diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2021-04-12 21:45:59 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2021-04-12 21:57:20 +0200 |
| commit | e64323fae3cd9f1890118d7c7241fa1fd6792f6e (patch) | |
| tree | 595a39e63d9670509719fdc6ac8dae49b10bee67 | |
| parent | c515af67b9e44b18917be217e0161b4570fa563d (diff) | |
Polinomios
| -rw-r--r-- | ealg/n1.lyx | 2272 |
1 files changed, 2171 insertions, 101 deletions
diff --git a/ealg/n1.lyx b/ealg/n1.lyx index e50b9eb..54cf78e 100644 --- a/ealg/n1.lyx +++ b/ealg/n1.lyx @@ -134,6 +134,17 @@ variable \end_inset , con las operaciones +\begin_inset ERT +status open + +\begin_layout Plain Layout + +{ +\end_layout + +\end_inset + + \begin_inset Formula \begin{align*} (a_{n})_{n}+(b_{n})_{n} & :=(a_{n}+b_{n})_{n}; & (a_{n})_{n}(b_{n})_{n} & :=\left(\sum_{k=0}^{n}a_{k}b_{n-k}\right)_{n}. @@ -142,6 +153,17 @@ variable \end_inset +\begin_inset ERT +status open + +\begin_layout Plain Layout + +} +\end_layout + +\end_inset + + \end_layout \begin_layout Standard @@ -237,7 +259,7 @@ coeficiente principal \series bold mónico \series default - si su coeficiente princial es 1. + si su coeficiente principal es 1. El polinomio 0 tiene grado \begin_inset Formula $-\infty$ \end_inset @@ -291,7 +313,7 @@ Si \begin_inset Formula $\text{gr}(P+Q)\leq\max\{\text{gr}(P),\text{gr}(Q)\}$ \end_inset -, con desigualdad estricta si y sólo si +, con desigualdad estricta si y solo si \begin_inset Formula $\text{gr}(P)=\text{gr}(Q)$ \end_inset @@ -306,7 +328,7 @@ Si \begin_inset Formula $\text{gr}(PQ)\leq\text{gr}(P)+\text{gr}(Q)$ \end_inset -, con igualdad si y sólo si +, con igualdad si y solo si \begin_inset Formula $pq\neq0$ \end_inset @@ -317,7 +339,7 @@ Si \begin_inset Formula $A[X]$ \end_inset - [...] es un dominio si y sólo si lo es + [...] es un dominio si y solo si lo es \begin_inset Formula $A$ \end_inset @@ -446,39 +468,7 @@ A/\ker f\cong\text{Im}f. \end_layout \begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -eremember -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -sremember{GyA} -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard - +[...] \series bold Propiedad universal del anillo de polinomios \series default @@ -752,7 +742,7 @@ status open \backslash -sremember +sremember{GyA} \end_layout \end_inset @@ -866,39 +856,7 @@ dominio euclídeo \end_layout \begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -eremember -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -sremember{GyA} -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard -Sean +[...] Sean \begin_inset Formula $f,g\in A[X]$ \end_inset @@ -1002,7 +960,7 @@ Teorema de Ruffini \begin_inset Formula $X-a$ \end_inset - si y sólo si + si y solo si \begin_inset Formula $f(a)=0$ \end_inset @@ -1047,7 +1005,7 @@ multiplicidad \begin_inset Formula $f$ \end_inset - si y sólo si + si y solo si \begin_inset Formula $m\geq1$ \end_inset @@ -1129,9 +1087,6 @@ Si \end_inset . -\end_layout - -\begin_layout Standard \begin_inset ERT status open @@ -1139,7 +1094,7 @@ status open \backslash -eremeber +eremember \end_layout \end_inset @@ -1222,7 +1177,24 @@ derivada \end_inset . - Dados +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\backslash +sremember{GyA} +\end_layout + +\end_inset + +Dados \begin_inset Formula $a,b\in A$ \end_inset @@ -1283,7 +1255,7 @@ Si \begin_inset Formula $p\in A[X]$ \end_inset - si y sólo si + si y solo si \begin_inset Formula $p(a)=p'(a)=0$ \end_inset @@ -1331,11 +1303,23 @@ identidad de Bézout \end_layout \begin_layout Standard +[...] Si +\begin_inset Formula $1\in(S)$ +\end_inset + +, +\begin_inset Formula $\text{mcd}S=1$ +\end_inset + +. +\end_layout + +\begin_layout Standard [...] \begin_inset Formula $A[X]$ \end_inset - es un dominio euclídeo si y sólo si es un DIP, si y sólo si + es un dominio euclídeo si y solo si es un DIP, si y solo si \begin_inset Formula $A$ \end_inset @@ -1359,11 +1343,20 @@ eremember \end_layout \begin_layout Standard -Sean -\begin_inset Formula $K$ +Llamamos +\begin_inset Formula $\text{car}A$ \end_inset - un cuerpo y + a la característica del anillo +\begin_inset Formula $A$ +\end_inset + +. + Sean +\begin_inset Formula $K\subseteq L$ +\end_inset + + cuerpos y \begin_inset Formula $f\in K[X]$ \end_inset @@ -1375,7 +1368,7 @@ Si \begin_inset Formula $\text{mcd}\{f,f'\}=1$ \end_inset - entonces +, entonces \begin_inset Formula $f$ \end_inset @@ -1422,11 +1415,7 @@ Existen \end_deeper \begin_layout Enumerate Si -\begin_inset Formula $K\subseteq L$ -\end_inset - - son cuerpos y -\begin_inset Formula $f\in K[X]$ +\begin_inset Formula $f$ \end_inset es irreducible en @@ -1445,7 +1434,7 @@ Si \begin_inset Formula $L$ \end_inset - si y sólo si + si y solo si \begin_inset Formula $f'=0$ \end_inset @@ -1491,21 +1480,256 @@ Si fuera \end_inset . - Ahora bien, -\begin_inset Note Note + Entonces existe una identidad de Bézout +\begin_inset Formula $pf+qf'=1$ +\end_inset + + con +\begin_inset Formula $p,q\in K[X]\subseteq L[X]$ +\end_inset + +, de modo que +\begin_inset Formula $1\in(\{f,f'\})_{L[X]}$ +\end_inset + + y +\begin_inset Formula $\text{mcd}\{f,f'\}=1$ +\end_inset + + en +\begin_inset Formula $L[X]$ +\end_inset + +, y por el apartado anterior, +\begin_inset Formula $f$ +\end_inset + + no tiene raíces múltiples en +\begin_inset Formula $L\#$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 status open \begin_layout Plain Layout -pasar a que lo es en -\begin_inset Formula $L[X]$ +\begin_inset Formula $\impliedby]$ \end_inset - por identidades de Bézout y cosas de DIP y caracterización de mcd por ideal - principal + \end_layout \end_inset +Sea +\begin_inset Formula $\alpha\in L$ +\end_inset + + raíz de +\begin_inset Formula $f$ +\end_inset + +, entonces +\begin_inset Formula $f(\alpha)=f'(\alpha)=0$ +\end_inset + + y +\begin_inset Formula $\alpha$ +\end_inset + + es raíz múltiple de +\begin_inset Formula $f$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $\text{car}K=0$ +\end_inset + + y +\begin_inset Formula $f$ +\end_inset + + es irreducible en +\begin_inset Formula $K[X]$ +\end_inset + +, entonces +\begin_inset Formula $f$ +\end_inset + + no tiene raíces múltiples en +\begin_inset Formula $L$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Como +\begin_inset Formula $f$ +\end_inset + + no es cero ni unidad, +\begin_inset Formula $n:=\text{gr}f>0$ +\end_inset + +, y como el coeficiente principal de +\begin_inset Formula $f'$ +\end_inset + + es +\begin_inset Formula $nf_{n}\neq0$ +\end_inset + +, entonces +\begin_inset Formula $f'\neq0$ +\end_inset + + y, por lo anterior, si +\begin_inset Formula $f$ +\end_inset + + tiene raíces en +\begin_inset Formula $L$ +\end_inset + +, estas no son múltiples. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $p:=\text{car}K\neq0$ +\end_inset + +, +\begin_inset Formula $f'=0$ +\end_inset + + si y solo si +\begin_inset Formula $f\in K[X^{p}]$ +\end_inset + +. + En particular, si +\begin_inset Formula $f$ +\end_inset + + es irreducible en +\begin_inset Formula $K[X]$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + tiene raíces múltiples en +\begin_inset Formula $L$ +\end_inset + + si y solo si +\begin_inset Formula $f\in K[X^{p}]$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Para +\begin_inset Formula $i\in\mathbb{N}$ +\end_inset + + con +\begin_inset Formula $f_{i}\neq0$ +\end_inset + + se tiene +\begin_inset Formula $(f')_{i-1}=if_{i}=0$ +\end_inset + +, luego +\begin_inset Formula $p\mid i$ +\end_inset + +. + Por tanto +\begin_inset Formula $f$ +\end_inset + + es de la forma +\begin_inset Formula $f=:\sum_{j}b_{j}X^{jp}$ +\end_inset + + y, sea +\begin_inset Formula $g:=\sum_{j}b_{j}X^{j}$ +\end_inset + +, +\begin_inset Formula $f(X)=g(X^{p})$ +\end_inset + +, luego +\begin_inset Formula $f\in K[X^{p}]$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $g=\sum_{j}b_{j}X^{j}$ +\end_inset + + tal que +\begin_inset Formula $f(X)=g(X^{p})$ +\end_inset + +, entonces +\begin_inset Formula $f=\sum_{j}b_{j}X^{jp}$ +\end_inset + + y +\begin_inset Formula +\[ +f'=\sum_{j}b_{j}jpX^{jp-1}=0. +\] + +\end_inset + \end_layout @@ -1547,7 +1771,7 @@ Sean \begin_inset Formula $D$ \end_inset - si y sólo si lo es en + si y solo si lo es en \begin_inset Formula $D[X]$ \end_inset @@ -1563,7 +1787,7 @@ teorema \begin_inset Formula $D$ \end_inset - es un DFU si y sólo si lo es + es un DFU si y solo si lo es \begin_inset Formula $D[X]$ \end_inset @@ -1674,7 +1898,7 @@ Si \begin_inset Formula $K[X]$ \end_inset - si y sólo si no tiene raíces en + si y solo si no tiene raíces en \begin_inset Formula $K$ \end_inset @@ -1818,11 +2042,116 @@ eremember \end_layout \begin_layout Standard -\begin_inset Note Note +La irreducibilidad se conserva por automorfismos de dominios, por lo que + si +\begin_inset Formula $D$ +\end_inset + + es un dominio, +\begin_inset Formula $a\in D^{*}$ +\end_inset + + y +\begin_inset Formula $b\in D$ +\end_inset + +, +\begin_inset Formula $f\in D[X]$ +\end_inset + + es irreducible si y solo si lo es +\begin_inset Formula $f(aX+b)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $p\in\mathbb{Z}$ +\end_inset + + es primo, +\begin_inset Formula $f(X):=\frac{X^{p}-1}{X-1}=X^{p-1}+X^{p-2}+\dots+X+1$ +\end_inset + + es irreducible en +\begin_inset Formula $\mathbb{Q}[X]$ +\end_inset + + y en +\begin_inset Formula $\mathbb{Z}[X]$ +\end_inset + +. + En efecto, aplicando el automorfismo +\begin_inset Formula $X\mapsto X+1$ +\end_inset + + a +\begin_inset Formula $(X-1)f(X)=X^{p}-1$ +\end_inset + +, queda +\begin_inset Formula +\[ +Xf(X+1)=(X+1)^{p}-1=X^{p}+\binom{p}{1}X^{p-1}+\dots+\binom{p}{p-1}X, +\] + +\end_inset + +luego +\begin_inset Formula +\[ +f(X+1)=X^{p-1}+\binom{p}{1}X^{p-2}+\dots+\binom{p}{p-1}, +\] + +\end_inset + +que es irreducible por Eisenstein porque +\begin_inset Formula $p$ +\end_inset + + divide a +\begin_inset Formula $\binom{p}{i}$ +\end_inset + + para +\begin_inset Formula $i\in\{1,\dots,p-1\}$ +\end_inset + + y +\begin_inset Formula $p^{2}$ +\end_inset + + no divide a +\begin_inset Formula $\binom{p}{p-1}=\binom{p}{1}=p$ +\end_inset + +. +\end_layout + +\begin_layout Section +Factorización en +\begin_inset Formula $\mathbb{C}[X]$ +\end_inset + + y +\begin_inset Formula $\mathbb{R}[X]$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT status open \begin_layout Plain Layout -1.24,1.25 + + +\backslash +sremember{FVC} \end_layout \end_inset @@ -1830,5 +2159,1746 @@ status open \end_layout +\begin_layout Standard + +\series bold +Teorema fundamental del álgebra: +\series default + +\begin_inset Formula $\mathbb{C}$ +\end_inset + + es algebraicamente cerrado, esto es, todo polinomio complejo de grado +\begin_inset Formula $n$ +\end_inset + + es la forma +\begin_inset Formula $p(x)=\alpha\prod_{k=1}^{n}(x-a_{k})$ +\end_inset + + con +\begin_inset Formula $\alpha,a_{1},\dots,a_{n}\in\mathbb{C}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Equivalentemente, todo polinomio complejo no constante tiene raíces en +\begin_inset Formula $\mathbb{C}$ +\end_inset + +, y los polinomios irreducibles en +\begin_inset Formula $\mathbb{C}[X]$ +\end_inset + + son los de grado 1. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\alpha\in\mathbb{C}$ +\end_inset + + es raíz de +\begin_inset Formula $f\in\mathbb{R}[X]$ +\end_inset + +, entonces +\begin_inset Formula $\overline{\alpha}$ +\end_inset + + también lo es, y ambas tienen la misma multiplicidad. + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $f$ +\end_inset + + tiene grado +\begin_inset Formula $n$ +\end_inset + +, como +\begin_inset Formula $f_{i}=\overline{f_{i}}$ +\end_inset + + para cada +\begin_inset Formula $i\in\{0,\dots,n\}$ +\end_inset + + por ser +\begin_inset Formula $f_{i}\in\mathbb{R}$ +\end_inset + +, se tiene +\begin_inset Formula +\[ +0=a_{0}+a_{1}\alpha+\dots+a_{n}\alpha^{n}=\overline{a_{0}+a_{1}\alpha+\dots+a_{n}\alpha^{n}}=a_{0}+a_{1}\overline{\alpha}+\dots+a_{n}\overline{\alpha}^{n}. +\] + +\end_inset + +Además, si +\begin_inset Formula $(X-\alpha)^{m}\mid f$ +\end_inset + +, entonces +\begin_inset Formula $f=(X-\alpha)^{m}g$ +\end_inset + + para cierto +\begin_inset Formula $g\in\mathbb{C}[X]$ +\end_inset + + y +\begin_inset Formula $f=\overline{f}=(X-\overline{\alpha})^{m}\overline{g}$ +\end_inset + +, luego +\begin_inset Formula $(X-\overline{\alpha})^{m}\mid f$ +\end_inset + +, y el recíproco es análogo. +\end_layout + +\begin_layout Standard +Los irreducibles de +\begin_inset Formula $\mathbb{R}[X]$ +\end_inset + + son los de grado 1 y los de grado 2 sin raíces reales. + Además, todo polinomio en +\begin_inset Formula $\mathbb{R}[X]$ +\end_inset + + se puede expresar de forma única (salvo orden) como +\begin_inset Formula +\[ +a\prod_{i=1}^{r}(X-c_{i})^{k_{i}}\prod_{i=1}^{s}(X^{2}-2\text{Re}\alpha_{i})X+\alpha_{i}\overline{\alpha}_{i})^{m_{i}} +\] + +\end_inset + +con +\begin_inset Formula $r,s\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $a\in\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $c_{1},\dots,c_{r}\in\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $\alpha_{1},\dots,\alpha_{s}\in\mathbb{C}\setminus\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $k_{1},\dots,k_{r},m_{1},\dots,m_{s}\in\mathbb{N}^{*}$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $p\in\mathbb{R}[X]$ +\end_inset + +, si +\begin_inset Formula $\text{gr}p=1$ +\end_inset + +, +\begin_inset Formula $p$ +\end_inset + + es irreducible, y si +\begin_inset Formula $\text{gr}p=2$ +\end_inset + +, lo es en +\begin_inset Formula $\mathbb{R}[X]$ +\end_inset + + si y solo si tiene raíces reales. + Si +\begin_inset Formula $\text{gr}p\geq3$ +\end_inset + +, por el teorema fundamental del álgebra, +\begin_inset Formula $p$ +\end_inset + + tiene una raíz +\begin_inset Formula $\alpha\in\mathbb{C}$ +\end_inset + +. + Si +\begin_inset Formula $\alpha\in\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $p$ +\end_inset + + es divisible por +\begin_inset Formula $X-\alpha\in\mathbb{R}[X]$ +\end_inset + +, y en otro caso, +\begin_inset Formula $\overline{\alpha}$ +\end_inset + + también es raíz, luego +\begin_inset Formula $p$ +\end_inset + + es divisible por +\begin_inset Formula +\[ +(X-\alpha)(X-\overline{\alpha})=X^{2}-(\alpha+\overline{\alpha})X+\alpha\overline{\alpha}=X^{2}-2\text{Re}\alpha X+|\alpha|^{2}\in\mathbb{R}[X]. +\] + +\end_inset + +La segunda parte se obtiene por inducción. +\end_layout + +\begin_layout Section +Polinomios en varias variables +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{GyA} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dados un anillo conmutativo +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $n\geq2$ +\end_inset + +, definimos el +\series bold +anillo de polinomios +\series default + en +\begin_inset Formula $n$ +\end_inset + + indeterminadas [o variables] con coeficientes en +\begin_inset Formula $A$ +\end_inset + + como +\begin_inset Formula +\[ +A[X_{1},\dots,X_{n}]:=A[X_{1},\dots,X_{n-1}][X_{n}]. +\] + +\end_inset + + Llamamos [...] +\series bold +polinomios en +\begin_inset Formula $n$ +\end_inset + + indeterminadas +\series default + a los elementos de +\begin_inset Formula $A[X_{1},\dots,X_{n}]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +[...] Todo +\begin_inset Formula $p\in A[X_{1},\dots,X_{n}]$ +\end_inset + + se escribe de forma única como suma de monomios de distinto tipo, +\begin_inset Formula +\[ +p:=\sum_{i\in\mathbb{N}^{n}}p_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}, +\] + +\end_inset + +con +\begin_inset Formula $p_{i}=0$ +\end_inset + + para casi todo +\begin_inset Formula $i\in\mathbb{N}^{n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +[...] +\series bold +PUAP en +\begin_inset Formula $n$ +\end_inset + + indeterminadas: +\series default + Sean +\begin_inset Formula $A$ +\end_inset + + un anillo conmutativo, +\begin_inset Formula $n\in\mathbb{N}^{*}$ +\end_inset + + y +\begin_inset Formula $u:A\to A[X_{1},\dots,X_{n}]$ +\end_inset + + la inclusión: +\end_layout + +\begin_layout Enumerate +Dados un homomorfismo de anillos +\begin_inset Formula $f:A\to B$ +\end_inset + + y +\begin_inset Formula $b_{1},\dots,b_{n}\in B$ +\end_inset + +, existe un único homomorfismo de anillos +\begin_inset Formula $\tilde{f}:A[X_{1},\dots,X_{n}]\to B$ +\end_inset + + tal que +\begin_inset Formula $\tilde{f}\circ u=f$ +\end_inset + + y +\begin_inset Formula $\tilde{f}(X_{k})=b_{k}$ +\end_inset + + para +\begin_inset Formula $k\in\{1,\dots,n\}$ +\end_inset + +. + +\begin_inset Formula +\[ +\left[\tilde{f}\left(\sum_{i\in\mathbb{N}^{n}}p_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}\right)=\sum_{i\in\mathbb{N}^{n}}f(p_{i})b_{1}^{i_{1}}\cdots b_{n}^{i_{n}}.\right] +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{GyA} +\end_layout + +\end_inset + +Así: +\end_layout + +\begin_layout Enumerate +Dados dos anillos conmutativos +\begin_inset Formula $A\subseteq B$ +\end_inset + + y +\begin_inset Formula $b_{1},\dots,b_{n}\in B$ +\end_inset + +, el +\series bold +homomorfismo de +\series default +[...][ +\series bold +evaluación +\series default +] +\begin_inset Formula $S:A[X_{1},\dots,X_{n}]\to B$ +\end_inset + + viene dado por +\begin_inset Formula $p(b_{1},\dots,b_{n}):=S(p):=\sum_{i\in\mathbb{N}^{n}}p_{i}b_{1}^{i_{1}}\cdots b_{n}^{i_{n}}$ +\end_inset + +[, y +\begin_inset Formula $S(p)$ +\end_inset + + es la +\series bold +evaluación +\series default + o +\series bold +valor +\series default + de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $b:=(b_{1},\dots,b_{n})$ +\end_inset + +]. + [La imagen de +\begin_inset Formula $S$ +\end_inset + +] es el subanillo de +\begin_inset Formula $B$ +\end_inset + + generado por +\begin_inset Formula $A\cup\{b_{1},\dots,b_{n}\}$ +\end_inset + + [o +\series bold +engendrado por +\begin_inset Formula $b_{1},\dots,b_{n}$ +\end_inset + + sobre +\begin_inset Formula $A$ +\end_inset + + +\series default +], +\begin_inset Formula $A[b_{1},\dots,b_{n}]$ +\end_inset + + [...]. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Entonces +\begin_inset Formula $b_{1},\dots,b_{n}\in B$ +\end_inset + + son +\series bold +algebraicamente independientes +\series default + sobre +\begin_inset Formula $A$ +\end_inset + + si +\begin_inset Formula $\ker S=0$ +\end_inset + +, y son +\series bold +algebraicamente dependientes +\series default + en otro caso, es decir, si +\begin_inset Formula $b$ +\end_inset + + es cero de un polinomio no nulo, en cuyo caso +\begin_inset Formula $\ker S$ +\end_inset + + es el +\series bold +ideal de las relaciones algebraicas +\series default + de +\begin_inset Formula $b_{1},\dots,b_{n}$ +\end_inset + + sobre +\begin_inset Formula $A$ +\end_inset + +. + Por el primer teorema de isomorfía, +\begin_inset Formula +\[ +A[b_{1},\dots,b_{n}]\cong\frac{A[X_{1},\dots,X_{n}]}{\ker S}, +\] + +\end_inset + + y en particular, si +\begin_inset Formula $b_{1},\dots,b_{n}$ +\end_inset + + son algebraicamente independientes, +\begin_inset Formula $A[b_{1},\dots,b_{n}]\cong A[X_{1},\dots,X_{n}]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Por ejemplo, +\begin_inset Formula $b_{1}:=1/\pi$ +\end_inset + + y +\begin_inset Formula $b_{2}:=1+\sqrt{\pi}$ +\end_inset + + son algebraicamente dependientes, pues satisfaces +\begin_inset Formula $(b_{2}-1)^{2}=1/b_{1}$ +\end_inset + + y por tanto +\begin_inset Formula $b_{1}b_{2}^{2}-2b_{1}b_{2}+b_{1}-1=0$ +\end_inset + +, y +\begin_inset Formula $(b_{1},b_{2})$ +\end_inset + + es raíz de +\begin_inset Formula $X_{1}X_{2}^{2}-2X_{1}X_{2}+X_{1}-1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $B$ +\end_inset + + es un dominio, llamamos +\begin_inset Formula $A(b_{1},\dots,b_{n})$ +\end_inset + + al cuerpo de fracciones del dominio +\begin_inset Formula $A[b_{1},\dots,b_{n}]$ +\end_inset + +, que en general no está contenido en +\begin_inset Formula $B$ +\end_inset + +, pero sí en su cuerpo de fracciones +\begin_inset Formula $K$ +\end_inset + +, y de hecho es el menor subcuerpo de +\begin_inset Formula $K$ +\end_inset + + que contiene a +\begin_inset Formula $A\cup\{b_{1},\dots,b_{n}\}$ +\end_inset + +. + En efecto, +\begin_inset Formula $A[b_{1},\dots,b_{n}]$ +\end_inset + + es el menor anillo que contiene a +\begin_inset Formula $A\cup\{b_{1},\dots,b_{n}\}$ +\end_inset + +, que es un dominio por ser un subanillo del dominio +\begin_inset Formula $B$ +\end_inset + +, pero todo subcuerpo de +\begin_inset Formula $K$ +\end_inset + + que contenga a +\begin_inset Formula $A\cup\{b_{1},\dots,b_{n}\}$ +\end_inset + + y por tanto a +\begin_inset Formula $A[b_{1},\dots,b_{n}]$ +\end_inset + + debe contener a los cocientes de elementos de +\begin_inset Formula $A[b_{1},\dots,b_{n}]$ +\end_inset + + y por tanto a +\begin_inset Formula $A(b_{1},\dots,b_{n})$ +\end_inset + +, que es un subcuerpo de +\begin_inset Formula $B$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{GyA} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +2. +\end_layout + +\end_inset + +Sean +\begin_inset Formula $A$ +\end_inset + + un anillo y +\begin_inset Formula $\sigma$ +\end_inset + + una permutación de +\begin_inset Formula $\mathbb{N}_{n}$ +\end_inset + + con inversa +\begin_inset Formula $\tau:=\sigma^{-1}$ +\end_inset + +, tomando +\begin_inset Formula $B=A[X_{1},\dots,X_{n}]$ +\end_inset + + y +\begin_inset Formula $b_{k}=X_{\sigma(k)}$ +\end_inset + + en el punto anterior obtenemos un automorfismo +\begin_inset Formula $\hat{\sigma}$ +\end_inset + + en +\begin_inset Formula $A[X_{1},\dots,X_{n}]$ +\end_inset + + con inversa +\begin_inset Formula $\hat{\tau}$ +\end_inset + + que permuta las indeterminadas. + [Llamamos +\begin_inset Formula $f^{\sigma}:=\hat{\sigma}(f)$ +\end_inset + +.] +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +3. +\end_layout + +\end_inset + + +\begin_inset Formula $A[X_{1},\dots,X_{n},Y_{1},\dots,Y_{m}]\cong A[X_{1},\dots,X_{n}][Y_{1},\dots,Y_{m}]\cong A[Y_{1},\dots,Y_{m}][X_{1},\dots,X_{n}]$ +\end_inset + +, por lo que en la práctica no distinguimos entre estos anillos. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +4. +\end_layout + +\end_inset + +Todo homomorfismo de anillos conmutativos +\begin_inset Formula $f:A\to B$ +\end_inset + + induce un homomorfismo +\begin_inset Formula $\hat{f}:A[X_{1},\dots,X_{n}]\to B[X_{1},\dots,X_{n}]$ +\end_inset + + dado por +\begin_inset Formula $\hat{f}(p):=\sum_{i\in\mathbb{N}^{n}}f(p_{i})X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Llamamos +\series bold +grado +\series default + de un monomio +\begin_inset Formula $aX_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$ +\end_inset + + a +\begin_inset Formula $i_{1}+\dots+i_{n}$ +\end_inset + +, y grado de +\begin_inset Formula $p\in A[X_{1},\dots,X_{n}]\setminus0$ +\end_inset + +, +\begin_inset Formula $\text{gr}(p)$ +\end_inset + +, al mayor de los grados de los monomios no nulos en la expresión por monomios + de +\begin_inset Formula $p$ +\end_inset + +. + Entonces +\begin_inset Formula $\text{gr}(p+q)\leq\max\{\text{gr}(p),\text{gr}(q)\}$ +\end_inset + + y +\begin_inset Formula $\text{gr}(pq)\leq\text{gr}(p)+\text{gr}(q)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{GyA} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un polinomio es +\series bold +homogéneo +\series default + de grado +\begin_inset Formula $n$ +\end_inset + + si es suma de monomios de grado +\begin_inset Formula $n$ +\end_inset + +. + Todo polinomio se escribe de modo único como suma de polinomios homogéneos + de distintos grados, [las +\series bold +componentes homogéneas +\series default + del polinomio.] +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Polinomios simétricos +\end_layout + +\begin_layout Standard +Un +\begin_inset Formula $f\in A[X_{1},\dots,X_{n}]$ +\end_inset + + es +\series bold +simétrico +\series default + si +\begin_inset Formula $f^{\sigma}=f$ +\end_inset + + para todo +\begin_inset Formula $\sigma\in{\cal S}_{n}$ +\end_inset + +, si y solo si todas sus componentes homogéneas son simétricas. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $f=f_{0}+\dots+f_{k}$ +\end_inset + + la descomposición de +\begin_inset Formula $f$ +\end_inset + + por componentes homogéneas con +\begin_inset Formula $\text{gr}f_{i}=i$ +\end_inset + +: +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Para +\begin_inset Formula $\sigma\in{\cal S}_{n}$ +\end_inset + +, +\begin_inset Formula $f_{0}+\dots+f_{k}=(f_{0}+\dots+f_{k})^{\sigma}=f_{0}^{\sigma}+\dots+f_{k}^{\sigma}$ +\end_inset + + usando en la última igualdad que +\begin_inset Formula $f\mapsto f^{\sigma}$ +\end_inset + + es un automorfismo, pero cada +\begin_inset Formula $f_{i}^{\sigma}$ +\end_inset + + es homogéneo de grado +\begin_inset Formula $i$ +\end_inset + +, y por la unicidad de las descomposiciones, cada +\begin_inset Formula $f_{i}^{\sigma}=f_{i}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $f^{\sigma}=(f_{0}+\dots+f_{k})^{\sigma}=f_{0}^{\sigma}+\dots+f_{k}^{\sigma}=f_{0}+\dots+f_{k}=f$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $F\in A[X_{1},\dots,X_{n}][T]$ +\end_inset + + dado por +\begin_inset Formula +\[ +F:=(T-X_{1})\cdots(T-X_{n})=:\sum_{k=0}^{n}(-1)^{k}s_{k}(X_{1},\dots,X_{n})T^{n-k}, +\] + +\end_inset + +llamamos +\series bold +polinomios simétricos elementales +\series default + en las indeterminadas +\begin_inset Formula $X_{1},\dots,X_{n}$ +\end_inset + + a los polinomios +\begin_inset Formula $s_{k}\in A[X_{1},\dots,X_{n}]$ +\end_inset + +, que vienen dados por +\begin_inset Formula +\[ +s_{k}(X_{1},\dots,X_{n})=\sum_{1\leq i_{1}<\dots<i_{k}\leq n}\prod_{j=1}^{k}X_{i_{j}} +\] + +\end_inset + +y son simétricos. + En particular +\begin_inset Formula $s_{0}=1$ +\end_inset + +, +\begin_inset Formula $s_{1}=X_{1}+\dots+X_{n}$ +\end_inset + + y +\begin_inset Formula $s_{n}=X_{1}\cdots X_{n}$ +\end_inset + +. + Si +\begin_inset Formula $\tilde{s}_{1}(X_{1},\dots,X_{n-1}),\dots,\tilde{s}_{n-1}(X_{1},\dots,X_{n-1})$ +\end_inset + + son los polinomios simétricos elementales en las variables +\begin_inset Formula $X_{1},\dots,X_{n-1}$ +\end_inset + +, entonces, para +\begin_inset Formula $i\in\{1,\dots,n-1\}$ +\end_inset + +, +\begin_inset Formula +\[ +\tilde{s}_{i}(X_{1},\dots,X_{n-1})=s_{i}(X_{1},\dots,X_{n-1},0). +\] + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema fundamental de los polinomios simétricos: +\series default + Sea +\begin_inset Formula $S[X_{1},\dots,X_{n}]$ +\end_inset + + el subanillo de los polinomios simétricos de +\begin_inset Formula $A[X_{1},\dots,X_{n}]$ +\end_inset + +, el homomorfismo de evaluación +\begin_inset Formula $\varphi:A[X_{1},\dots,X_{n}]\to S[X_{1},\dots,X_{n}]$ +\end_inset + + con +\begin_inset Formula $\varphi(X_{i})=s_{i}$ +\end_inset + + es un isomorfismo, es decir, todo polinomio simétrico se escribe de forma + única como expresión polinómica en los polinomios simétricos elementales. +\end_layout + +\begin_layout Standard + +\series bold +Fórmulas de Cardano-Vieta: +\series default + Sean +\begin_inset Formula $A$ +\end_inset + + un subanillo de +\begin_inset Formula $B$ +\end_inset + +, +\begin_inset Formula $f\in A[X]$ +\end_inset + + y +\begin_inset Formula $\alpha_{1},\dots,\alpha_{n}\in B[X]$ +\end_inset + + con +\begin_inset Formula $f=(X-\alpha_{1})\cdots(X-\alpha_{n})$ +\end_inset + +, entonces, para +\begin_inset Formula $k\in\{1,\dots,n\}$ +\end_inset + +, +\begin_inset Formula +\[ +\sum_{1\leq i_{1}<\dots<i_{k}}\prod_{j=1}^{k}\alpha_{i_{j}}=(-1)^{k}f_{k}. +\] + +\end_inset + +En efecto, sea +\begin_inset Formula +\[ +F(X_{1},\dots,X_{n},T):=(T-X_{1})\cdots(T-X_{n})=T^{n}+s_{1}(X_{1},\dots,X_{n})T^{n-1}+\dots+s_{n}(X_{1},\dots,X_{n}), +\] + +\end_inset + +entonces +\begin_inset Formula +\[ +f(X)=(X-\alpha_{1})\cdots(X-\alpha_{n})=f(\alpha_{1},\dots,\alpha_{n},X)=X^{n}+s_{1}(\alpha_{1},\dots,\alpha_{n})X^{n-1}+\dots+s_{n}(\alpha_{1},\dots,\alpha_{n}). +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +El +\series bold +orden lexicográfico +\series default + en +\begin_inset Formula $\mathbb{N}^{n}$ +\end_inset + + es el buen orden dado por +\begin_inset Formula $(i_{1},\dots,i_{n})<(j_{1},\dots,j_{n})$ +\end_inset + + si y solo si existe +\begin_inset Formula $k$ +\end_inset + + con +\begin_inset Formula $i_{k}\neq j_{k}$ +\end_inset + + y, para el menor de esos +\begin_inset Formula $k$ +\end_inset + +, +\begin_inset Formula $i_{k}<j_{k}$ +\end_inset + +. + Sea +\begin_inset Formula +\[ +f=\sum_{i\in\mathbb{N}^{n}}a_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}, +\] + +\end_inset + +llamamos +\series bold +término superior +\series default + de +\begin_inset Formula $f$ +\end_inset + + al término +\begin_inset Formula $a_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$ +\end_inset + + con +\begin_inset Formula $a_{i}\neq0$ +\end_inset + + y máximo +\begin_inset Formula $i$ +\end_inset + + en orden lexicográfico. + Para cada +\begin_inset Formula $k$ +\end_inset + +, el término superior de +\begin_inset Formula $s_{k}$ +\end_inset + + es +\begin_inset Formula $X_{1}X_{2}\cdots X_{k}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $D$ +\end_inset + + es un dominio y +\begin_inset Formula $f_{1},\dots,f_{r}\in D[X_{1},\dots,X_{n}]$ +\end_inset + +, el término superior de +\begin_inset Formula $f_{1}\cdots f_{r}$ +\end_inset + + es el producto de los términos superiores de los factores. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Basta ver esto para +\begin_inset Formula $r=2$ +\end_inset + + y el resultado se sigue por inducción. + Sean +\begin_inset Formula $f:=\sum_{i\in\mathbb{N}^{n}}a_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$ +\end_inset + + y +\begin_inset Formula $g:=\sum_{i\in\mathbb{N}^{n}}b_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$ +\end_inset + +, entonces +\begin_inset Formula +\[ +fg=\left(\sum_{i\in\mathbb{N}^{n}}a_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}\right)\left(\sum_{i\in\mathbb{N}^{n}}b_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}\right)=\sum_{i,j\in\mathbb{N}^{n}}a_{i}b_{j}X_{1}^{i_{1}+j_{1}}\cdots X_{n}^{i_{n}+j_{n}}. +\] + +\end_inset + +Queremos ver que, para +\begin_inset Formula $i,j,k,l\in\mathbb{N}^{n}$ +\end_inset + + con +\begin_inset Formula $i\leq k$ +\end_inset + + y +\begin_inset Formula $j\leq l$ +\end_inset + +, +\begin_inset Formula $i+j\leq k+l$ +\end_inset + +, con desigualdad estricta si +\begin_inset Formula $(i,j)\neq(k,l)$ +\end_inset + +. + Para ello si +\begin_inset Formula $(i,j)=(k,l)$ +\end_inset + + entonces +\begin_inset Formula $i+j=k+l$ +\end_inset + +. + Si solo una de las dos desigualdades es estricta, por ejemplo +\begin_inset Formula $i=k$ +\end_inset + + y +\begin_inset Formula $j<l$ +\end_inset + +, sea +\begin_inset Formula $r$ +\end_inset + + el menor índice con +\begin_inset Formula $j_{r}\neq l_{r}$ +\end_inset + +, entonces +\begin_inset Formula $i_{p}+j_{p}=k_{p}+l_{p}$ +\end_inset + + para +\begin_inset Formula $p<r$ +\end_inset + + e +\begin_inset Formula $i_{r}+j_{r}<k_{r}+l_{r}$ +\end_inset + +. + Finalmente, si ambas desigualdades son estrictas, sea +\begin_inset Formula $r$ +\end_inset + + el menor índice con +\begin_inset Formula $i_{r}\neq k_{r}$ +\end_inset + + o +\begin_inset Formula $j_{r}\neq k_{r}$ +\end_inset + +, necesariamente +\begin_inset Formula $i_{r}\leq k_{r}$ +\end_inset + +, +\begin_inset Formula $j_{r}\leq k_{r}$ +\end_inset + + y una de las desigualdades es estricta, luego +\begin_inset Formula $i_{p}+j_{p}=k_{p}+l_{p}$ +\end_inset + + para +\begin_inset Formula $p<r$ +\end_inset + + e +\begin_inset Formula $i_{r}+j_{r}<k_{r}+l_{r}$ +\end_inset + +. + Con esto, sean +\begin_inset Formula $A:=\{i\in\mathbb{N}^{n}:a_{i}\neq0\}$ +\end_inset + +, +\begin_inset Formula $B:=\{j\in\mathbb{N}^{n}:b_{j}\neq0\}$ +\end_inset + +, +\begin_inset Formula $i^{*}:=\max A$ +\end_inset + + y +\begin_inset Formula $j^{*}:=\max B$ +\end_inset + +, para +\begin_inset Formula $(i,j)\in A\times B$ +\end_inset + +, como +\begin_inset Formula $i\leq i^{*}$ +\end_inset + + y +\begin_inset Formula $j\leq j^{*}$ +\end_inset + +, +\begin_inset Formula $i+j\leq i^{*}+j^{*}$ +\end_inset + +, luego el término superior de +\begin_inset Formula $fg$ +\end_inset + + es el +\begin_inset Formula $i^{*}+j^{*}$ +\end_inset + + en caso de que este sea no nulo. + Si además +\begin_inset Formula $(i,j)\neq(i^{*},j^{*})$ +\end_inset + +, +\begin_inset Formula $i+j<i^{*}+j^{*}$ +\end_inset + +, luego dicho término viene dado solo por +\begin_inset Formula $a_{i^{*}}b_{j^{*}}X_{1}^{i_{1}^{*}+j_{1}^{*}}\cdots X_{n}^{i_{n}^{*}+j_{n}^{*}}=(a_{i^{*}}X_{1}^{i_{1}^{*}}\cdots X_{n}^{i_{n}^{*}})(b_{j^{*}}X_{1}^{j_{1}^{*}}\cdots X_{n}^{j_{n}^{*}})$ +\end_inset + +, y efectivamente +\begin_inset Formula $a_{i^{*}}b_{j^{*}}\neq0$ +\end_inset + + por estar en un dominio. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f$ +\end_inset + + es simétrico con término superior +\begin_inset Formula $aX_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$ +\end_inset + +, entonces +\begin_inset Formula $i_{1}\geq i_{2}\geq\dots\geq i_{n}$ +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +, pues si hubiera algún +\begin_inset Formula $i_{k-1}<i_{k}$ +\end_inset + +, la transposición de índices +\begin_inset Formula $(k-1\,k)$ +\end_inset + + nos daría un monomio mayor que también estaría en +\begin_inset Formula $f\#$ +\end_inset + + +\end_layout + +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Float algorithm +wide false +sideways false +status open + +\begin_layout Plain Layout +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +Entrada{Dominio $(D,+, +\backslash +cdot)$ y polinomio $f +\backslash +in D[X_1, +\backslash +dots,X_n]$ simétrico.} +\end_layout + +\begin_layout Plain Layout + + +\backslash +Salida{Polinomio $g +\backslash +in D[X_1, +\backslash +dots,X_n]$ con $g(s_1, +\backslash +dots,s_n)=f$.} +\end_layout + +\begin_layout Plain Layout + +$g +\backslash +gets0$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + +\backslash +Mientras{$f +\backslash +neq0$}{ +\end_layout + +\begin_layout Plain Layout + + Obtener el término superior +\end_layout + +\begin_layout Plain Layout + + $M=aX_1^{i_1} +\backslash +cdots X_n^{i_n}$ de $f$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + $p +\backslash +gets aX_1^{i_1-i_2}X_2^{i_2-i_3} +\backslash +cdots +\end_layout + +\begin_layout Plain Layout + + X_{n-1}^{i_{n-1}-i_n}X_n^{i_n}$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + $f +\backslash +gets f-p(s_1, +\backslash +dots,s_n)$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + $g +\backslash +gets g+p$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + +} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Plain Layout +\begin_inset Caption Standard + +\begin_layout Plain Layout +\begin_inset CommandInset label +LatexCommand label +name "alg:domain-esp" + +\end_inset + +Método para obtener la descomposición de un polinomio simétrico en un dominio + como expresión polinómica de polinomios simétricos elementales. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +El algoritmo +\begin_inset CommandInset ref +LatexCommand ref +reference "alg:domain-esp" +plural "false" +caps "false" +noprefix "false" + +\end_inset + + permite descomponer un polinomio simétrico en un dominio como expresión + polinómica de polinomios simétricos elementales. + +\series bold +Demostración: +\series default + Lo vemos primero para +\begin_inset Formula $f\in D[X_{1},\dots,X_{n}]$ +\end_inset + + homogéneo de grado +\begin_inset Formula $d$ +\end_inset + +. + Tras tomar el término superior +\begin_inset Formula $M$ +\end_inset + +, como +\begin_inset Formula $i_{1}\geq i_{2}\geq\dots\geq i_{n}$ +\end_inset + +, +\begin_inset Formula $p$ +\end_inset + + es un polinomio, y como el término superior del producto es el producto + de los términos superiores, el término superior de +\begin_inset Formula $p(s_{1},\dots,s_{n})=as_{1}^{i_{1}-i_{2}}s_{2}^{i_{2}-i_{3}}\cdots s_{n-1}^{i_{n-1}-i_{n}}s_{n}^{i_{n}}$ +\end_inset + + es +\begin_inset Formula +\[ +aX_{1}^{i_{1}-i_{2}}(X_{1}X_{2})^{i_{2}-i_{3}}\cdots(X_{1}\cdots X_{n-1})^{i_{n-1}-i_{n}}(X_{1}\cdots X_{n})^{i_{n}}=aX_{1}^{i_{1}}X_{2}^{i_{2}}\cdots X_{n}^{i_{n}}=M. +\] + +\end_inset + +Así, al restar +\begin_inset Formula $f-p$ +\end_inset + +, los términos superiores se cancelan, y como +\begin_inset Formula $p(s_{1},\dots,s_{n})$ +\end_inset + + es simétrico y homogéneo de grado +\begin_inset Formula $(i_{1}-i_{2})+2(i_{2}-i_{3})+\dots+(n-1)(i_{n-1}-i_{n})+ni_{n}=i_{1}+\dots+i_{n}=d$ +\end_inset + +, +\begin_inset Formula $f-p$ +\end_inset + + es 0 o un polinomio simétrico homogéneo de grado +\begin_inset Formula $d$ +\end_inset + + con término superior menor que el de +\begin_inset Formula $f$ +\end_inset + +. + Como hay una cantidad finita de tuplas +\begin_inset Formula $(i_{1},\dots,i_{n})$ +\end_inset + + con +\begin_inset Formula $i_{1}+\dots+i_{n}=d$ +\end_inset + +, en algún momento +\begin_inset Formula $f$ +\end_inset + + se hace 0. + Sea ahora +\begin_inset Formula $f\in D[X_{1},\dots,X_{n}]$ +\end_inset + + un polinomio cualquiera y +\begin_inset Formula $f=f_{0}+\dots+f_{k}$ +\end_inset + + su descomposición en componentes homogéneas, como el término superior de + +\begin_inset Formula $f$ +\end_inset + + será el término superior de algún +\begin_inset Formula $f_{i}\neq0$ +\end_inset + +, el algoritmo va disminuyendo el término superior de los distintos +\begin_inset Formula $f_{i}$ +\end_inset + + hasta que todos se hagan nulos. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f\in D[X_{1},\dots,X_{n}]$ +\end_inset + + es un polinomio homogéneo con término superior +\begin_inset Formula $aX_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$ +\end_inset + +, la expresión será una +\begin_inset Formula $D$ +\end_inset + +-combinación lineal de polinomios del tipo +\begin_inset Formula $s_{1}^{j_{1}-j_{2}}s_{2}^{j_{2}-j_{3}}\cdots$ +\end_inset + + con +\begin_inset Formula $j_{1}+\dots+j_{n}=i_{1}+\dots+i_{n}$ +\end_inset + + y +\begin_inset Formula $(j_{1},\dots,j_{n})\leq(i_{1},\dots,i_{n})$ +\end_inset + +, donde el coeficiente correspondiente a +\begin_inset Formula $(i_{1},\dots,i_{n})$ +\end_inset + + será +\begin_inset Formula $a$ +\end_inset + + y, para casos sencillos, podemos determinar el resto dando valores +\begin_inset Quotes cld +\end_inset + +fáciles +\begin_inset Quotes crd +\end_inset + + a las indeterminadas y resolviendo las ecuaciones lineales en los coeficientes + obtenidas. +\end_layout + \end_body \end_document |
