aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJuan Marín Noguera <juan.marinn@um.es>2021-02-11 09:12:41 +0100
committerJuan Marín Noguera <juan.marinn@um.es>2021-02-11 09:12:41 +0100
commite0740fb026bb6ac2a7c86230a92e69237a6cf193 (patch)
treebd9c8e4a22233d0e8abeb9e11ee5e656ff816dbb
parente1a608c876dcf250137dfa8e334265dd5d8a8a36 (diff)
Terminado MNED
-rw-r--r--mne/n.lyx15
-rw-r--r--mne/n4.lyx50
2 files changed, 47 insertions, 18 deletions
diff --git a/mne/n.lyx b/mne/n.lyx
index fe7837d..2fedefc 100644
--- a/mne/n.lyx
+++ b/mne/n.lyx
@@ -162,6 +162,10 @@ https://en.wikipedia.org/
\lang english
Runge-Kutta methods
\emph default
+,
+\emph on
+Backward Differentiation Formula
+\emph default
\lang spanish
.
\end_layout
@@ -223,14 +227,10 @@ filename "n4.lyx"
\end_layout
\begin_layout Chapter
-\begin_inset Note Note
-status open
-
-\begin_layout Chapter
Dominios de estabilidad
\end_layout
-\begin_layout Plain Layout
+\begin_layout Standard
\begin_inset CommandInset include
LatexCommand input
filename "n5.lyx"
@@ -240,10 +240,5 @@ filename "n5.lyx"
\end_layout
-\end_inset
-
-
-\end_layout
-
\end_body
\end_document
diff --git a/mne/n4.lyx b/mne/n4.lyx
index 17e2805..9aed707 100644
--- a/mne/n4.lyx
+++ b/mne/n4.lyx
@@ -250,12 +250,12 @@ y una solución aproximada
\begin_inset Formula $(t_{i},\omega_{i})_{i=0}^{n}$
\end_inset
- por un método multipaso de coeficientes
-\begin_inset Formula $a_{0},\dots,a_{m-1},b_{0},\dots,b_{m}$
+ por un método multipaso con paso
+\begin_inset Formula $h>0$
\end_inset
- con paso fijo
-\begin_inset Formula $h>0$
+ y coeficientes
+\begin_inset Formula $a_{0},\dots,a_{m-1},b_{0},\dots,b_{m}$
\end_inset
, el
@@ -630,7 +630,8 @@ Fijado
\begin_inset Formula
\begin{multline*}
\Vert\tilde{\omega}_{i+1}-\omega_{i+1}\Vert=\Vert\tilde{\omega}_{i}-\omega_{i}+hØ(t_{i},\omega_{i},h)-hØ(t_{i},\tilde{\omega}_{i},h)+\varepsilon_{i}\Vert\leq(1+hL)\Vert\tilde{\omega}_{i}-\omega_{i}\Vert+\Vert\varepsilon_{i}\Vert\leq\\
-\leq(1+hL)^{i+1}\left(\Vert\tilde{\omega}_{0}-\omega_{0}\Vert+\sum_{j=1}^{i}\Vert\varepsilon_{j}\Vert\right)+\Vert\varepsilon_{i}\Vert\overset{(1+hL)^{i+1}\geq1}{\leq}(1+hL)^{i+1}\left(\Vert\tilde{\omega}_{0}-\omega_{0}\Vert+\sum_{j=1}^{i+1}\Vert\varepsilon_{j}\Vert\right).
+\leq(1+hL)^{i+1}\left(\Vert\tilde{\omega}_{0}-\omega_{0}\Vert+\sum_{j=1}^{i}\Vert\varepsilon_{j}\Vert\right)+\Vert\varepsilon_{i}\Vert\leq\\
+\overset{(1+hL)^{i+1}\geq1}{\leq}(1+hL)^{i+1}\left(\Vert\tilde{\omega}_{0}-\omega_{0}\Vert+\sum_{j=1}^{i+1}\Vert\varepsilon_{j}\Vert\right).
\end{multline*}
\end_inset
@@ -830,11 +831,15 @@ polinomio característico
\end_layout
\begin_layout Standard
-Dados un método multipaso de paso fijo con
-\begin_inset Formula $\omega_{i}:=a_{0}\omega_{i-m}+\dots+a_{m-1}\omega_{i-1}+hF(t_{i},h,\omega_{i-m},\dots,\omega_{i})$
+Dados un método multipaso de paso fijo
+\begin_inset Formula
+\[
+\omega_{i}:=a_{0}\omega_{i-m}+\dots+a_{m-1}\omega_{i-1}+hF(t_{i},h,\omega_{i-m},\dots,\omega_{i})
+\]
+
\end_inset
- y
+y
\begin_inset Formula $\omega_{i}:=\alpha_{i}$
\end_inset
@@ -932,6 +937,18 @@ Método predictor-corrector
\end_layout
\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+begin{sloppypar}
+\end_layout
+
+\end_inset
+
Dados un método implícito
\begin_inset Formula $\omega_{i}:=F(t_{i},h,\omega_{i-1},\dots,\omega_{i-m})$
\end_inset
@@ -976,6 +993,23 @@ corrector
\end_inset
+
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+end{sloppypar}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
Así se combina la simplicidad de un método explícito con el menor error
de uno implícito.
Se podría repetir el paso corrector para obtener mejores cotas, pero es