diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2021-06-07 12:10:32 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2021-06-07 12:10:32 +0200 |
| commit | dfd9b6999ac25c6bc83802dbb3b2c91d4006f3c1 (patch) | |
| tree | a8339c4ce1cf95bb25e37b3d1df5f33a672401db | |
| parent | 1798f38147f30baf195a5aeb04241345ee5d4661 (diff) | |
GGS tema 6
| -rw-r--r-- | ggs/n.lyx | 14 | ||||
| -rw-r--r-- | ggs/n6.lyx | 1029 |
2 files changed, 1043 insertions, 0 deletions
@@ -217,5 +217,19 @@ filename "n5.lyx" \end_layout +\begin_layout Chapter +Variaciones de la longitud +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n6.lyx" + +\end_inset + + +\end_layout + \end_body \end_document diff --git a/ggs/n6.lyx b/ggs/n6.lyx new file mode 100644 index 0000000..0111c19 --- /dev/null +++ b/ggs/n6.lyx @@ -0,0 +1,1029 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Dadas una superficie regular +\begin_inset Formula $S$ +\end_inset + + y un +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, una +\series bold +variación +\series default + de un segmento de curva parametrizada +\begin_inset Formula $\alpha:[a,b]\to S$ +\end_inset + + es una función diferenciable +\begin_inset Formula $\phi:[a,b]\times(-\varepsilon,\varepsilon)\to S$ +\end_inset + + con +\begin_inset Formula $\phi_{0}(u):=\phi(u,0)=\alpha(u)$ +\end_inset + + para todo +\begin_inset Formula $u\in[a,b]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Para +\begin_inset Formula $t\in(-\varepsilon,\varepsilon)$ +\end_inset + +, llamamos +\begin_inset Formula $\alpha_{t}:=(u\mapsto\phi(u,t)):[a,b]\to S$ +\end_inset + + y +\series bold +curvas de la variación +\series default + a +\begin_inset Formula $\{\alpha_{t}\}_{t\in(-\varepsilon,\varepsilon)}$ +\end_inset + +, con +\begin_inset Formula $\alpha_{0}=\alpha$ +\end_inset + +. + Para +\begin_inset Formula $u\in[a,b]$ +\end_inset + +, llamamos +\begin_inset Formula $\beta_{u}:=(t\mapsto\phi(u,t)):(-\varepsilon,\varepsilon)\to S$ +\end_inset + + y +\series bold +curvas transversales de la variación +\series default + a +\begin_inset Formula $\{\beta_{u}\}_{u\in[a,b]}$ +\end_inset + +. + La variación es +\series bold +propia +\series default + o +\series bold +tiene extremos fijos +\series default + si +\begin_inset Formula $\beta_{a}$ +\end_inset + + y +\begin_inset Formula $\beta_{b}$ +\end_inset + + son constantes, es decir, +\begin_inset Formula $\phi(a,t)=\alpha(a)$ +\end_inset + + y +\begin_inset Formula $\phi(\beta,t)=\alpha(b)$ +\end_inset + + para todo +\begin_inset Formula $t$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Llamamos +\series bold +campo variacional +\series default + de +\begin_inset Formula $\phi$ +\end_inset + + a +\begin_inset Formula $Z:[a,b]\to\mathbb{R}^{3}$ +\end_inset + + dada por +\begin_inset Formula +\[ +Z(u):=\beta'_{u}(0)=\frac{\partial\phi}{\partial t}(u,0)\in T_{\alpha(u)}S, +\] + +\end_inset + +pues +\begin_inset Formula $\beta_{u}(0)=\alpha(u)$ +\end_inset + +. + Entonces +\begin_inset Formula $\phi$ +\end_inset + + es una +\series bold +variación normal +\series default + si +\begin_inset Formula $\langle Z,\alpha'\rangle\equiv0$ +\end_inset + +, de modo que si +\begin_inset Formula $N$ +\end_inset + + es una normal a +\begin_inset Formula $S$ +\end_inset + +, +\begin_inset Formula $Z(u)$ +\end_inset + + es paralelo a +\begin_inset Formula $\alpha'(u)\wedge N(\alpha(u))$ +\end_inset + + para +\begin_inset Formula $u\in[a,b]$ +\end_inset + +. +\end_layout + +\begin_layout Section +Primera fórmula de variación del arco +\end_layout + +\begin_layout Standard +Dada una variación +\begin_inset Formula $\phi:[a,b]\times(-\varepsilon,\varepsilon)\to S$ +\end_inset + + de la curva +\begin_inset Formula $\alpha$ +\end_inset + +, el +\series bold +funcional longitud de arco +\series default + de +\begin_inset Formula $\phi$ +\end_inset + + es +\begin_inset Formula $L:(-\varepsilon,\varepsilon)\to\mathbb{R}$ +\end_inset + + dada por +\begin_inset Formula $L(t):=L(\alpha_{t})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\alpha$ +\end_inset + + es regular, +\begin_inset Formula $L(t)$ +\end_inset + + es diferenciable en un entorno de +\begin_inset Formula $t=0$ +\end_inset + + y +\begin_inset Formula +\begin{align*} +L'(t) & =\int_{a}^{b}\frac{1}{\Vert\alpha'_{t}(u)\Vert}\left\langle \frac{\partial^{2}\phi}{\partial u\partial t},\frac{\partial\phi}{\partial u}\right\rangle (u,t)du\\ + & =\int_{a}^{b}\frac{1}{\Vert\alpha'_{t}(u)\Vert}\left(\frac{d}{du}\left\langle \frac{\partial\phi}{\partial t},\frac{\partial\phi}{\partial u}\right\rangle -\left\langle \frac{\partial\phi}{\partial t},\frac{\partial^{2}\phi}{\partial u^{2}}\right\rangle \right)(u,t)du. +\end{align*} + +\end_inset + + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $f:[a,b]\times(-\varepsilon,\varepsilon)\to\mathbb{R}$ +\end_inset + + dada por +\begin_inset Formula +\[ +f(u,t):=\Vert\alpha'_{t}(u)\Vert=\left\Vert \frac{\partial\phi}{\partial u}\right\Vert (u,t)=\sqrt{\left\langle \frac{\partial\phi}{\partial u},\frac{\partial\phi}{\partial u}\right\rangle (u,t)}du, +\] + +\end_inset + +entonces, para los +\begin_inset Formula $t$ +\end_inset + + en que +\begin_inset Formula $L$ +\end_inset + + es derivable, +\begin_inset Formula +\[ +L'(t)=\frac{d}{dt}\int_{a}^{b}f(u,t)du=\int_{a}^{b}\frac{\partial f}{\partial t}(u,t)du, +\] + +\end_inset + +de modo que +\begin_inset Formula $L'(t)$ +\end_inset + + está definida si y solo si lo está +\begin_inset Formula $\frac{\partial f}{\partial t}(u,t)$ +\end_inset + + para todo +\begin_inset Formula $u\in[a,b]$ +\end_inset + +, si y solo si +\begin_inset Formula $\left\langle \frac{\partial\phi}{\partial u},\frac{\partial\phi}{\partial u}\right\rangle (u,t)>0$ +\end_inset + + (pues las derivadas de +\begin_inset Formula $\phi$ +\end_inset + + son diferenciables), si y sólo si +\begin_inset Formula $\left\Vert \frac{\partial\phi}{\partial u}(u,t)\right\Vert >0$ +\end_inset + +. + Ahora bien, como +\begin_inset Formula $\alpha$ +\end_inset + + es regular, para +\begin_inset Formula $u\in[a,b]$ +\end_inset + +, +\begin_inset Formula $\left\Vert \frac{\partial\phi}{\partial u}(u,0)\right\Vert =\Vert\alpha'_{0}(u)\Vert=\Vert\alpha'(u)\Vert>0$ +\end_inset + +, y como +\begin_inset Formula $[a,b]$ +\end_inset + + es compacto, +\begin_inset Formula $\Vert\alpha'\Vert([a,b])$ +\end_inset + + alcanza su máximo y su mínimo y existe +\begin_inset Formula $c>0$ +\end_inset + + tal que +\begin_inset Formula $\forall u\in[a,b],f(u,0)=\Vert\alpha'(u)\Vert\geq c>\frac{c}{2}>0$ +\end_inset + +. + Así, para +\begin_inset Formula $u\in[a,b]$ +\end_inset + + existe +\begin_inset Formula $\delta_{u}$ +\end_inset + + tal que +\begin_inset Formula $\forall t\in(-\delta_{u},\delta_{u}),f(u,t)>\frac{c}{2}$ +\end_inset + +. + Sea ahora una +\begin_inset Formula $\delta:[a,b]\to[0,\varepsilon)$ +\end_inset + + tal que +\begin_inset Formula $f(u,t)>\frac{c}{2}$ +\end_inset + + para todo +\begin_inset Formula $u\in[a,b]$ +\end_inset + + y +\begin_inset Formula $t\in(-\delta_{u},\delta_{u})$ +\end_inset + + y tal que, para cada +\begin_inset Formula $u\in[a,b]$ +\end_inset + +, +\begin_inset Formula $\delta_{u}$ +\end_inset + + sea lo mayor posible. + Si +\begin_inset Formula $\varepsilon_{0}:=\inf_{u[a,b]}\delta_{u}=0$ +\end_inset + +, entonces existe una sucesión +\begin_inset Formula $(u_{n})_{n}$ +\end_inset + + tal que +\begin_inset Formula $\lim_{n}\delta_{u_{n}}=0$ +\end_inset + +, pero como la sucesión está acotada en +\begin_inset Formula $[a,b]$ +\end_inset + +, por el teorema de Bolzano-Weierstrass, existe una subsucesión convergente + +\begin_inset Formula $(u_{n_{k}})_{k}$ +\end_inset + +, de modo que +\begin_inset Formula $\lim_{k}\delta_{u_{n_{k}}}=0$ +\end_inset + +. + Existe un +\begin_inset Formula $N$ +\end_inset + + tal que, para +\begin_inset Formula $k\geq N$ +\end_inset + +, +\begin_inset Formula $\delta_{u_{n_{k}}}<\varepsilon$ +\end_inset + + y por tanto +\begin_inset Formula $f(u_{n_{k}},\delta_{u_{n_{k}}})=\frac{c}{2}$ +\end_inset + +, pues no puede ser menor ya que +\begin_inset Formula $f$ +\end_inset + + es continua y +\begin_inset Formula $f(u_{n_{k}},t)>\frac{c}{2}$ +\end_inset + + para +\begin_inset Formula $t<\delta(u_{n_{k}})$ +\end_inset + + y, si fuera positivo, existiría un +\begin_inset Formula $\delta'_{u}>0$ +\end_inset + + tal que +\begin_inset Formula $f(u_{n_{k}},t)>\frac{c}{2}$ +\end_inset + + para +\begin_inset Formula $t<\delta_{u_{n_{k}}}+\delta'_{u}$ +\end_inset + +, contradiciendo que +\begin_inset Formula $\delta_{u}$ +\end_inset + + sea lo mayor posible. + Entonces la sucesión +\begin_inset Formula $((u_{n_{k}},\delta_{u_{n_{k}}}))_{k}$ +\end_inset + + tiende a un cierto +\begin_inset Formula $(u,0)$ +\end_inset + + y, por continuidad de +\begin_inset Formula $f$ +\end_inset + +, +\begin_inset Formula +\[ +c\leq f(u,0)=f\left(\lim_{k}(u_{n_{k}},\delta_{u_{n_{k}}})\right)=\lim_{k}f(u_{n_{k}},\delta_{u_{n_{k}}})=\lim_{k}\frac{c}{2}=\frac{c}{2}\#. +\] + +\end_inset + +Por tanto +\begin_inset Formula $m>0$ +\end_inset + + y +\begin_inset Formula $f(u,t)>\frac{c}{2}$ +\end_inset + + para +\begin_inset Formula $(u,t)\in[a,b]\times(-\varepsilon_{0},\varepsilon_{0})$ +\end_inset + +. + En este intervalo, +\begin_inset Formula $L'(t)$ +\end_inset + + está definida, y para +\begin_inset Formula $t\in(-\varepsilon_{0},\varepsilon_{0})$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +L'(t) & =\int_{a}^{b}\frac{\partial f}{\partial t}(u,t)du=\int_{a}^{b}\frac{\partial}{\partial t}\left(\sqrt{\left\langle \frac{\partial\phi}{\partial u},\frac{\partial\phi}{\partial u}\right\rangle (u,t)}\right)du=\\ + & =\int_{a}^{b}-\frac{2\left\langle \frac{\partial^{2}\phi}{\partial u\partial t},\frac{\partial\phi}{\partial t}\right\rangle }{2\sqrt{\left\langle \frac{\partial\phi}{\partial u},\frac{\partial\phi}{\partial u}\right\rangle }}(u,t)du=\int_{a}^{b}\frac{1}{\Vert\alpha'_{t}(u)\Vert}\left\langle \frac{\partial^{2}\phi}{\partial t\partial u},\frac{\partial\phi}{\partial t}\right\rangle (u,t)du, +\end{align*} + +\end_inset + +pero +\begin_inset Formula +\[ +\frac{\partial}{\partial u}\left(\left\langle \frac{\partial\phi}{\partial t},\frac{\partial\phi}{\partial u}\right\rangle \right)=\left\langle \frac{\partial^{2}\phi}{\partial t\partial u},\frac{\partial^{2}\phi}{\partial u}\right\rangle +\left\langle \frac{\partial\phi}{\partial t},\frac{\partial^{2}\phi}{\partial u^{2}}\right\rangle , +\] + +\end_inset + +y despejando y sustituyendo se obtiene el resultado. +\end_layout + +\begin_layout Standard + +\series bold +Primera fórmula de variación del arco: +\series default + Si +\begin_inset Formula $\alpha:[a,b]\to S$ +\end_inset + + es un segmento de curva regular p.p.a. + con +\begin_inset Formula $a<b$ +\end_inset + + y +\begin_inset Formula $\phi$ +\end_inset + + es una variación de +\begin_inset Formula $\alpha$ +\end_inset + + con campo variacional +\begin_inset Formula $Z$ +\end_inset + +, +\begin_inset Formula +\[ +L'(0)=\langle Z(b),\alpha'(b)\rangle-\langle Z(a),\alpha'(a)\rangle-\int_{a}^{b}\left\langle Z,\frac{D\alpha'}{ds}\right\rangle , +\] + +\end_inset + +por lo que si además la variación es propia o normal, +\begin_inset Formula +\[ +L'(0)=-\int_{a}^{b}\left\langle Z,\frac{D\alpha'}{ds}\right\rangle . +\] + +\end_inset + + +\series bold +Demostración: +\series default + Usando la fórmula anterior y que +\begin_inset Formula $\Vert\alpha'\Vert\equiv1$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +L'(0) & =\int_{a}^{b}\left(\frac{d}{ds}\left\langle \frac{\partial\phi}{\partial t},\frac{\partial\phi}{\partial s}\right\rangle -\left\langle \frac{\partial\phi}{\partial t},\frac{\partial^{2}\phi}{\partial s^{2}}\right\rangle \right)(s,0)ds\\ + & =\left[\left\langle \frac{\partial\phi}{\partial t},\frac{\partial\phi}{\partial s}\right\rangle (s,0)\right]_{s=a}^{b}-\int_{a}^{b}\left\langle \frac{\partial\phi}{\partial t},\frac{\partial^{2}\phi}{\partial s^{2}}\right\rangle (s,0)ds\\ + & =\left[\langle Z(s),\alpha'(s)\rangle\right]_{s=a}^{b}-\int_{a}^{b}\left\langle Z,\alpha''\right\rangle (s,0)ds, +\end{align*} + +\end_inset + +pero como, para +\begin_inset Formula $s\in[a,b]$ +\end_inset + +, +\begin_inset Formula $Z(s)\in T_{\alpha(s)}S$ +\end_inset + +, +\begin_inset Formula $\langle Z(s),\alpha''(s)\rangle=\langle Z(s),\frac{D\alpha'}{ds}(s)\rangle$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Caracterización variaciones de las geodésicas: +\series default + Si +\begin_inset Formula $\alpha:[a,b]\to S$ +\end_inset + + es un segmento de curva regular p.p.a., +\begin_inset Formula $\alpha$ +\end_inset + + es un segmento de geodésica si y sólo si +\begin_inset Formula $L'(0)=0$ +\end_inset + + para toda variación propia de +\begin_inset Formula $\alpha$ +\end_inset + +, si y sólo si +\begin_inset Formula $L'(0)=0$ +\end_inset + + para toda variación normal de +\begin_inset Formula $\alpha$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies2,3]$ +\end_inset + + Como +\begin_inset Formula $\frac{D\alpha'}{ds}\equiv0$ +\end_inset + +, por la primera fórmula de variación del arco para variaciones propias + o normales, para todas estas variaciones es +\begin_inset Formula $L'(0)=0$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $2,3\implies1]$ +\end_inset + + Suponemos que +\begin_inset Formula $\alpha$ +\end_inset + + no es geodésica y encontramos una variación normal y propia con +\begin_inset Formula $L'(0)\neq0$ +\end_inset + +. + Como +\begin_inset Formula $\alpha$ +\end_inset + + no es geodésica, existe +\begin_inset Formula $s_{0}\in[a,b]$ +\end_inset + + con +\begin_inset Formula $\frac{D\alpha'}{ds}(s_{0})\neq0$ +\end_inset + +, y podemos suponer que +\begin_inset Formula $s_{0}\in(a,b)$ +\end_inset + + ya que en otro caso habrá un +\begin_inset Formula $s\in(a,b)$ +\end_inset + + con +\begin_inset Formula $\frac{D\alpha'}{ds}(s_{0})\neq0$ +\end_inset + + por continuidad. + Entonces existe un +\begin_inset Formula $\delta>0$ +\end_inset + + tal que +\begin_inset Formula $\left\Vert \frac{D\alpha'}{ds}\right\Vert >0$ +\end_inset + + para todo +\begin_inset Formula $s\in(s_{0}-\delta,s_{0}+\delta)$ +\end_inset + +. + Sea +\begin_inset Formula $Z:[a,b]\to\mathbb{R}^{3}$ +\end_inset + + el campo tangente dado por +\begin_inset Formula $Z(s):=-(s^{2}-s(a+b)+ab)\frac{D\alpha'}{ds}(s)$ +\end_inset + +, si existe una variación +\begin_inset Formula $\phi:[a,b]\times(-\varepsilon,\varepsilon)\to S$ +\end_inset + + de +\begin_inset Formula $\alpha$ +\end_inset + + con campo variacional +\begin_inset Formula $Z$ +\end_inset + +, +\begin_inset Formula $\phi$ +\end_inset + + sería normal porque, al ser +\begin_inset Formula $\langle\frac{D\alpha'}{ds},\alpha'\rangle\equiv0$ +\end_inset + +, entonces +\begin_inset Formula $\langle Z,\alpha'\rangle\equiv0$ +\end_inset + +. + Además, +\begin_inset Formula $f(s):=s^{2}-s(a+b)+ab$ +\end_inset + + es una parábola que vale 0 en +\begin_inset Formula $s=a,b$ +\end_inset + +, cuyo pico está en +\begin_inset Formula $s=\frac{a+b}{2}$ +\end_inset + + y que cumple que +\begin_inset Formula +\[ +f(\frac{a+b}{2})=\frac{(a+b)^{2}}{4}-\frac{(a+b)^{2}}{2}+ab=\frac{-(a+b)^{2}+4ab}{4}=\frac{-(a-b)^{2}}{4}\overset{a\neq b}{<}0, +\] + +\end_inset + +de modo que +\begin_inset Formula $f(s)<0$ +\end_inset + + para todo +\begin_inset Formula $s\in(a,b)$ +\end_inset + + y +\begin_inset Formula +\begin{align*} +L'(0) & =-\int_{a}^{b}\left\langle -f\frac{D\alpha'}{ds},\frac{D\alpha'}{ds}\right\rangle =\int_{a}^{b}f\left\Vert \frac{D\alpha'}{ds}\right\Vert \leq\\ + & \leq\int_{s_{0}-\delta}^{s_{0}+\delta}f\left\Vert \frac{D\alpha'}{ds}\right\Vert =2\delta f(\xi)\left\Vert \frac{D\alpha'}{ds}(\xi)\right\Vert <0, +\end{align*} + +\end_inset + +donde +\begin_inset Formula $\xi\in(s_{0}-\delta,s_{0}+\delta)$ +\end_inset + + viene dado por el teorema del punto medio. + Queda ver que tal variación existe y que, además de normal, es propia. + Para +\begin_inset Formula $s\in[a,b]$ +\end_inset + +, como +\begin_inset Formula $Z(s)\in T_{\alpha(s)}S$ +\end_inset + +, existe una geodésica +\begin_inset Formula $\gamma_{Z(s)}:I_{Z(s)}\to S$ +\end_inset + +, y como +\begin_inset Formula $0\in I_{Z(s)}$ +\end_inset + +, existe +\begin_inset Formula $\varepsilon_{s}>0$ +\end_inset + + con +\begin_inset Formula $(-\varepsilon_{s},\varepsilon_{s})\subseteq I_{Z(s)}$ +\end_inset + +. + Por la forma en que se obtiene +\begin_inset Formula $\gamma_{Z(s)}$ +\end_inset + + y por el teorema de dependencia de una solución de una e.d.o. + respecto a un parámetro +\begin_inset Foot +status open + +\begin_layout Plain Layout +No recuerdo haber visto este teorema. +\end_layout + +\end_inset + +, +\begin_inset Formula $s\mapsto\varepsilon_{s}$ +\end_inset + + es continua, de modo que por compacidad de +\begin_inset Formula $[a,b]$ +\end_inset + + existe +\begin_inset Formula $\varepsilon:=\min_{s\in[a,b]}\varepsilon_{s}>0$ +\end_inset + +, +\begin_inset Formula $(-\varepsilon,\varepsilon)\subseteq I_{Z(s)}$ +\end_inset + + para todo +\begin_inset Formula $s\in[a,b]$ +\end_inset + + y podemos definir +\begin_inset Formula $\phi:[a,b]\times(-\varepsilon,\varepsilon)\to S$ +\end_inset + + como +\begin_inset Formula $\phi(s,t):=\gamma_{Z(s)}(t)$ +\end_inset + +. + Entonces +\begin_inset Formula $\phi$ +\end_inset + + es diferenciable por el mismo teorema de dependencia y su campo variacional + es +\begin_inset Formula +\[ +\frac{\partial\phi}{\partial t}(s,0)=\frac{d}{dt}(\gamma_{Z(s)}(t))(0)=\gamma'_{Z(s)}(0)=Z(s). +\] + +\end_inset + +Finalmente, como +\begin_inset Formula $f(a)=f(b)=0$ +\end_inset + +, para todo +\begin_inset Formula $t$ +\end_inset + +, +\begin_inset Formula $\phi(a,t)=\gamma_{Z(a)}(t)=\gamma_{0}(t)=\exp_{\alpha(a)}(0)=\alpha(a)$ +\end_inset + +, y análogamente +\begin_inset Formula $\phi(b,t)=\alpha(b)$ +\end_inset + +. +\end_layout + +\begin_layout Section +Segunda fórmula de variación del arco +\end_layout + +\begin_layout Standard +Esta afirma que, si +\begin_inset Formula $S$ +\end_inset + + es una superficie regular, +\begin_inset Formula $\gamma:[a,b]\to S$ +\end_inset + + es un segmento de geodésica p.p.a. + y +\begin_inset Formula $\phi$ +\end_inset + + es una variación normal y propia de +\begin_inset Formula $\gamma$ +\end_inset + + con campo variacional +\begin_inset Formula $Z$ +\end_inset + +, entonces +\begin_inset Formula +\[ +L''(0)=\int_{a}^{b}\left(\left\Vert \frac{DZ}{ds}(s)\right\Vert ^{2}-K(\gamma(s))\Vert Z(s)\Vert^{2}\right)ds=-\int_{a}^{b}\left\langle \frac{D^{2}Z}{ds^{2}}(s)+K(\gamma(s))Z(s),Z(s)\right\rangle ds, +\] + +\end_inset + +donde +\begin_inset Formula +\[ +\frac{D^{2}Z}{ds^{2}}(s)=\frac{D}{ds}\left(\frac{DZ}{ds}\right)(s) +\] + +\end_inset + +y +\begin_inset Formula $K$ +\end_inset + + es la curvatura de Gauss de +\begin_inset Formula $S$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dado un segmento de geodésica +\begin_inset Formula $\gamma:[a,b]\to S$ +\end_inset + + con +\begin_inset Formula $K\circ\gamma\leq0$ +\end_inset + +, toda variación de +\begin_inset Formula $\gamma$ +\end_inset + + normal y propia con campo variacional no paralelo de cumple +\begin_inset Formula $L''(0)>0$ +\end_inset + +, por lo que en una superficie llana todo segmento de geodésica de +\begin_inset Formula $S$ +\end_inset + + es un mínimo del funcional longitud de arco. +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $\phi$ +\end_inset + + el campo variacional, por la segunda fórmula de variación, +\begin_inset Formula +\[ +L''(0)=\int_{a}^{b}\left(\left\Vert \frac{DZ}{ds}(s)\right\Vert ^{2}-K(\gamma(s))\Vert Z(s)\Vert^{2}\right)ds\overset{K\circ\gamma\leq0}{\geq}\int_{a}^{b}\left\Vert \frac{DZ}{ds}(s)\right\Vert ^{2}ds\geq0, +\] + +\end_inset + +pero si +\begin_inset Formula $L''(0)=0$ +\end_inset + +, entonces +\begin_inset Formula $\left\Vert \frac{DZ}{ds}\right\Vert ^{2}\equiv0$ +\end_inset + +, +\begin_inset Formula $\frac{DZ}{ds}\equiv0$ +\end_inset + + y +\begin_inset Formula $Z$ +\end_inset + + es paralelo a lo largo de +\begin_inset Formula $\gamma$ +\end_inset + +, luego en este caso +\begin_inset Formula $L''(0)>0$ +\end_inset + +. +\end_layout + +\end_body +\end_document |
