aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJuan Marín Noguera <juan.marinn@um.es>2021-04-12 21:45:59 +0200
committerJuan Marín Noguera <juan.marinn@um.es>2021-04-12 21:57:20 +0200
commite64323fae3cd9f1890118d7c7241fa1fd6792f6e (patch)
tree595a39e63d9670509719fdc6ac8dae49b10bee67
parentc515af67b9e44b18917be217e0161b4570fa563d (diff)
Polinomios
-rw-r--r--ealg/n1.lyx2272
1 files changed, 2171 insertions, 101 deletions
diff --git a/ealg/n1.lyx b/ealg/n1.lyx
index e50b9eb..54cf78e 100644
--- a/ealg/n1.lyx
+++ b/ealg/n1.lyx
@@ -134,6 +134,17 @@ variable
\end_inset
, con las operaciones
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+{
+\end_layout
+
+\end_inset
+
+
\begin_inset Formula
\begin{align*}
(a_{n})_{n}+(b_{n})_{n} & :=(a_{n}+b_{n})_{n}; & (a_{n})_{n}(b_{n})_{n} & :=\left(\sum_{k=0}^{n}a_{k}b_{n-k}\right)_{n}.
@@ -142,6 +153,17 @@ variable
\end_inset
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+}
+\end_layout
+
+\end_inset
+
+
\end_layout
\begin_layout Standard
@@ -237,7 +259,7 @@ coeficiente principal
\series bold
mónico
\series default
- si su coeficiente princial es 1.
+ si su coeficiente principal es 1.
El polinomio 0 tiene grado
\begin_inset Formula $-\infty$
\end_inset
@@ -291,7 +313,7 @@ Si
\begin_inset Formula $\text{gr}(P+Q)\leq\max\{\text{gr}(P),\text{gr}(Q)\}$
\end_inset
-, con desigualdad estricta si y sólo si
+, con desigualdad estricta si y solo si
\begin_inset Formula $\text{gr}(P)=\text{gr}(Q)$
\end_inset
@@ -306,7 +328,7 @@ Si
\begin_inset Formula $\text{gr}(PQ)\leq\text{gr}(P)+\text{gr}(Q)$
\end_inset
-, con igualdad si y sólo si
+, con igualdad si y solo si
\begin_inset Formula $pq\neq0$
\end_inset
@@ -317,7 +339,7 @@ Si
\begin_inset Formula $A[X]$
\end_inset
- [...] es un dominio si y sólo si lo es
+ [...] es un dominio si y solo si lo es
\begin_inset Formula $A$
\end_inset
@@ -446,39 +468,7 @@ A/\ker f\cong\text{Im}f.
\end_layout
\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-eremember
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-sremember{GyA}
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-
+[...]
\series bold
Propiedad universal del anillo de polinomios
\series default
@@ -752,7 +742,7 @@ status open
\backslash
-sremember
+sremember{GyA}
\end_layout
\end_inset
@@ -866,39 +856,7 @@ dominio euclídeo
\end_layout
\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-eremember
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-sremember{GyA}
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Sean
+[...] Sean
\begin_inset Formula $f,g\in A[X]$
\end_inset
@@ -1002,7 +960,7 @@ Teorema de Ruffini
\begin_inset Formula $X-a$
\end_inset
- si y sólo si
+ si y solo si
\begin_inset Formula $f(a)=0$
\end_inset
@@ -1047,7 +1005,7 @@ multiplicidad
\begin_inset Formula $f$
\end_inset
- si y sólo si
+ si y solo si
\begin_inset Formula $m\geq1$
\end_inset
@@ -1129,9 +1087,6 @@ Si
\end_inset
.
-\end_layout
-
-\begin_layout Standard
\begin_inset ERT
status open
@@ -1139,7 +1094,7 @@ status open
\backslash
-eremeber
+eremember
\end_layout
\end_inset
@@ -1222,7 +1177,24 @@ derivada
\end_inset
.
- Dados
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\backslash
+sremember{GyA}
+\end_layout
+
+\end_inset
+
+Dados
\begin_inset Formula $a,b\in A$
\end_inset
@@ -1283,7 +1255,7 @@ Si
\begin_inset Formula $p\in A[X]$
\end_inset
- si y sólo si
+ si y solo si
\begin_inset Formula $p(a)=p'(a)=0$
\end_inset
@@ -1331,11 +1303,23 @@ identidad de Bézout
\end_layout
\begin_layout Standard
+[...] Si
+\begin_inset Formula $1\in(S)$
+\end_inset
+
+,
+\begin_inset Formula $\text{mcd}S=1$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
[...]
\begin_inset Formula $A[X]$
\end_inset
- es un dominio euclídeo si y sólo si es un DIP, si y sólo si
+ es un dominio euclídeo si y solo si es un DIP, si y solo si
\begin_inset Formula $A$
\end_inset
@@ -1359,11 +1343,20 @@ eremember
\end_layout
\begin_layout Standard
-Sean
-\begin_inset Formula $K$
+Llamamos
+\begin_inset Formula $\text{car}A$
\end_inset
- un cuerpo y
+ a la característica del anillo
+\begin_inset Formula $A$
+\end_inset
+
+.
+ Sean
+\begin_inset Formula $K\subseteq L$
+\end_inset
+
+ cuerpos y
\begin_inset Formula $f\in K[X]$
\end_inset
@@ -1375,7 +1368,7 @@ Si
\begin_inset Formula $\text{mcd}\{f,f'\}=1$
\end_inset
- entonces
+, entonces
\begin_inset Formula $f$
\end_inset
@@ -1422,11 +1415,7 @@ Existen
\end_deeper
\begin_layout Enumerate
Si
-\begin_inset Formula $K\subseteq L$
-\end_inset
-
- son cuerpos y
-\begin_inset Formula $f\in K[X]$
+\begin_inset Formula $f$
\end_inset
es irreducible en
@@ -1445,7 +1434,7 @@ Si
\begin_inset Formula $L$
\end_inset
- si y sólo si
+ si y solo si
\begin_inset Formula $f'=0$
\end_inset
@@ -1491,21 +1480,256 @@ Si fuera
\end_inset
.
- Ahora bien,
-\begin_inset Note Note
+ Entonces existe una identidad de Bézout
+\begin_inset Formula $pf+qf'=1$
+\end_inset
+
+ con
+\begin_inset Formula $p,q\in K[X]\subseteq L[X]$
+\end_inset
+
+, de modo que
+\begin_inset Formula $1\in(\{f,f'\})_{L[X]}$
+\end_inset
+
+ y
+\begin_inset Formula $\text{mcd}\{f,f'\}=1$
+\end_inset
+
+ en
+\begin_inset Formula $L[X]$
+\end_inset
+
+, y por el apartado anterior,
+\begin_inset Formula $f$
+\end_inset
+
+ no tiene raíces múltiples en
+\begin_inset Formula $L\#$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Argument item:1
status open
\begin_layout Plain Layout
-pasar a que lo es en
-\begin_inset Formula $L[X]$
+\begin_inset Formula $\impliedby]$
\end_inset
- por identidades de Bézout y cosas de DIP y caracterización de mcd por ideal
- principal
+
\end_layout
\end_inset
+Sea
+\begin_inset Formula $\alpha\in L$
+\end_inset
+
+ raíz de
+\begin_inset Formula $f$
+\end_inset
+
+, entonces
+\begin_inset Formula $f(\alpha)=f'(\alpha)=0$
+\end_inset
+
+ y
+\begin_inset Formula $\alpha$
+\end_inset
+
+ es raíz múltiple de
+\begin_inset Formula $f$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Si
+\begin_inset Formula $\text{car}K=0$
+\end_inset
+
+ y
+\begin_inset Formula $f$
+\end_inset
+
+ es irreducible en
+\begin_inset Formula $K[X]$
+\end_inset
+
+, entonces
+\begin_inset Formula $f$
+\end_inset
+
+ no tiene raíces múltiples en
+\begin_inset Formula $L$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Como
+\begin_inset Formula $f$
+\end_inset
+
+ no es cero ni unidad,
+\begin_inset Formula $n:=\text{gr}f>0$
+\end_inset
+
+, y como el coeficiente principal de
+\begin_inset Formula $f'$
+\end_inset
+
+ es
+\begin_inset Formula $nf_{n}\neq0$
+\end_inset
+
+, entonces
+\begin_inset Formula $f'\neq0$
+\end_inset
+
+ y, por lo anterior, si
+\begin_inset Formula $f$
+\end_inset
+
+ tiene raíces en
+\begin_inset Formula $L$
+\end_inset
+
+, estas no son múltiples.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Si
+\begin_inset Formula $p:=\text{car}K\neq0$
+\end_inset
+
+,
+\begin_inset Formula $f'=0$
+\end_inset
+
+ si y solo si
+\begin_inset Formula $f\in K[X^{p}]$
+\end_inset
+
+.
+ En particular, si
+\begin_inset Formula $f$
+\end_inset
+
+ es irreducible en
+\begin_inset Formula $K[X]$
+\end_inset
+
+,
+\begin_inset Formula $f$
+\end_inset
+
+ tiene raíces múltiples en
+\begin_inset Formula $L$
+\end_inset
+
+ si y solo si
+\begin_inset Formula $f\in K[X^{p}]$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Enumerate
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\implies]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+Para
+\begin_inset Formula $i\in\mathbb{N}$
+\end_inset
+
+ con
+\begin_inset Formula $f_{i}\neq0$
+\end_inset
+
+ se tiene
+\begin_inset Formula $(f')_{i-1}=if_{i}=0$
+\end_inset
+
+, luego
+\begin_inset Formula $p\mid i$
+\end_inset
+
+.
+ Por tanto
+\begin_inset Formula $f$
+\end_inset
+
+ es de la forma
+\begin_inset Formula $f=:\sum_{j}b_{j}X^{jp}$
+\end_inset
+
+ y, sea
+\begin_inset Formula $g:=\sum_{j}b_{j}X^{j}$
+\end_inset
+
+,
+\begin_inset Formula $f(X)=g(X^{p})$
+\end_inset
+
+, luego
+\begin_inset Formula $f\in K[X^{p}]$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\impliedby]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+Sea
+\begin_inset Formula $g=\sum_{j}b_{j}X^{j}$
+\end_inset
+
+ tal que
+\begin_inset Formula $f(X)=g(X^{p})$
+\end_inset
+
+, entonces
+\begin_inset Formula $f=\sum_{j}b_{j}X^{jp}$
+\end_inset
+
+ y
+\begin_inset Formula
+\[
+f'=\sum_{j}b_{j}jpX^{jp-1}=0.
+\]
+
+\end_inset
+
\end_layout
@@ -1547,7 +1771,7 @@ Sean
\begin_inset Formula $D$
\end_inset
- si y sólo si lo es en
+ si y solo si lo es en
\begin_inset Formula $D[X]$
\end_inset
@@ -1563,7 +1787,7 @@ teorema
\begin_inset Formula $D$
\end_inset
- es un DFU si y sólo si lo es
+ es un DFU si y solo si lo es
\begin_inset Formula $D[X]$
\end_inset
@@ -1674,7 +1898,7 @@ Si
\begin_inset Formula $K[X]$
\end_inset
- si y sólo si no tiene raíces en
+ si y solo si no tiene raíces en
\begin_inset Formula $K$
\end_inset
@@ -1818,11 +2042,116 @@ eremember
\end_layout
\begin_layout Standard
-\begin_inset Note Note
+La irreducibilidad se conserva por automorfismos de dominios, por lo que
+ si
+\begin_inset Formula $D$
+\end_inset
+
+ es un dominio,
+\begin_inset Formula $a\in D^{*}$
+\end_inset
+
+ y
+\begin_inset Formula $b\in D$
+\end_inset
+
+,
+\begin_inset Formula $f\in D[X]$
+\end_inset
+
+ es irreducible si y solo si lo es
+\begin_inset Formula $f(aX+b)$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Si
+\begin_inset Formula $p\in\mathbb{Z}$
+\end_inset
+
+ es primo,
+\begin_inset Formula $f(X):=\frac{X^{p}-1}{X-1}=X^{p-1}+X^{p-2}+\dots+X+1$
+\end_inset
+
+ es irreducible en
+\begin_inset Formula $\mathbb{Q}[X]$
+\end_inset
+
+ y en
+\begin_inset Formula $\mathbb{Z}[X]$
+\end_inset
+
+.
+ En efecto, aplicando el automorfismo
+\begin_inset Formula $X\mapsto X+1$
+\end_inset
+
+ a
+\begin_inset Formula $(X-1)f(X)=X^{p}-1$
+\end_inset
+
+, queda
+\begin_inset Formula
+\[
+Xf(X+1)=(X+1)^{p}-1=X^{p}+\binom{p}{1}X^{p-1}+\dots+\binom{p}{p-1}X,
+\]
+
+\end_inset
+
+luego
+\begin_inset Formula
+\[
+f(X+1)=X^{p-1}+\binom{p}{1}X^{p-2}+\dots+\binom{p}{p-1},
+\]
+
+\end_inset
+
+que es irreducible por Eisenstein porque
+\begin_inset Formula $p$
+\end_inset
+
+ divide a
+\begin_inset Formula $\binom{p}{i}$
+\end_inset
+
+ para
+\begin_inset Formula $i\in\{1,\dots,p-1\}$
+\end_inset
+
+ y
+\begin_inset Formula $p^{2}$
+\end_inset
+
+ no divide a
+\begin_inset Formula $\binom{p}{p-1}=\binom{p}{1}=p$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Section
+Factorización en
+\begin_inset Formula $\mathbb{C}[X]$
+\end_inset
+
+ y
+\begin_inset Formula $\mathbb{R}[X]$
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
status open
\begin_layout Plain Layout
-1.24,1.25
+
+
+\backslash
+sremember{FVC}
\end_layout
\end_inset
@@ -1830,5 +2159,1746 @@ status open
\end_layout
+\begin_layout Standard
+
+\series bold
+Teorema fundamental del álgebra:
+\series default
+
+\begin_inset Formula $\mathbb{C}$
+\end_inset
+
+ es algebraicamente cerrado, esto es, todo polinomio complejo de grado
+\begin_inset Formula $n$
+\end_inset
+
+ es la forma
+\begin_inset Formula $p(x)=\alpha\prod_{k=1}^{n}(x-a_{k})$
+\end_inset
+
+ con
+\begin_inset Formula $\alpha,a_{1},\dots,a_{n}\in\mathbb{C}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Equivalentemente, todo polinomio complejo no constante tiene raíces en
+\begin_inset Formula $\mathbb{C}$
+\end_inset
+
+, y los polinomios irreducibles en
+\begin_inset Formula $\mathbb{C}[X]$
+\end_inset
+
+ son los de grado 1.
+\end_layout
+
+\begin_layout Standard
+Si
+\begin_inset Formula $\alpha\in\mathbb{C}$
+\end_inset
+
+ es raíz de
+\begin_inset Formula $f\in\mathbb{R}[X]$
+\end_inset
+
+, entonces
+\begin_inset Formula $\overline{\alpha}$
+\end_inset
+
+ también lo es, y ambas tienen la misma multiplicidad.
+
+\series bold
+Demostración:
+\series default
+ Si
+\begin_inset Formula $f$
+\end_inset
+
+ tiene grado
+\begin_inset Formula $n$
+\end_inset
+
+, como
+\begin_inset Formula $f_{i}=\overline{f_{i}}$
+\end_inset
+
+ para cada
+\begin_inset Formula $i\in\{0,\dots,n\}$
+\end_inset
+
+ por ser
+\begin_inset Formula $f_{i}\in\mathbb{R}$
+\end_inset
+
+, se tiene
+\begin_inset Formula
+\[
+0=a_{0}+a_{1}\alpha+\dots+a_{n}\alpha^{n}=\overline{a_{0}+a_{1}\alpha+\dots+a_{n}\alpha^{n}}=a_{0}+a_{1}\overline{\alpha}+\dots+a_{n}\overline{\alpha}^{n}.
+\]
+
+\end_inset
+
+Además, si
+\begin_inset Formula $(X-\alpha)^{m}\mid f$
+\end_inset
+
+, entonces
+\begin_inset Formula $f=(X-\alpha)^{m}g$
+\end_inset
+
+ para cierto
+\begin_inset Formula $g\in\mathbb{C}[X]$
+\end_inset
+
+ y
+\begin_inset Formula $f=\overline{f}=(X-\overline{\alpha})^{m}\overline{g}$
+\end_inset
+
+, luego
+\begin_inset Formula $(X-\overline{\alpha})^{m}\mid f$
+\end_inset
+
+, y el recíproco es análogo.
+\end_layout
+
+\begin_layout Standard
+Los irreducibles de
+\begin_inset Formula $\mathbb{R}[X]$
+\end_inset
+
+ son los de grado 1 y los de grado 2 sin raíces reales.
+ Además, todo polinomio en
+\begin_inset Formula $\mathbb{R}[X]$
+\end_inset
+
+ se puede expresar de forma única (salvo orden) como
+\begin_inset Formula
+\[
+a\prod_{i=1}^{r}(X-c_{i})^{k_{i}}\prod_{i=1}^{s}(X^{2}-2\text{Re}\alpha_{i})X+\alpha_{i}\overline{\alpha}_{i})^{m_{i}}
+\]
+
+\end_inset
+
+con
+\begin_inset Formula $r,s\in\mathbb{N}$
+\end_inset
+
+,
+\begin_inset Formula $a\in\mathbb{R}$
+\end_inset
+
+,
+\begin_inset Formula $c_{1},\dots,c_{r}\in\mathbb{R}$
+\end_inset
+
+,
+\begin_inset Formula $\alpha_{1},\dots,\alpha_{s}\in\mathbb{C}\setminus\mathbb{R}$
+\end_inset
+
+ y
+\begin_inset Formula $k_{1},\dots,k_{r},m_{1},\dots,m_{s}\in\mathbb{N}^{*}$
+\end_inset
+
+.
+
+\series bold
+Demostración:
+\series default
+ Sea
+\begin_inset Formula $p\in\mathbb{R}[X]$
+\end_inset
+
+, si
+\begin_inset Formula $\text{gr}p=1$
+\end_inset
+
+,
+\begin_inset Formula $p$
+\end_inset
+
+ es irreducible, y si
+\begin_inset Formula $\text{gr}p=2$
+\end_inset
+
+, lo es en
+\begin_inset Formula $\mathbb{R}[X]$
+\end_inset
+
+ si y solo si tiene raíces reales.
+ Si
+\begin_inset Formula $\text{gr}p\geq3$
+\end_inset
+
+, por el teorema fundamental del álgebra,
+\begin_inset Formula $p$
+\end_inset
+
+ tiene una raíz
+\begin_inset Formula $\alpha\in\mathbb{C}$
+\end_inset
+
+.
+ Si
+\begin_inset Formula $\alpha\in\mathbb{R}$
+\end_inset
+
+,
+\begin_inset Formula $p$
+\end_inset
+
+ es divisible por
+\begin_inset Formula $X-\alpha\in\mathbb{R}[X]$
+\end_inset
+
+, y en otro caso,
+\begin_inset Formula $\overline{\alpha}$
+\end_inset
+
+ también es raíz, luego
+\begin_inset Formula $p$
+\end_inset
+
+ es divisible por
+\begin_inset Formula
+\[
+(X-\alpha)(X-\overline{\alpha})=X^{2}-(\alpha+\overline{\alpha})X+\alpha\overline{\alpha}=X^{2}-2\text{Re}\alpha X+|\alpha|^{2}\in\mathbb{R}[X].
+\]
+
+\end_inset
+
+La segunda parte se obtiene por inducción.
+\end_layout
+
+\begin_layout Section
+Polinomios en varias variables
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+sremember{GyA}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Dados un anillo conmutativo
+\begin_inset Formula $A$
+\end_inset
+
+ y
+\begin_inset Formula $n\geq2$
+\end_inset
+
+, definimos el
+\series bold
+anillo de polinomios
+\series default
+ en
+\begin_inset Formula $n$
+\end_inset
+
+ indeterminadas [o variables] con coeficientes en
+\begin_inset Formula $A$
+\end_inset
+
+ como
+\begin_inset Formula
+\[
+A[X_{1},\dots,X_{n}]:=A[X_{1},\dots,X_{n-1}][X_{n}].
+\]
+
+\end_inset
+
+ Llamamos [...]
+\series bold
+polinomios en
+\begin_inset Formula $n$
+\end_inset
+
+ indeterminadas
+\series default
+ a los elementos de
+\begin_inset Formula $A[X_{1},\dots,X_{n}]$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+[...] Todo
+\begin_inset Formula $p\in A[X_{1},\dots,X_{n}]$
+\end_inset
+
+ se escribe de forma única como suma de monomios de distinto tipo,
+\begin_inset Formula
+\[
+p:=\sum_{i\in\mathbb{N}^{n}}p_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}},
+\]
+
+\end_inset
+
+con
+\begin_inset Formula $p_{i}=0$
+\end_inset
+
+ para casi todo
+\begin_inset Formula $i\in\mathbb{N}^{n}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+[...]
+\series bold
+PUAP en
+\begin_inset Formula $n$
+\end_inset
+
+ indeterminadas:
+\series default
+ Sean
+\begin_inset Formula $A$
+\end_inset
+
+ un anillo conmutativo,
+\begin_inset Formula $n\in\mathbb{N}^{*}$
+\end_inset
+
+ y
+\begin_inset Formula $u:A\to A[X_{1},\dots,X_{n}]$
+\end_inset
+
+ la inclusión:
+\end_layout
+
+\begin_layout Enumerate
+Dados un homomorfismo de anillos
+\begin_inset Formula $f:A\to B$
+\end_inset
+
+ y
+\begin_inset Formula $b_{1},\dots,b_{n}\in B$
+\end_inset
+
+, existe un único homomorfismo de anillos
+\begin_inset Formula $\tilde{f}:A[X_{1},\dots,X_{n}]\to B$
+\end_inset
+
+ tal que
+\begin_inset Formula $\tilde{f}\circ u=f$
+\end_inset
+
+ y
+\begin_inset Formula $\tilde{f}(X_{k})=b_{k}$
+\end_inset
+
+ para
+\begin_inset Formula $k\in\{1,\dots,n\}$
+\end_inset
+
+.
+
+\begin_inset Formula
+\[
+\left[\tilde{f}\left(\sum_{i\in\mathbb{N}^{n}}p_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}\right)=\sum_{i\in\mathbb{N}^{n}}f(p_{i})b_{1}^{i_{1}}\cdots b_{n}^{i_{n}}.\right]
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+sremember{GyA}
+\end_layout
+
+\end_inset
+
+Así:
+\end_layout
+
+\begin_layout Enumerate
+Dados dos anillos conmutativos
+\begin_inset Formula $A\subseteq B$
+\end_inset
+
+ y
+\begin_inset Formula $b_{1},\dots,b_{n}\in B$
+\end_inset
+
+, el
+\series bold
+homomorfismo de
+\series default
+[...][
+\series bold
+evaluación
+\series default
+]
+\begin_inset Formula $S:A[X_{1},\dots,X_{n}]\to B$
+\end_inset
+
+ viene dado por
+\begin_inset Formula $p(b_{1},\dots,b_{n}):=S(p):=\sum_{i\in\mathbb{N}^{n}}p_{i}b_{1}^{i_{1}}\cdots b_{n}^{i_{n}}$
+\end_inset
+
+[, y
+\begin_inset Formula $S(p)$
+\end_inset
+
+ es la
+\series bold
+evaluación
+\series default
+ o
+\series bold
+valor
+\series default
+ de
+\begin_inset Formula $f$
+\end_inset
+
+ en
+\begin_inset Formula $b:=(b_{1},\dots,b_{n})$
+\end_inset
+
+].
+ [La imagen de
+\begin_inset Formula $S$
+\end_inset
+
+] es el subanillo de
+\begin_inset Formula $B$
+\end_inset
+
+ generado por
+\begin_inset Formula $A\cup\{b_{1},\dots,b_{n}\}$
+\end_inset
+
+ [o
+\series bold
+engendrado por
+\begin_inset Formula $b_{1},\dots,b_{n}$
+\end_inset
+
+ sobre
+\begin_inset Formula $A$
+\end_inset
+
+
+\series default
+],
+\begin_inset Formula $A[b_{1},\dots,b_{n}]$
+\end_inset
+
+ [...].
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Entonces
+\begin_inset Formula $b_{1},\dots,b_{n}\in B$
+\end_inset
+
+ son
+\series bold
+algebraicamente independientes
+\series default
+ sobre
+\begin_inset Formula $A$
+\end_inset
+
+ si
+\begin_inset Formula $\ker S=0$
+\end_inset
+
+, y son
+\series bold
+algebraicamente dependientes
+\series default
+ en otro caso, es decir, si
+\begin_inset Formula $b$
+\end_inset
+
+ es cero de un polinomio no nulo, en cuyo caso
+\begin_inset Formula $\ker S$
+\end_inset
+
+ es el
+\series bold
+ideal de las relaciones algebraicas
+\series default
+ de
+\begin_inset Formula $b_{1},\dots,b_{n}$
+\end_inset
+
+ sobre
+\begin_inset Formula $A$
+\end_inset
+
+.
+ Por el primer teorema de isomorfía,
+\begin_inset Formula
+\[
+A[b_{1},\dots,b_{n}]\cong\frac{A[X_{1},\dots,X_{n}]}{\ker S},
+\]
+
+\end_inset
+
+ y en particular, si
+\begin_inset Formula $b_{1},\dots,b_{n}$
+\end_inset
+
+ son algebraicamente independientes,
+\begin_inset Formula $A[b_{1},\dots,b_{n}]\cong A[X_{1},\dots,X_{n}]$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Por ejemplo,
+\begin_inset Formula $b_{1}:=1/\pi$
+\end_inset
+
+ y
+\begin_inset Formula $b_{2}:=1+\sqrt{\pi}$
+\end_inset
+
+ son algebraicamente dependientes, pues satisfaces
+\begin_inset Formula $(b_{2}-1)^{2}=1/b_{1}$
+\end_inset
+
+ y por tanto
+\begin_inset Formula $b_{1}b_{2}^{2}-2b_{1}b_{2}+b_{1}-1=0$
+\end_inset
+
+, y
+\begin_inset Formula $(b_{1},b_{2})$
+\end_inset
+
+ es raíz de
+\begin_inset Formula $X_{1}X_{2}^{2}-2X_{1}X_{2}+X_{1}-1$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Si
+\begin_inset Formula $B$
+\end_inset
+
+ es un dominio, llamamos
+\begin_inset Formula $A(b_{1},\dots,b_{n})$
+\end_inset
+
+ al cuerpo de fracciones del dominio
+\begin_inset Formula $A[b_{1},\dots,b_{n}]$
+\end_inset
+
+, que en general no está contenido en
+\begin_inset Formula $B$
+\end_inset
+
+, pero sí en su cuerpo de fracciones
+\begin_inset Formula $K$
+\end_inset
+
+, y de hecho es el menor subcuerpo de
+\begin_inset Formula $K$
+\end_inset
+
+ que contiene a
+\begin_inset Formula $A\cup\{b_{1},\dots,b_{n}\}$
+\end_inset
+
+.
+ En efecto,
+\begin_inset Formula $A[b_{1},\dots,b_{n}]$
+\end_inset
+
+ es el menor anillo que contiene a
+\begin_inset Formula $A\cup\{b_{1},\dots,b_{n}\}$
+\end_inset
+
+, que es un dominio por ser un subanillo del dominio
+\begin_inset Formula $B$
+\end_inset
+
+, pero todo subcuerpo de
+\begin_inset Formula $K$
+\end_inset
+
+ que contenga a
+\begin_inset Formula $A\cup\{b_{1},\dots,b_{n}\}$
+\end_inset
+
+ y por tanto a
+\begin_inset Formula $A[b_{1},\dots,b_{n}]$
+\end_inset
+
+ debe contener a los cocientes de elementos de
+\begin_inset Formula $A[b_{1},\dots,b_{n}]$
+\end_inset
+
+ y por tanto a
+\begin_inset Formula $A(b_{1},\dots,b_{n})$
+\end_inset
+
+, que es un subcuerpo de
+\begin_inset Formula $B$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+sremember{GyA}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+2.
+\end_layout
+
+\end_inset
+
+Sean
+\begin_inset Formula $A$
+\end_inset
+
+ un anillo y
+\begin_inset Formula $\sigma$
+\end_inset
+
+ una permutación de
+\begin_inset Formula $\mathbb{N}_{n}$
+\end_inset
+
+ con inversa
+\begin_inset Formula $\tau:=\sigma^{-1}$
+\end_inset
+
+, tomando
+\begin_inset Formula $B=A[X_{1},\dots,X_{n}]$
+\end_inset
+
+ y
+\begin_inset Formula $b_{k}=X_{\sigma(k)}$
+\end_inset
+
+ en el punto anterior obtenemos un automorfismo
+\begin_inset Formula $\hat{\sigma}$
+\end_inset
+
+ en
+\begin_inset Formula $A[X_{1},\dots,X_{n}]$
+\end_inset
+
+ con inversa
+\begin_inset Formula $\hat{\tau}$
+\end_inset
+
+ que permuta las indeterminadas.
+ [Llamamos
+\begin_inset Formula $f^{\sigma}:=\hat{\sigma}(f)$
+\end_inset
+
+.]
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+3.
+\end_layout
+
+\end_inset
+
+
+\begin_inset Formula $A[X_{1},\dots,X_{n},Y_{1},\dots,Y_{m}]\cong A[X_{1},\dots,X_{n}][Y_{1},\dots,Y_{m}]\cong A[Y_{1},\dots,Y_{m}][X_{1},\dots,X_{n}]$
+\end_inset
+
+, por lo que en la práctica no distinguimos entre estos anillos.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+4.
+\end_layout
+
+\end_inset
+
+Todo homomorfismo de anillos conmutativos
+\begin_inset Formula $f:A\to B$
+\end_inset
+
+ induce un homomorfismo
+\begin_inset Formula $\hat{f}:A[X_{1},\dots,X_{n}]\to B[X_{1},\dots,X_{n}]$
+\end_inset
+
+ dado por
+\begin_inset Formula $\hat{f}(p):=\sum_{i\in\mathbb{N}^{n}}f(p_{i})X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Llamamos
+\series bold
+grado
+\series default
+ de un monomio
+\begin_inset Formula $aX_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$
+\end_inset
+
+ a
+\begin_inset Formula $i_{1}+\dots+i_{n}$
+\end_inset
+
+, y grado de
+\begin_inset Formula $p\in A[X_{1},\dots,X_{n}]\setminus0$
+\end_inset
+
+,
+\begin_inset Formula $\text{gr}(p)$
+\end_inset
+
+, al mayor de los grados de los monomios no nulos en la expresión por monomios
+ de
+\begin_inset Formula $p$
+\end_inset
+
+.
+ Entonces
+\begin_inset Formula $\text{gr}(p+q)\leq\max\{\text{gr}(p),\text{gr}(q)\}$
+\end_inset
+
+ y
+\begin_inset Formula $\text{gr}(pq)\leq\text{gr}(p)+\text{gr}(q)$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+sremember{GyA}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Un polinomio es
+\series bold
+homogéneo
+\series default
+ de grado
+\begin_inset Formula $n$
+\end_inset
+
+ si es suma de monomios de grado
+\begin_inset Formula $n$
+\end_inset
+
+.
+ Todo polinomio se escribe de modo único como suma de polinomios homogéneos
+ de distintos grados, [las
+\series bold
+componentes homogéneas
+\series default
+ del polinomio.]
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+eremember
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Section
+Polinomios simétricos
+\end_layout
+
+\begin_layout Standard
+Un
+\begin_inset Formula $f\in A[X_{1},\dots,X_{n}]$
+\end_inset
+
+ es
+\series bold
+simétrico
+\series default
+ si
+\begin_inset Formula $f^{\sigma}=f$
+\end_inset
+
+ para todo
+\begin_inset Formula $\sigma\in{\cal S}_{n}$
+\end_inset
+
+, si y solo si todas sus componentes homogéneas son simétricas.
+
+\series bold
+Demostración:
+\series default
+ Sea
+\begin_inset Formula $f=f_{0}+\dots+f_{k}$
+\end_inset
+
+ la descomposición de
+\begin_inset Formula $f$
+\end_inset
+
+ por componentes homogéneas con
+\begin_inset Formula $\text{gr}f_{i}=i$
+\end_inset
+
+:
+\end_layout
+
+\begin_layout Itemize
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\implies]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+Para
+\begin_inset Formula $\sigma\in{\cal S}_{n}$
+\end_inset
+
+,
+\begin_inset Formula $f_{0}+\dots+f_{k}=(f_{0}+\dots+f_{k})^{\sigma}=f_{0}^{\sigma}+\dots+f_{k}^{\sigma}$
+\end_inset
+
+ usando en la última igualdad que
+\begin_inset Formula $f\mapsto f^{\sigma}$
+\end_inset
+
+ es un automorfismo, pero cada
+\begin_inset Formula $f_{i}^{\sigma}$
+\end_inset
+
+ es homogéneo de grado
+\begin_inset Formula $i$
+\end_inset
+
+, y por la unicidad de las descomposiciones, cada
+\begin_inset Formula $f_{i}^{\sigma}=f_{i}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Itemize
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+\begin_inset Formula $\impliedby]$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+
+\begin_inset Formula $f^{\sigma}=(f_{0}+\dots+f_{k})^{\sigma}=f_{0}^{\sigma}+\dots+f_{k}^{\sigma}=f_{0}+\dots+f_{k}=f$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Sea
+\begin_inset Formula $F\in A[X_{1},\dots,X_{n}][T]$
+\end_inset
+
+ dado por
+\begin_inset Formula
+\[
+F:=(T-X_{1})\cdots(T-X_{n})=:\sum_{k=0}^{n}(-1)^{k}s_{k}(X_{1},\dots,X_{n})T^{n-k},
+\]
+
+\end_inset
+
+llamamos
+\series bold
+polinomios simétricos elementales
+\series default
+ en las indeterminadas
+\begin_inset Formula $X_{1},\dots,X_{n}$
+\end_inset
+
+ a los polinomios
+\begin_inset Formula $s_{k}\in A[X_{1},\dots,X_{n}]$
+\end_inset
+
+, que vienen dados por
+\begin_inset Formula
+\[
+s_{k}(X_{1},\dots,X_{n})=\sum_{1\leq i_{1}<\dots<i_{k}\leq n}\prod_{j=1}^{k}X_{i_{j}}
+\]
+
+\end_inset
+
+y son simétricos.
+ En particular
+\begin_inset Formula $s_{0}=1$
+\end_inset
+
+,
+\begin_inset Formula $s_{1}=X_{1}+\dots+X_{n}$
+\end_inset
+
+ y
+\begin_inset Formula $s_{n}=X_{1}\cdots X_{n}$
+\end_inset
+
+.
+ Si
+\begin_inset Formula $\tilde{s}_{1}(X_{1},\dots,X_{n-1}),\dots,\tilde{s}_{n-1}(X_{1},\dots,X_{n-1})$
+\end_inset
+
+ son los polinomios simétricos elementales en las variables
+\begin_inset Formula $X_{1},\dots,X_{n-1}$
+\end_inset
+
+, entonces, para
+\begin_inset Formula $i\in\{1,\dots,n-1\}$
+\end_inset
+
+,
+\begin_inset Formula
+\[
+\tilde{s}_{i}(X_{1},\dots,X_{n-1})=s_{i}(X_{1},\dots,X_{n-1},0).
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+
+\series bold
+Teorema fundamental de los polinomios simétricos:
+\series default
+ Sea
+\begin_inset Formula $S[X_{1},\dots,X_{n}]$
+\end_inset
+
+ el subanillo de los polinomios simétricos de
+\begin_inset Formula $A[X_{1},\dots,X_{n}]$
+\end_inset
+
+, el homomorfismo de evaluación
+\begin_inset Formula $\varphi:A[X_{1},\dots,X_{n}]\to S[X_{1},\dots,X_{n}]$
+\end_inset
+
+ con
+\begin_inset Formula $\varphi(X_{i})=s_{i}$
+\end_inset
+
+ es un isomorfismo, es decir, todo polinomio simétrico se escribe de forma
+ única como expresión polinómica en los polinomios simétricos elementales.
+\end_layout
+
+\begin_layout Standard
+
+\series bold
+Fórmulas de Cardano-Vieta:
+\series default
+ Sean
+\begin_inset Formula $A$
+\end_inset
+
+ un subanillo de
+\begin_inset Formula $B$
+\end_inset
+
+,
+\begin_inset Formula $f\in A[X]$
+\end_inset
+
+ y
+\begin_inset Formula $\alpha_{1},\dots,\alpha_{n}\in B[X]$
+\end_inset
+
+ con
+\begin_inset Formula $f=(X-\alpha_{1})\cdots(X-\alpha_{n})$
+\end_inset
+
+, entonces, para
+\begin_inset Formula $k\in\{1,\dots,n\}$
+\end_inset
+
+,
+\begin_inset Formula
+\[
+\sum_{1\leq i_{1}<\dots<i_{k}}\prod_{j=1}^{k}\alpha_{i_{j}}=(-1)^{k}f_{k}.
+\]
+
+\end_inset
+
+En efecto, sea
+\begin_inset Formula
+\[
+F(X_{1},\dots,X_{n},T):=(T-X_{1})\cdots(T-X_{n})=T^{n}+s_{1}(X_{1},\dots,X_{n})T^{n-1}+\dots+s_{n}(X_{1},\dots,X_{n}),
+\]
+
+\end_inset
+
+entonces
+\begin_inset Formula
+\[
+f(X)=(X-\alpha_{1})\cdots(X-\alpha_{n})=f(\alpha_{1},\dots,\alpha_{n},X)=X^{n}+s_{1}(\alpha_{1},\dots,\alpha_{n})X^{n-1}+\dots+s_{n}(\alpha_{1},\dots,\alpha_{n}).
+\]
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+El
+\series bold
+orden lexicográfico
+\series default
+ en
+\begin_inset Formula $\mathbb{N}^{n}$
+\end_inset
+
+ es el buen orden dado por
+\begin_inset Formula $(i_{1},\dots,i_{n})<(j_{1},\dots,j_{n})$
+\end_inset
+
+ si y solo si existe
+\begin_inset Formula $k$
+\end_inset
+
+ con
+\begin_inset Formula $i_{k}\neq j_{k}$
+\end_inset
+
+ y, para el menor de esos
+\begin_inset Formula $k$
+\end_inset
+
+,
+\begin_inset Formula $i_{k}<j_{k}$
+\end_inset
+
+.
+ Sea
+\begin_inset Formula
+\[
+f=\sum_{i\in\mathbb{N}^{n}}a_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}},
+\]
+
+\end_inset
+
+llamamos
+\series bold
+término superior
+\series default
+ de
+\begin_inset Formula $f$
+\end_inset
+
+ al término
+\begin_inset Formula $a_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$
+\end_inset
+
+ con
+\begin_inset Formula $a_{i}\neq0$
+\end_inset
+
+ y máximo
+\begin_inset Formula $i$
+\end_inset
+
+ en orden lexicográfico.
+ Para cada
+\begin_inset Formula $k$
+\end_inset
+
+, el término superior de
+\begin_inset Formula $s_{k}$
+\end_inset
+
+ es
+\begin_inset Formula $X_{1}X_{2}\cdots X_{k}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Si
+\begin_inset Formula $D$
+\end_inset
+
+ es un dominio y
+\begin_inset Formula $f_{1},\dots,f_{r}\in D[X_{1},\dots,X_{n}]$
+\end_inset
+
+, el término superior de
+\begin_inset Formula $f_{1}\cdots f_{r}$
+\end_inset
+
+ es el producto de los términos superiores de los factores.
+\begin_inset Note Comment
+status open
+
+\begin_layout Plain Layout
+
+\series bold
+Demostración:
+\series default
+ Basta ver esto para
+\begin_inset Formula $r=2$
+\end_inset
+
+ y el resultado se sigue por inducción.
+ Sean
+\begin_inset Formula $f:=\sum_{i\in\mathbb{N}^{n}}a_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$
+\end_inset
+
+ y
+\begin_inset Formula $g:=\sum_{i\in\mathbb{N}^{n}}b_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$
+\end_inset
+
+, entonces
+\begin_inset Formula
+\[
+fg=\left(\sum_{i\in\mathbb{N}^{n}}a_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}\right)\left(\sum_{i\in\mathbb{N}^{n}}b_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}\right)=\sum_{i,j\in\mathbb{N}^{n}}a_{i}b_{j}X_{1}^{i_{1}+j_{1}}\cdots X_{n}^{i_{n}+j_{n}}.
+\]
+
+\end_inset
+
+Queremos ver que, para
+\begin_inset Formula $i,j,k,l\in\mathbb{N}^{n}$
+\end_inset
+
+ con
+\begin_inset Formula $i\leq k$
+\end_inset
+
+ y
+\begin_inset Formula $j\leq l$
+\end_inset
+
+,
+\begin_inset Formula $i+j\leq k+l$
+\end_inset
+
+, con desigualdad estricta si
+\begin_inset Formula $(i,j)\neq(k,l)$
+\end_inset
+
+.
+ Para ello si
+\begin_inset Formula $(i,j)=(k,l)$
+\end_inset
+
+ entonces
+\begin_inset Formula $i+j=k+l$
+\end_inset
+
+.
+ Si solo una de las dos desigualdades es estricta, por ejemplo
+\begin_inset Formula $i=k$
+\end_inset
+
+ y
+\begin_inset Formula $j<l$
+\end_inset
+
+, sea
+\begin_inset Formula $r$
+\end_inset
+
+ el menor índice con
+\begin_inset Formula $j_{r}\neq l_{r}$
+\end_inset
+
+, entonces
+\begin_inset Formula $i_{p}+j_{p}=k_{p}+l_{p}$
+\end_inset
+
+ para
+\begin_inset Formula $p<r$
+\end_inset
+
+ e
+\begin_inset Formula $i_{r}+j_{r}<k_{r}+l_{r}$
+\end_inset
+
+.
+ Finalmente, si ambas desigualdades son estrictas, sea
+\begin_inset Formula $r$
+\end_inset
+
+ el menor índice con
+\begin_inset Formula $i_{r}\neq k_{r}$
+\end_inset
+
+ o
+\begin_inset Formula $j_{r}\neq k_{r}$
+\end_inset
+
+, necesariamente
+\begin_inset Formula $i_{r}\leq k_{r}$
+\end_inset
+
+,
+\begin_inset Formula $j_{r}\leq k_{r}$
+\end_inset
+
+ y una de las desigualdades es estricta, luego
+\begin_inset Formula $i_{p}+j_{p}=k_{p}+l_{p}$
+\end_inset
+
+ para
+\begin_inset Formula $p<r$
+\end_inset
+
+ e
+\begin_inset Formula $i_{r}+j_{r}<k_{r}+l_{r}$
+\end_inset
+
+.
+ Con esto, sean
+\begin_inset Formula $A:=\{i\in\mathbb{N}^{n}:a_{i}\neq0\}$
+\end_inset
+
+,
+\begin_inset Formula $B:=\{j\in\mathbb{N}^{n}:b_{j}\neq0\}$
+\end_inset
+
+,
+\begin_inset Formula $i^{*}:=\max A$
+\end_inset
+
+ y
+\begin_inset Formula $j^{*}:=\max B$
+\end_inset
+
+, para
+\begin_inset Formula $(i,j)\in A\times B$
+\end_inset
+
+, como
+\begin_inset Formula $i\leq i^{*}$
+\end_inset
+
+ y
+\begin_inset Formula $j\leq j^{*}$
+\end_inset
+
+,
+\begin_inset Formula $i+j\leq i^{*}+j^{*}$
+\end_inset
+
+, luego el término superior de
+\begin_inset Formula $fg$
+\end_inset
+
+ es el
+\begin_inset Formula $i^{*}+j^{*}$
+\end_inset
+
+ en caso de que este sea no nulo.
+ Si además
+\begin_inset Formula $(i,j)\neq(i^{*},j^{*})$
+\end_inset
+
+,
+\begin_inset Formula $i+j<i^{*}+j^{*}$
+\end_inset
+
+, luego dicho término viene dado solo por
+\begin_inset Formula $a_{i^{*}}b_{j^{*}}X_{1}^{i_{1}^{*}+j_{1}^{*}}\cdots X_{n}^{i_{n}^{*}+j_{n}^{*}}=(a_{i^{*}}X_{1}^{i_{1}^{*}}\cdots X_{n}^{i_{n}^{*}})(b_{j^{*}}X_{1}^{j_{1}^{*}}\cdots X_{n}^{j_{n}^{*}})$
+\end_inset
+
+, y efectivamente
+\begin_inset Formula $a_{i^{*}}b_{j^{*}}\neq0$
+\end_inset
+
+ por estar en un dominio.
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Si
+\begin_inset Formula $f$
+\end_inset
+
+ es simétrico con término superior
+\begin_inset Formula $aX_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$
+\end_inset
+
+, entonces
+\begin_inset Formula $i_{1}\geq i_{2}\geq\dots\geq i_{n}$
+\end_inset
+
+
+\begin_inset Note Comment
+status open
+
+\begin_layout Plain Layout
+, pues si hubiera algún
+\begin_inset Formula $i_{k-1}<i_{k}$
+\end_inset
+
+, la transposición de índices
+\begin_inset Formula $(k-1\,k)$
+\end_inset
+
+ nos daría un monomio mayor que también estaría en
+\begin_inset Formula $f\#$
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+\begin_inset Float algorithm
+wide false
+sideways false
+status open
+
+\begin_layout Plain Layout
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+Entrada{Dominio $(D,+,
+\backslash
+cdot)$ y polinomio $f
+\backslash
+in D[X_1,
+\backslash
+dots,X_n]$ simétrico.}
+\end_layout
+
+\begin_layout Plain Layout
+
+
+\backslash
+Salida{Polinomio $g
+\backslash
+in D[X_1,
+\backslash
+dots,X_n]$ con $g(s_1,
+\backslash
+dots,s_n)=f$.}
+\end_layout
+
+\begin_layout Plain Layout
+
+$g
+\backslash
+gets0$
+\backslash
+;
+\end_layout
+
+\begin_layout Plain Layout
+
+
+\backslash
+Mientras{$f
+\backslash
+neq0$}{
+\end_layout
+
+\begin_layout Plain Layout
+
+ Obtener el término superior
+\end_layout
+
+\begin_layout Plain Layout
+
+ $M=aX_1^{i_1}
+\backslash
+cdots X_n^{i_n}$ de $f$
+\backslash
+;
+\end_layout
+
+\begin_layout Plain Layout
+
+ $p
+\backslash
+gets aX_1^{i_1-i_2}X_2^{i_2-i_3}
+\backslash
+cdots
+\end_layout
+
+\begin_layout Plain Layout
+
+ X_{n-1}^{i_{n-1}-i_n}X_n^{i_n}$
+\backslash
+;
+\end_layout
+
+\begin_layout Plain Layout
+
+ $f
+\backslash
+gets f-p(s_1,
+\backslash
+dots,s_n)$
+\backslash
+;
+\end_layout
+
+\begin_layout Plain Layout
+
+ $g
+\backslash
+gets g+p$
+\backslash
+;
+\end_layout
+
+\begin_layout Plain Layout
+
+}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Plain Layout
+\begin_inset Caption Standard
+
+\begin_layout Plain Layout
+\begin_inset CommandInset label
+LatexCommand label
+name "alg:domain-esp"
+
+\end_inset
+
+Método para obtener la descomposición de un polinomio simétrico en un dominio
+ como expresión polinómica de polinomios simétricos elementales.
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+El algoritmo
+\begin_inset CommandInset ref
+LatexCommand ref
+reference "alg:domain-esp"
+plural "false"
+caps "false"
+noprefix "false"
+
+\end_inset
+
+ permite descomponer un polinomio simétrico en un dominio como expresión
+ polinómica de polinomios simétricos elementales.
+
+\series bold
+Demostración:
+\series default
+ Lo vemos primero para
+\begin_inset Formula $f\in D[X_{1},\dots,X_{n}]$
+\end_inset
+
+ homogéneo de grado
+\begin_inset Formula $d$
+\end_inset
+
+.
+ Tras tomar el término superior
+\begin_inset Formula $M$
+\end_inset
+
+, como
+\begin_inset Formula $i_{1}\geq i_{2}\geq\dots\geq i_{n}$
+\end_inset
+
+,
+\begin_inset Formula $p$
+\end_inset
+
+ es un polinomio, y como el término superior del producto es el producto
+ de los términos superiores, el término superior de
+\begin_inset Formula $p(s_{1},\dots,s_{n})=as_{1}^{i_{1}-i_{2}}s_{2}^{i_{2}-i_{3}}\cdots s_{n-1}^{i_{n-1}-i_{n}}s_{n}^{i_{n}}$
+\end_inset
+
+ es
+\begin_inset Formula
+\[
+aX_{1}^{i_{1}-i_{2}}(X_{1}X_{2})^{i_{2}-i_{3}}\cdots(X_{1}\cdots X_{n-1})^{i_{n-1}-i_{n}}(X_{1}\cdots X_{n})^{i_{n}}=aX_{1}^{i_{1}}X_{2}^{i_{2}}\cdots X_{n}^{i_{n}}=M.
+\]
+
+\end_inset
+
+Así, al restar
+\begin_inset Formula $f-p$
+\end_inset
+
+, los términos superiores se cancelan, y como
+\begin_inset Formula $p(s_{1},\dots,s_{n})$
+\end_inset
+
+ es simétrico y homogéneo de grado
+\begin_inset Formula $(i_{1}-i_{2})+2(i_{2}-i_{3})+\dots+(n-1)(i_{n-1}-i_{n})+ni_{n}=i_{1}+\dots+i_{n}=d$
+\end_inset
+
+,
+\begin_inset Formula $f-p$
+\end_inset
+
+ es 0 o un polinomio simétrico homogéneo de grado
+\begin_inset Formula $d$
+\end_inset
+
+ con término superior menor que el de
+\begin_inset Formula $f$
+\end_inset
+
+.
+ Como hay una cantidad finita de tuplas
+\begin_inset Formula $(i_{1},\dots,i_{n})$
+\end_inset
+
+ con
+\begin_inset Formula $i_{1}+\dots+i_{n}=d$
+\end_inset
+
+, en algún momento
+\begin_inset Formula $f$
+\end_inset
+
+ se hace 0.
+ Sea ahora
+\begin_inset Formula $f\in D[X_{1},\dots,X_{n}]$
+\end_inset
+
+ un polinomio cualquiera y
+\begin_inset Formula $f=f_{0}+\dots+f_{k}$
+\end_inset
+
+ su descomposición en componentes homogéneas, como el término superior de
+
+\begin_inset Formula $f$
+\end_inset
+
+ será el término superior de algún
+\begin_inset Formula $f_{i}\neq0$
+\end_inset
+
+, el algoritmo va disminuyendo el término superior de los distintos
+\begin_inset Formula $f_{i}$
+\end_inset
+
+ hasta que todos se hagan nulos.
+\end_layout
+
+\begin_layout Standard
+Si
+\begin_inset Formula $f\in D[X_{1},\dots,X_{n}]$
+\end_inset
+
+ es un polinomio homogéneo con término superior
+\begin_inset Formula $aX_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$
+\end_inset
+
+, la expresión será una
+\begin_inset Formula $D$
+\end_inset
+
+-combinación lineal de polinomios del tipo
+\begin_inset Formula $s_{1}^{j_{1}-j_{2}}s_{2}^{j_{2}-j_{3}}\cdots$
+\end_inset
+
+ con
+\begin_inset Formula $j_{1}+\dots+j_{n}=i_{1}+\dots+i_{n}$
+\end_inset
+
+ y
+\begin_inset Formula $(j_{1},\dots,j_{n})\leq(i_{1},\dots,i_{n})$
+\end_inset
+
+, donde el coeficiente correspondiente a
+\begin_inset Formula $(i_{1},\dots,i_{n})$
+\end_inset
+
+ será
+\begin_inset Formula $a$
+\end_inset
+
+ y, para casos sencillos, podemos determinar el resto dando valores
+\begin_inset Quotes cld
+\end_inset
+
+fáciles
+\begin_inset Quotes crd
+\end_inset
+
+ a las indeterminadas y resolviendo las ecuaciones lineales en los coeficientes
+ obtenidas.
+\end_layout
+
\end_body
\end_document