u,v)\in\text{sop}\varphi$ +\end_inset + +, +\begin_inset Formula +\[ +\left\Vert \frac{\partial\Phi_{0}}{\partial u}\wedge\frac{\partial\Phi_{0}}{\partial v}\right\Vert ^{2}=\left\Vert \frac{\partial X}{\partial u}\wedge\frac{\partial X}{\partial v}\right\Vert ^{2}>0, +\] + +\end_inset + +y por continuidad existe +\begin_inset Formula $\varepsilon_{u,v}>0$ +\end_inset + + tal que +\begin_inset Formula $\left\Vert \frac{\partial\Phi_{t}}{\partial u}\wedge\frac{\partial\Phi_{t}}{\partial v}\right\Vert ^{2}>0$ +\end_inset + + para +\begin_inset Formula $t\in(-\varepsilon_{u,v},\varepsilon_{u,v})$ +\end_inset + +. + Como +\begin_inset Formula $\text{sop}\varphi$ +\end_inset + + es compacto, habría que ver que +\begin_inset Formula $\varepsilon_{u,v}$ +\end_inset + + depende continuamente de +\begin_inset Formula $(u,v)$ +\end_inset + + y entonces tomaríamos +\begin_inset Formula $\varepsilon:=\min_{(u,v)\in\text{sop}\varphi}\varepsilon_{u,v}$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $R$ +\end_inset + + una región de +\begin_inset Formula $S$ +\end_inset + +, +\begin_inset Formula $(U,X)$ +\end_inset + + una parametrización de +\begin_inset Formula $S$ +\end_inset + + con +\begin_inset Formula $\overline{R}\subseteq X(U)$ +\end_inset + +, +\begin_inset Formula $\Phi:U\times(-\varepsilon,\varepsilon)\to\mathbb{R}^{3}$ +\end_inset + + una variación de +\begin_inset Formula $X$ +\end_inset + + y +\begin_inset Formula $A(t):=A(R_{t}):=A(\Phi_{t}(X^{-1}(R)))$ +\end_inset + +, entonces +\begin_inset Formula $A$ +\end_inset + + es diferenciable en un entorno de +\begin_inset Formula $t=0$ +\end_inset + + con +\begin_inset Formula +\[ +A'(t)=\iint_{X^{-1}(R)}\frac{\partial}{\partial t}\left\Vert \frac{\partial\Phi_{t}}{\partial u}\wedge\frac{\partial\Phi_{t}}{\partial v}\right\Vert (u,v)\,du\,dv. +\] + +\end_inset + + +\series bold +Primera fórmula de variación del área: +\series default + En estas condiciones, si +\begin_inset Formula $\Phi$ +\end_inset + + es la variación normal de +\begin_inset Formula $X$ +\end_inset + + dada por cierta +\begin_inset Formula $\varphi:U\to\mathbb{R}$ +\end_inset + +, entonces +\begin_inset Formula +\[ +A'(0)=-2\int_{R}(\varphi\circ X^{-1})H\,dS. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, una superficie regular +\begin_inset Formula $S$ +\end_inset + + es minimal si y sólo si para toda parametrización +\begin_inset Formula $(U,X)$ +\end_inset + + de +\begin_inset Formula $S$ +\end_inset + +, región +\begin_inset Formula $R$ +\end_inset + + de +\begin_inset Formula $S$ +\end_inset + + con +\begin_inset Formula $\overline{R}\subseteq X(U)$ +\end_inset + + y variación normal de +\begin_inset Formula $X$ +\end_inset + + es +\begin_inset Formula $A'(0)=0$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $H\equiv0$ +\end_inset + + y, por la primera fórmula de variación del área, +\begin_inset Formula $A'(0)=0$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Demostramos el contrarrecíproco. + Si +\begin_inset Formula $S$ +\end_inset + + no es minimal, sea +\begin_inset Formula $p_{0}\in S$ +\end_inset + + con +\begin_inset Formula $H(p_{0})\neq0$ +\end_inset + +, si +\begin_inset Formula $H(p_{0})>0$ +\end_inset + +, existe un +\begin_inset Formula $V\in{\cal E}(p_{0})$ +\end_inset + + con +\begin_inset Formula $H(V)>0$ +\end_inset + + y, dada una parametrización +\begin_inset Formula $(U,X)$ +\end_inset + + con +\begin_inset Formula $X(U)\subseteq V$ +\end_inset + +, existe una bola cerrada +\begin_inset Formula $\overline{R}\subseteq X(U)$ +\end_inset + + cuyo interior +\begin_inset Formula $R$ +\end_inset + + es una región, de modo que llamando +\begin_inset Formula $\varphi:=H\circ X:R\to\mathbb{R}$ +\end_inset + +, como +\begin_inset Formula $\varphi\circ X^{-1}=H$ +\end_inset + +, +\begin_inset Formula +\[ +A'(0)=-2\int_{R}H^{2}dS<0\#. +\] + +\end_inset + +Para +\begin_inset Formula $H(p_{0})<0$ +\end_inset + + es análogo. +\end_layout + +\end_body +\end_document |
