diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-31 13:13:32 +0100 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-31 13:13:32 +0100 |
| commit | de3e935e35f0fdad86aaf142e657cd9c0fbf0ef8 (patch) | |
| tree | 0e8b1a3733ac53b621f6b8e59c0ec771bb85de4a /ac/nb.lyx | |
| parent | c4f1b931887d96b91f7c984479203ad20ed80b54 (diff) | |
Terminados apuntes de Álgebra Conmutativa
Diffstat (limited to 'ac/nb.lyx')
| -rw-r--r-- | ac/nb.lyx | 2735 |
1 files changed, 2735 insertions, 0 deletions
diff --git a/ac/nb.lyx b/ac/nb.lyx new file mode 100644 index 0000000..0db7de6 --- /dev/null +++ b/ac/nb.lyx @@ -0,0 +1,2735 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Cuerpos de fracciones +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{reminder}{GyA} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $D\neq0$ +\end_inset + + un dominio y +\begin_inset Formula $X\coloneqq D\times(D\setminus\{0\})$ +\end_inset + +, definimos la relación binaria +\begin_inset Formula +\[ +(a_{1},s_{1})\sim(a_{2},s_{2}):\iff a_{1}s_{2}=a_{2}s_{1}. +\] + +\end_inset + + Esta relación es de equivalencia. + Llamamos +\begin_inset Formula $a/s\coloneqq\frac{a}{s}\coloneqq[(a,s)]\in Q(D)\coloneqq X/\sim$ +\end_inset + +, y las operaciones +\begin_inset Formula +\begin{align*} +\frac{a_{1}}{s_{1}}+\frac{a_{2}}{s_{2}} & :=\frac{a_{1}s_{2}+a_{2}s_{1}}{s_{1}s_{2}}, & \frac{a_{1}}{s_{1}}\cdot\frac{a_{2}}{s_{2}} & :=\frac{a_{1}a_{2}}{s_{1}s_{2}}, +\end{align*} + +\end_inset + +están bien definidas. +\end_layout + +\begin_layout Standard +Para +\begin_inset Formula $a,b\in D$ +\end_inset + + y +\begin_inset Formula $s,t\in D\setminus\{0\}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\frac{a}{s}=\frac{0}{1}\iff a=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\frac{a}{s}=\frac{1}{1}\iff a=s$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\frac{at}{st}=\frac{a}{s}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\frac{a}{s}=\frac{b}{s}\iff a=b$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\frac{a}{s}+\frac{b}{s}=\frac{a+b}{s}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +[...] +\begin_inset Formula $(Q(D),+,\cdot)$ +\end_inset + + es un cuerpo llamado +\series bold +cuerpo de fracciones +\series default + o +\series bold +de cocientes +\series default + de +\begin_inset Formula $D$ +\end_inset + + cuyo cero es +\begin_inset Formula $\frac{0}{1}$ +\end_inset + + y cuyo uno es +\begin_inset Formula $\frac{1}{1}$ +\end_inset + + . +\end_layout + +\begin_layout Standard +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + es el cuerpo de fracciones de +\begin_inset Formula $\mathbb{Z}$ +\end_inset + +. + [...] +\begin_inset Formula $u:D\to Q(D)$ +\end_inset + + dada por +\begin_inset Formula $u(a)\coloneqq a/1$ +\end_inset + + es un homomorfismo inyectivo, por lo que podemos ver a +\begin_inset Formula $D$ +\end_inset + + como un subdominio de +\begin_inset Formula $Q(D)$ +\end_inset + + identificando a cada +\begin_inset Formula $a\in D$ +\end_inset + + con +\begin_inset Formula $a/1\in Q(D)$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Propiedad universal del cuerpo de fracciones: +\series default + Dados un dominio +\begin_inset Formula $D$ +\end_inset + + y +\begin_inset Formula $u:D\to Q(D)$ +\end_inset + + dada por +\begin_inset Formula $u(a)\coloneqq a/1$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Sean +\begin_inset Formula $K$ +\end_inset + + un cuerpo y +\begin_inset Formula $f:D\to K$ +\end_inset + + un homomorfismo inyectivo, el único homomorfismo de cuerpos +\begin_inset Formula $\tilde{f}:Q(D)\to K$ +\end_inset + + con +\begin_inset Formula $\tilde{f}\circ u=f$ +\end_inset + + viene dado por +\begin_inset Formula $\tilde{f}(\frac{a}{s})=f(a)f(s)^{-1}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Sean +\begin_inset Formula $K$ +\end_inset + + un cuerpo no trivial y +\begin_inset Formula $g,h:Q(D)\to K$ +\end_inset + + homomorfismos que coinciden en +\begin_inset Formula $D$ +\end_inset + +, entonces +\begin_inset Formula $g=h$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Sean +\begin_inset Formula $F$ +\end_inset + + un cuerpo no trivial y +\begin_inset Formula $v:D\to F$ +\end_inset + + un homomorfismo inyectivo tal que para todo cuerpo +\begin_inset Formula $K$ +\end_inset + + y homomorfismo inyectivo +\begin_inset Formula $f:D\to K$ +\end_inset + + existe un único homomorfismo +\begin_inset Formula $\tilde{f}:F\to K$ +\end_inset + + con +\begin_inset Formula $\tilde{f}\circ v=f$ +\end_inset + +, entonces existe un isomorfismo +\begin_inset Formula $\phi:F\to Q(D)$ +\end_inset + + con +\begin_inset Formula $\phi\circ v=u$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $D$ +\end_inset + + un dominio, +\begin_inset Formula $K$ +\end_inset + + un cuerpo no trivial y +\begin_inset Formula $f:D\to K$ +\end_inset + + un homomorfismo inyectivo, +\begin_inset Formula $K$ +\end_inset + + contiene un subcuerpo isomorfo a +\begin_inset Formula $Q(D)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +De aquí, para +\begin_inset Formula $m\in\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $Q(\mathbb{Z}[\sqrt{m}])\cong\mathbb{Q}[\sqrt{m}]$ +\end_inset + +, lo que nos permite identificar los elementos de +\begin_inset Formula $Q(\mathbb{Z}[\sqrt{m}])$ +\end_inset + + con los de +\begin_inset Formula $\mathbb{Q}[\sqrt{m}]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $K$ +\end_inset + + un cuerpo no trivial, existe un subcuerpo +\begin_inset Formula $K'$ +\end_inset + + de +\begin_inset Formula $K$ +\end_inset + + llamado +\series bold +subcuerpo primo +\series default + de +\begin_inset Formula $K$ +\end_inset + + contenido en cualquier subcuerpo de +\begin_inset Formula $K$ +\end_inset + +, y este es isomorfo a +\begin_inset Formula $\mathbb{Z}_{p}$ +\end_inset + + si la característica de +\begin_inset Formula $K$ +\end_inset + + es un entero primo +\begin_inset Formula $p$ +\end_inset + + o a +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + en caso contrario. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{reminder} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Polinomios +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{reminder}{GyA} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $A$ +\end_inset + + es un subanillo de +\begin_inset Formula $A[X]$ +\end_inset + + identificando los elementos de +\begin_inset Formula $A$ +\end_inset + + con los +\series bold +polinomios constantes +\series default +, de la forma +\begin_inset Formula $P(X)=a_{0}$ +\end_inset + +. + Dado un ideal +\begin_inset Formula $I$ +\end_inset + + de +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]\mid a_{0}\in I\}$ +\end_inset + + e +\begin_inset Formula $I[X]\coloneqq\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]\mid a_{0},\dots,a_{n}\in I\}$ +\end_inset + + son ideales de +\begin_inset Formula $A[X]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dado +\begin_inset Formula $p\coloneqq\sum_{k\in\mathbb{N}}p_{k}X^{k}\in A[X]\setminus\{0\}$ +\end_inset + +, llamamos +\series bold +grado +\series default + de +\begin_inset Formula $p$ +\end_inset + + a +\begin_inset Formula $\text{gr}(p)\coloneqq\max\{k\in\mathbb{N}\mid p_{k}\neq0\}$ +\end_inset + +, +\series bold +coeficiente +\series default + de +\series bold +grado +\series default + +\begin_inset Formula $k$ +\end_inset + + de +\begin_inset Formula $p$ +\end_inset + + a +\begin_inset Formula $p_{k}$ +\end_inset + +, +\series bold +coeficiente independiente +\series default + al de grado 0 y +\series bold +coeficiente principal +\series default + al de grado +\begin_inset Formula $\text{gr}(p)$ +\end_inset + +. + Un polinomio es +\series bold +mónico +\series default + si su coeficiente principal es 1. + El polinomio 0 tiene grado +\begin_inset Formula $-\infty$ +\end_inset + + por convención. +\end_layout + +\begin_layout Standard +Un +\series bold +monomio +\series default + es un polinomio de la forma +\begin_inset Formula $aX^{n}$ +\end_inset + + con +\begin_inset Formula $a\in A$ +\end_inset + + y +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +. + Todo polinomio en +\begin_inset Formula $A[X]$ +\end_inset + + se escribe como suma finita de monomios de distinto grado de forma única + salvo orden. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $P,Q\in A[X]\setminus\{0\}$ +\end_inset + + tienen coeficientes principales respectivos +\begin_inset Formula $p$ +\end_inset + + y +\begin_inset Formula $q$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{gr}(P+Q)\leq\max\{\text{gr}(P),\text{gr}(Q)\}$ +\end_inset + +, con desigualdad estricta si y sólo si +\begin_inset Formula $\text{gr}(P)=\text{gr}(Q)$ +\end_inset + + y +\begin_inset Formula $p+q=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{gr}(PQ)\leq\text{gr}(P)+\text{gr}(Q)$ +\end_inset + +, con igualdad si y sólo si +\begin_inset Formula $pq\neq0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $A[X]$ +\end_inset + + no es un cuerpo. + Es un dominio si y sólo si lo es +\begin_inset Formula $A$ +\end_inset + +, en cuyo caso llamamos +\series bold +cuerpo de las funciones racionales +\series default + sobre +\begin_inset Formula $A$ +\end_inset + + al cuerpo de fracciones de +\begin_inset Formula $A[X]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +[...] +\series bold +Propiedad universal del anillo de polinomios +\series default + ( +\series bold +PUAP +\series default +) +\series bold +: +\series default + Sean +\begin_inset Formula $A$ +\end_inset + + un anillo y +\begin_inset Formula $u:A\to A[X]$ +\end_inset + + el homomorfismo inclusión: +\end_layout + +\begin_layout Enumerate +Para cada homomorfismo de anillos conmutativos +\begin_inset Formula $f:A\to B$ +\end_inset + + y +\begin_inset Formula $b\in B$ +\end_inset + +, el único homomorfismo +\begin_inset Formula $\tilde{f}:A[X]\to B$ +\end_inset + + tal que +\begin_inset Formula $\tilde{f}(X)=b$ +\end_inset + + y +\begin_inset Formula $\tilde{f}\circ u=f$ +\end_inset + + es +\begin_inset Formula +\[ +\tilde{f}\left(\sum_{n}p_{n}X^{n}\right):=\sum_{n}f(p_{n})b^{n}. +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A[X]$ +\end_inset + + y +\begin_inset Formula $u$ +\end_inset + + están determinados salvo isomorfismos por la propiedad universal: dados + un homomorfismo de anillos +\begin_inset Formula $v:A\to P$ +\end_inset + + y +\begin_inset Formula $t\in P$ +\end_inset + + tales que, para cada homomorfismo de anillos +\begin_inset Formula $f:A\to B$ +\end_inset + + y +\begin_inset Formula $b\in B$ +\end_inset + +, existe un único +\begin_inset Formula $\tilde{f}:P\to B$ +\end_inset + + tal que +\begin_inset Formula $\tilde{f}\circ v=f$ +\end_inset + + y +\begin_inset Formula $\tilde{f}(t)=b$ +\end_inset + +, existe un isomorfismo +\begin_inset Formula $\phi:A[X]\to P$ +\end_inset + + tal que +\begin_inset Formula $\phi\circ u=v$ +\end_inset + + y +\begin_inset Formula $\phi(X)=t$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Así: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + es un subanillo de +\begin_inset Formula $B$ +\end_inset + + y +\begin_inset Formula $b\in B$ +\end_inset + +, el +\series bold +homomorfismo de sustitución +\series default + o +\series bold +de evaluación +\series default + en +\begin_inset Formula $b$ +\end_inset + + es +\begin_inset Formula $S_{b}:A[X]\to B$ +\end_inset + + dado por +\begin_inset Formula +\[ +S_{b}(p):=p(b):=\sum_{n}p_{n}b^{n}, +\] + +\end_inset + +y su imagen es el subanillo generado por +\begin_inset Formula $A\cup\{b\}$ +\end_inset + +, llamado +\begin_inset Formula $A[b]$ +\end_inset + +. + Todo +\begin_inset Formula $p\in A[X]$ +\end_inset + + induce una +\series bold +función polinómica +\series default + +\begin_inset Formula $\hat{p}:B\to B$ +\end_inset + + dada por +\begin_inset Formula $\hat{p}(b)\coloneqq S_{b}(p)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Dado +\begin_inset Formula $a\in A$ +\end_inset + +, el homomorfismo de sustitución +\begin_inset Formula $S_{X+a}$ +\end_inset + + es un automorfismo de +\begin_inset Formula $A[X]$ +\end_inset + + con inverso +\begin_inset Formula $S_{X-a}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + es un anillo conmutativo, +\begin_inset Formula $\frac{A[X]}{(X)}\cong A$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Todo homomorfismo de anillos +\begin_inset Formula $f:A\to B$ +\end_inset + + induce un homomorfismo +\begin_inset Formula $\hat{f}:A[X]\to B[X]$ +\end_inset + + dado por +\begin_inset Formula +\[ +\hat{f}(p)=\sum_{n}f(p_{n})X^{n}, +\] + +\end_inset + +que es inyectivo o suprayectivo si lo es +\begin_inset Formula $f$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + es un subanillo de +\begin_inset Formula $B$ +\end_inset + +, +\begin_inset Formula $A[X]$ +\end_inset + + lo es de +\begin_inset Formula $B[X]$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $I$ +\end_inset + + es un ideal de +\begin_inset Formula $A$ +\end_inset + +, el +\series bold +homomorfismo de reducción de coeficientes módulo +\begin_inset Formula $I$ +\end_inset + + +\series default + es +\begin_inset Formula $\tilde{\pi}:A[X]\to(A/I)[X]$ +\end_inset + + dado por +\begin_inset Formula +\[ +\tilde{\pi}(p):=\sum_{n}(p_{n}+I)X^{n}. +\] + +\end_inset + +Su núcleo es +\begin_inset Formula $I[X]$ +\end_inset + +, por lo que +\begin_inset Formula $(A/I)[X]\cong\frac{A[X]}{I[X]}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{reminder} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Newpage pagebreak +\end_inset + + +\end_layout + +\begin_layout Section +Descomposiciones de polinomios en dominios +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{reminder}{GyA} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $f,g\in A[X]$ +\end_inset + +, si el coeficiente principal de +\begin_inset Formula $g$ +\end_inset + + es invertible en +\begin_inset Formula $A$ +\end_inset + +, existen dos únicos polinomios +\begin_inset Formula $q,r\in A[X]$ +\end_inset + +, llamados respectivamente +\series bold +cociente +\series default + y +\series bold +resto +\series default + de la +\series bold +división +\series default + de +\begin_inset Formula $f$ +\end_inset + + entre +\begin_inset Formula $g$ +\end_inset + +, tales que +\begin_inset Formula $f=gq+r$ +\end_inset + + y +\begin_inset Formula $\text{gr}(r)<\text{gr}(g)$ +\end_inset + + [...]. + En particular, el grado es una función euclídea. + +\end_layout + +\begin_layout Standard + +\series bold +Teorema del resto: +\series default + Dados +\begin_inset Formula $f\in A[X]$ +\end_inset + + y +\begin_inset Formula $a\in A$ +\end_inset + +, el resto de +\begin_inset Formula $f$ +\end_inset + + entre +\begin_inset Formula $X-a$ +\end_inset + + es +\begin_inset Formula $f(a)$ +\end_inset + +. + De aquí se obtiene el +\series bold +teorema de Ruffini +\series default +, que dice que +\begin_inset Formula $f$ +\end_inset + + es divisible por +\begin_inset Formula $X-a$ +\end_inset + + si y sólo si +\begin_inset Formula $f(a)=0$ +\end_inset + +, en cuyo caso +\begin_inset Formula $a$ +\end_inset + + es una +\series bold +raíz +\series default + de +\begin_inset Formula $f$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Para +\begin_inset Formula $f\in A[X]\setminus\{0\}$ +\end_inset + + y +\begin_inset Formula $a\in A$ +\end_inset + +, existe +\begin_inset Formula $m\coloneqq\max\{k\in\mathbb{N}\mid(X-a)^{k}\mid f\}$ +\end_inset + +. + Llamamos a +\begin_inset Formula $m$ +\end_inset + + +\series bold +multiplicidad +\series default + de +\begin_inset Formula $a$ +\end_inset + + en +\begin_inset Formula $f$ +\end_inset + +, y +\begin_inset Formula $a$ +\end_inset + + es raíz de +\begin_inset Formula $f$ +\end_inset + + si y sólo si +\begin_inset Formula $m\geq1$ +\end_inset + +. + Decimos que +\begin_inset Formula $a$ +\end_inset + + es una +\series bold +raíz simple +\series default + de +\begin_inset Formula $f$ +\end_inset + + si +\begin_inset Formula $m=1$ +\end_inset + + y que es una +\series bold +raíz compuesta +\series default + si +\begin_inset Formula $m>1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +La multiplicidad de +\begin_inset Formula $a$ +\end_inset + + en +\begin_inset Formula $f$ +\end_inset + + es el único natural +\begin_inset Formula $m$ +\end_inset + + tal que +\begin_inset Formula $f=(X-a)^{m}g$ +\end_inset + + para algún +\begin_inset Formula $g\in A[X]$ +\end_inset + + del que +\begin_inset Formula $a$ +\end_inset + + no es raíz. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $D$ +\end_inset + + es un dominio, +\begin_inset Formula $f\in D[X]\setminus\{0\}$ +\end_inset + +, +\begin_inset Formula $a_{1},\dots,a_{n}$ +\end_inset + + son +\begin_inset Formula $n$ +\end_inset + + elementos de +\begin_inset Formula $D$ +\end_inset + + y +\begin_inset Formula $\alpha_{1},\dots,\alpha_{n}\in\mathbb{Z}^{>0}$ +\end_inset + + con +\begin_inset Formula $(X-a_{k})^{\alpha_{k}}\mid f$ +\end_inset + + para cada +\begin_inset Formula $k$ +\end_inset + +, entonces +\begin_inset Formula $(X-a_{1})^{\alpha_{1}}\cdots(X-a_{n})^{\alpha_{n}}\mid f$ +\end_inset + +, por lo que +\begin_inset Formula $\sum_{k=1}^{n}\alpha_{k}\leq\text{gr}(f)$ +\end_inset + + y, en particular, la suma de las multiplicidades de las raíces de +\begin_inset Formula $f$ +\end_inset + +, y el número de raíces, no son superiores a +\begin_inset Formula $\text{gr}(f)$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Principio de las identidades polinómicas: +\series default + Sea +\begin_inset Formula $D$ +\end_inset + + un dominio: +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $f,g\in D[X]$ +\end_inset + +, si las funciones polinómicas +\begin_inset Formula $f,g:D\to D$ +\end_inset + + coinciden en +\begin_inset Formula $m$ +\end_inset + + elementos de +\begin_inset Formula $D$ +\end_inset + + con +\begin_inset Formula $m>\text{gr}(f),\text{gr}(g)$ +\end_inset + +, los polinomios +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + son iguales. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $D$ +\end_inset + + es infinito si y sólo si cualquier par de polinomios distintos en +\begin_inset Formula $D[X]$ +\end_inset + + define dos funciones polinómicas distintas en +\begin_inset Formula $D$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como ejemplo de lo anterior, por el teorema pequeño de Fermat, dado un primo + +\begin_inset Formula $p$ +\end_inset + +, todos los elementos de +\begin_inset Formula $\mathbb{Z}_{p}$ +\end_inset + + son raíces de 0 y +\begin_inset Formula $X^{p}-X$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dado un anillo conmutativo +\begin_inset Formula $A$ +\end_inset + +, definimos la +\series bold +derivada +\series default + de +\begin_inset Formula $P\coloneqq\sum_{k}a_{k}X^{k}\in A[X]$ +\end_inset + + como +\begin_inset Formula $P'\coloneqq D(P)\coloneqq\sum_{k\geq1}ka_{k}X^{k-1}$ +\end_inset + +, y escribimos +\begin_inset Formula $P^{(0)}\coloneqq P$ +\end_inset + + y +\begin_inset Formula $P^{(n+1)}\coloneqq P^{(n)\prime}$ +\end_inset + +. + Dados +\begin_inset Formula $a,b\in A$ +\end_inset + + y +\begin_inset Formula $P,Q\in A[X]$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(aP+bQ)'=aP'+bQ'$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(PQ)'=P'Q+PQ'$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(P^{n})'=nP^{n-1}P'$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dados un dominio +\begin_inset Formula $D$ +\end_inset + + de característica 0, +\begin_inset Formula $P\in D[X]\setminus\{0\}$ +\end_inset + + y +\begin_inset Formula $a\in D$ +\end_inset + +, la multiplicidad de +\begin_inset Formula $a$ +\end_inset + + en +\begin_inset Formula $P$ +\end_inset + + es el menor +\begin_inset Formula $m\in\mathbb{N}_{0}$ +\end_inset + + con +\begin_inset Formula $P^{(m)}(a)\neq0$ +\end_inset + +. + [...] +\end_layout + +\begin_layout Standard +Dado un anillo +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $A[X]$ +\end_inset + + es un dominio euclídeo si y sólo si es un DIP, si y sólo si +\begin_inset Formula $A$ +\end_inset + + es un cuerpo. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $D$ +\end_inset + + un dominio y +\begin_inset Formula $p\in D$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $p$ +\end_inset + + es irreducible en +\begin_inset Formula $D$ +\end_inset + + si y sólo si lo es en +\begin_inset Formula $D[X]$ +\end_inset + +. + [...] +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $p$ +\end_inset + + es primo en +\begin_inset Formula $D[X]$ +\end_inset + +, lo es en +\begin_inset Formula $D$ +\end_inset + +. + [...] +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $D$ +\end_inset + + es un DFU, +\begin_inset Formula $p$ +\end_inset + + es irreducible en +\begin_inset Formula $D$ +\end_inset + + si y sólo si lo es en +\begin_inset Formula $D[X]$ +\end_inset + +, si y sólo si es primo en +\begin_inset Formula $D$ +\end_inset + +, si y sólo si lo es en +\begin_inset Formula $D[X]$ +\end_inset + +. + [...] +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $D$ +\end_inset + + un DFU, definimos +\begin_inset Formula $\varphi:D\setminus0\to\mathbb{N}$ +\end_inset + + tal que +\begin_inset Formula $\varphi(a)$ +\end_inset + + es el número de factores irreducibles en la factorización por irreducibles + de +\begin_inset Formula $a$ +\end_inset + + en +\begin_inset Formula $D$ +\end_inset + +, contando repetidos, y para +\begin_inset Formula $a,b\in D\setminus\{0\}$ +\end_inset + +, +\begin_inset Formula $\varphi(ab)=\varphi(a)+\varphi(b)$ +\end_inset + + y +\begin_inset Formula $\varphi(a)=0\iff a\in D^{*}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $D$ +\end_inset + + es un DFU, +\begin_inset Formula $K$ +\end_inset + + es su cuerpo de fracciones y +\begin_inset Formula $f\in D[X]$ +\end_inset + + es irreducible en +\begin_inset Formula $D[X]$ +\end_inset + +, es irreducible en +\begin_inset Formula $K[X]$ +\end_inset + +. + [...] +\begin_inset Formula $D$ +\end_inset + + es un DFU si y sólo si lo es +\begin_inset Formula $D[X]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +[...] Si +\begin_inset Formula $D$ +\end_inset + + es un DFU y +\begin_inset Formula $K$ +\end_inset + + es su cuerpo de fracciones, definimos la relación de equivalencia en +\begin_inset Formula $K$ +\end_inset + + +\begin_inset Formula $x\sim y:\iff\exists u\in D^{*}:y=ux$ +\end_inset + +, con lo que +\begin_inset Formula $[x]=xD^{*}$ +\end_inset + + y, en particular, si +\begin_inset Formula $x\in D$ +\end_inset + +, +\begin_inset Formula $[x]$ +\end_inset + + es el conjunto de los asociados de +\begin_inset Formula $x$ +\end_inset + + en +\begin_inset Formula $D$ +\end_inset + +. + Definimos +\begin_inset Formula $\cdot:K\times(K/\sim)\to K/\sim$ +\end_inset + + como +\begin_inset Formula $a(bD^{*})=(ab)D^{*}$ +\end_inset + +. + Esto está bien definido. + Además, +\begin_inset Formula $a(b(cD^{*}))=(ab)(cD^{*})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Definimos +\begin_inset Formula $c:K[X]\to K/\sim$ +\end_inset + + tal que, para +\begin_inset Formula $p\coloneqq\sum_{k\geq0}p_{k}X^{k}\in D[X]$ +\end_inset + +, +\begin_inset Formula $c(p)\coloneqq\{x\mid x=\text{mcd}_{k\geq0}p_{k}\}$ +\end_inset + +, y para +\begin_inset Formula $p\in K[X]$ +\end_inset + +, si +\begin_inset Formula $a\in D\setminus\{0\}$ +\end_inset + + cumple +\begin_inset Formula $ap\in D[X]$ +\end_inset + +, +\begin_inset Formula $c(p)\coloneqq a^{-1}c(ap)$ +\end_inset + +. + Esto está bien definido. + Si +\begin_inset Formula $c(p)=aD^{*}$ +\end_inset + +, +\begin_inset Formula $a$ +\end_inset + + es el +\series bold +contenido +\series default + de +\begin_inset Formula $p$ +\end_inset + + ( +\begin_inset Formula $a=c(p)$ +\end_inset + +). +\end_layout + +\begin_layout Standard +Para +\begin_inset Formula $a\in K$ +\end_inset + + y +\begin_inset Formula $p\in K[X]$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $a\in D$ +\end_inset + + y +\begin_inset Formula $p\in D[X]$ +\end_inset + +, +\begin_inset Formula $a\mid p$ +\end_inset + + en +\begin_inset Formula $D[X]$ +\end_inset + + si y sólo si +\begin_inset Formula $a\mid c(p)$ +\end_inset + + en +\begin_inset Formula $D$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $c(ap)=ac(p)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $p\in D[X]\iff c(p)\in D$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un polinomio +\begin_inset Formula $p$ +\end_inset + + es +\series bold +primitivo +\series default + si +\begin_inset Formula $c(p)=1$ +\end_inset + +, esto es, si +\begin_inset Formula $p\in D[X]$ +\end_inset + + y +\begin_inset Formula $\text{mcd}_{k}p_{k}=1$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Lema de Gauss: +\series default + Para +\begin_inset Formula $f,g\in D[X]$ +\end_inset + +, +\begin_inset Formula $c(fg)=c(f)c(g)$ +\end_inset + +, y en particular +\begin_inset Formula $fg$ +\end_inset + + es primitivo si y sólo si +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + lo son. + [...] +\end_layout + +\begin_layout Standard +Dado +\begin_inset Formula $f\in D[X]\setminus D$ +\end_inset + + primitivo, +\begin_inset Formula $f$ +\end_inset + + es irreducible en +\begin_inset Formula $D[X]$ +\end_inset + + si y sólo si lo es en +\begin_inset Formula $K[X]$ +\end_inset + +, si y sólo si +\begin_inset Formula $\forall G,H\in K[X],(f=GH\implies\text{gr}(G)=0\lor\text{gr}(H)=0)$ +\end_inset + +, si y sólo si +\begin_inset Formula $\forall g,h\in D[X],(f=gh\implies\text{gr}(g)=0\lor\text{gr}(h)=0)$ +\end_inset + +. + [...] +\end_layout + +\begin_layout Standard +De aquí que si +\begin_inset Formula $D$ +\end_inset + + es un DFU con cuerpo de fracciones +\begin_inset Formula $K$ +\end_inset + +, los irreducibles de +\begin_inset Formula $D[X]$ +\end_inset + + son precisamente los de +\begin_inset Formula $D$ +\end_inset + + y los polinomios primitivos de +\begin_inset Formula $D[X]\setminus D$ +\end_inset + + irreducibles en +\begin_inset Formula $K[X]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +[...] Sean +\begin_inset Formula $K$ +\end_inset + + un cuerpo y +\begin_inset Formula $f\in K[X]$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\text{gr}(f)=1$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + es irreducible en +\begin_inset Formula $K[X]$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\text{gr}(f)>1$ +\end_inset + + y +\begin_inset Formula $f$ +\end_inset + + tiene una raíz en +\begin_inset Formula $K$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + no es irreducible en +\begin_inset Formula $K[X]$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\text{gr}(f)\in\{2,3\}$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + es irreducible en +\begin_inset Formula $K[X]$ +\end_inset + + si y sólo si no tiene raíces en +\begin_inset Formula $K$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $D$ +\end_inset + + es un DFU con cuerpo de fracciones +\begin_inset Formula $K$ +\end_inset + +, +\begin_inset Formula $f\coloneqq\sum_{k}a_{k}X^{k}\in D[X]$ +\end_inset + + y +\begin_inset Formula $n\coloneqq\text{gr}(f)$ +\end_inset + +, todas las raíces de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $K$ +\end_inset + + son de la forma +\begin_inset Formula $\frac{r}{s}$ +\end_inset + + con +\begin_inset Formula $r\mid a_{0}$ +\end_inset + + y +\begin_inset Formula $s\mid a_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Criterio de reducción: +\series default + Sean +\begin_inset Formula $\phi:D\to K$ +\end_inset + + un homomorfismo de anillos donde +\begin_inset Formula $D$ +\end_inset + + es un DFU y +\begin_inset Formula $K$ +\end_inset + + es un cuerpo, +\begin_inset Formula $\hat{\phi}:D[X]\to K[X]$ +\end_inset + + el homomorfismo inducido por +\begin_inset Formula $\phi$ +\end_inset + + y +\begin_inset Formula $f$ +\end_inset + + un polinomio primitivo de +\begin_inset Formula $D[X]\setminus D$ +\end_inset + +, si +\begin_inset Formula $\hat{\phi}(f)$ +\end_inset + + es irreducible en +\begin_inset Formula $K[X]$ +\end_inset + + y +\begin_inset Formula $\text{gr}(\hat{\phi}(f))=\text{gr}(f)$ +\end_inset + +, entonces +\begin_inset Formula $f$ +\end_inset + + es irreducible en +\begin_inset Formula $D[X]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +En particular, si +\begin_inset Formula $p\in\mathbb{Z}$ +\end_inset + + es primo, +\begin_inset Formula $f\coloneqq\sum_{k}a_{k}X^{k}\in\mathbb{Z}[X]$ +\end_inset + + es primitivo, +\begin_inset Formula $n\coloneqq\text{gr}(f)$ +\end_inset + +, +\begin_inset Formula $p\nmid a_{n}$ +\end_inset + + y +\begin_inset Formula $f$ +\end_inset + + es irreducible en +\begin_inset Formula $\mathbb{Z}_{p}[X]$ +\end_inset + +, entonces +\begin_inset Formula $f$ +\end_inset + + es irreducible en +\begin_inset Formula $\mathbb{Z}[X]$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Criterio de Eisenstein: +\series default + Sean +\begin_inset Formula $D$ +\end_inset + + un DFU, +\begin_inset Formula $f\coloneqq\sum_{k}a_{k}X^{k}\in D[X]$ +\end_inset + + primitivo y +\begin_inset Formula $n\coloneqq\text{gr}f$ +\end_inset + +, si existe un irreducible +\begin_inset Formula $p\in D$ +\end_inset + + tal que +\begin_inset Formula $\forall k\in\{0,\dots,n-1\},p\mid a_{k}$ +\end_inset + + y +\begin_inset Formula $p^{2}\nmid a_{0}$ +\end_inset + +, entonces +\begin_inset Formula $f$ +\end_inset + + es irreducible en +\begin_inset Formula $D[X]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Así: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $a\in\mathbb{Z}$ +\end_inset + + y existe +\begin_inset Formula $p\in\mathbb{Z}$ +\end_inset + + cuya multiplicidad en +\begin_inset Formula $a$ +\end_inset + + es 1, +\begin_inset Formula $X^{n}-a$ +\end_inset + + es irreducible. +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $n\geq3$ +\end_inset + +, llamamos +\series bold +raíces +\begin_inset Formula $n$ +\end_inset + +-ésimas de la unidad +\series default + o +\series bold +de 1 +\series default + a las raíces de +\begin_inset Formula $X^{n}-1$ +\end_inset + + en +\begin_inset Formula $\mathbb{C}$ +\end_inset + +, que son los +\begin_inset Formula $n$ +\end_inset + + vértices del +\begin_inset Formula $n$ +\end_inset + +-ágono regular inscrito en el círculo unidad de +\begin_inset Formula $\mathbb{C}$ +\end_inset + + con un vértice en el 1. + +\begin_inset Formula $X^{n}-1=(X-1)\Phi_{n}(X)$ +\end_inset + +, donde +\begin_inset Formula $\Phi_{n}(X)\coloneqq X^{n-1}+X^{n-2}+\dots+X+1$ +\end_inset + + es el +\series bold + +\begin_inset Formula $n$ +\end_inset + +-ésimo polinomio ciclotómico +\series default + y sus raíces en +\begin_inset Formula $\mathbb{C}$ +\end_inset + + son las raíces +\begin_inset Formula $n$ +\end_inset + +-ésimas de 1 distintas de 1. + En +\begin_inset Formula $\mathbb{Q}$ +\end_inset + +, +\begin_inset Formula $X+1\mid\Phi_{4}(X)$ +\end_inset + +, pero si +\begin_inset Formula $n$ +\end_inset + + es primo, +\begin_inset Formula $\Phi_{n}(X)$ +\end_inset + + es irreducible. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{reminder} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Polinomios en varias indeterminadas +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{reminder}{GyA} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dados un anillo conmutativo +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $n\geq2$ +\end_inset + +, definimos el +\series bold +anillo de polinomios +\series default + en +\begin_inset Formula $n$ +\end_inset + + indeterminadas con coeficientes en +\begin_inset Formula $A$ +\end_inset + + como +\begin_inset Formula $A[X_{1},\dots,X_{n}]\coloneqq A[X_{1},\dots,X_{n-1}][X_{n}]$ +\end_inset + +. + Llamamos +\series bold +indeterminadas +\series default + a los símbolos +\begin_inset Formula $X_{1},\dots,X_{n}$ +\end_inset + + y +\series bold +polinomios en +\begin_inset Formula $n$ +\end_inset + + indeterminadas +\series default + a los elementos de +\begin_inset Formula $A[X_{1},\dots,X_{n}]$ +\end_inset + +. + Dados un anillo conmutativo +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $n\in\mathbb{N}^{*}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A[X_{1},\dots,X_{n}]$ +\end_inset + + no es un cuerpo. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A[X_{1},\dots,X_{n}]$ +\end_inset + + es un dominio si y sólo si lo es +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + es un dominio, +\begin_inset Formula $A[X_{1},\dots,X_{n}]^{*}=A^{*}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A[X_{1},\dots,X_{n}]$ +\end_inset + + es un DFU si y sólo si lo es +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A[X_{1},\dots,X_{n}]$ +\end_inset + + es un DIP si y sólo si +\begin_inset Formula $n=1$ +\end_inset + + y +\begin_inset Formula $A$ +\end_inset + + es un cuerpo. +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $a\in A$ +\end_inset + + e +\begin_inset Formula $i\coloneqq(i_{1},\dots,i_{n})\in\mathbb{N}^{n}$ +\end_inset + +, llamamos a +\begin_inset Formula $aX_{1}^{i_{1}}\cdots X_{n}^{i_{n}}\in A[X_{1},\dots,X_{n}]$ +\end_inset + + +\series bold +monomio +\series default + de +\series bold +tipo +\series default + +\begin_inset Formula $i$ +\end_inset + + y coeficiente +\begin_inset Formula $a$ +\end_inset + +. + Todo +\begin_inset Formula $p\in A[X_{1},\dots,X_{n}]$ +\end_inset + + se escribe de forma única como suma de monomios de distinto tipo, +\begin_inset Formula +\[ +p:=\sum_{i\in\mathbb{N}^{n}}p_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}, +\] + +\end_inset + +con +\begin_inset Formula $p_{i}=0$ +\end_inset + + para casi todo +\begin_inset Formula $i\in\mathbb{N}^{n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +PUAP en +\begin_inset Formula $n$ +\end_inset + + indeterminadas: +\series default + Sean +\begin_inset Formula $A$ +\end_inset + + un anillo conmutativo, +\begin_inset Formula $n\in\mathbb{N}^{*}$ +\end_inset + + y +\begin_inset Formula $u:A\to A[X_{1},\dots,X_{n}]$ +\end_inset + + la inclusión: +\end_layout + +\begin_layout Enumerate +Dados un homomorfismo de anillos +\begin_inset Formula $f:A\to B$ +\end_inset + + y +\begin_inset Formula $b_{1},\dots,b_{n}\in B$ +\end_inset + +, existe un único homomorfismo de anillos +\begin_inset Formula $\tilde{f}:A[X_{1},\dots,X_{n}]\to B$ +\end_inset + + tal que +\begin_inset Formula $\tilde{f}\circ u=f$ +\end_inset + + y +\begin_inset Formula $\tilde{f}(X_{k})=b_{k}$ +\end_inset + + para +\begin_inset Formula $k\in\{1,\dots,n\}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Dados un anillo conmutativo +\begin_inset Formula $P$ +\end_inset + +, +\begin_inset Formula $T_{1},\dots,T_{n}\in P$ +\end_inset + + y un homomorfismo +\begin_inset Formula $v:A\to P$ +\end_inset + + tales que, dados un homomorfismo de anillos +\begin_inset Formula $f:A\to B$ +\end_inset + + y +\begin_inset Formula $b_{1},\dots,b_{n}\in B$ +\end_inset + +, existe un único homomorfismo +\begin_inset Formula $\tilde{f}:P\to B$ +\end_inset + + tal que +\begin_inset Formula $\tilde{f}\circ v=f$ +\end_inset + + y +\begin_inset Formula $\tilde{f}(T_{k})=b_{k}$ +\end_inset + + para +\begin_inset Formula $k\in\{1,\dots,n\}$ +\end_inset + +, existe un isomorfismo +\begin_inset Formula $\phi:A[X_{1},\dots,X_{n}]\to P$ +\end_inset + + tal que +\begin_inset Formula $\phi\circ u=v$ +\end_inset + + y +\begin_inset Formula $\phi(X_{k})=T_{k}$ +\end_inset + + para cada +\begin_inset Formula $k\in\{1,\dots,n\}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Así: +\end_layout + +\begin_layout Enumerate +Dados dos anillos conmutativos +\begin_inset Formula $A\subseteq B$ +\end_inset + + y +\begin_inset Formula $b_{1},\dots,b_{n}\in B$ +\end_inset + +, el +\series bold +homomorfismo de sustitución +\series default + +\begin_inset Formula $S:A[X_{1},\dots,X_{n}]\to B$ +\end_inset + + viene dado por +\begin_inset Formula $p(b_{1},\dots,b_{n})\coloneqq S(p)\coloneqq\sum_{i\in\mathbb{N}^{n}}p_{i}b_{1}^{i_{1}}\cdots b_{n}^{i_{n}}$ +\end_inset + +. + Su imagen es el subanillo de +\begin_inset Formula $B$ +\end_inset + + generado por +\begin_inset Formula $A\cup\{b_{1},\dots,b_{n}\}$ +\end_inset + +, +\begin_inset Formula $A[b_{1},\dots,b_{n}]$ +\end_inset + +, y dados dos homomorfismos de anillos +\begin_inset Formula $f,g:A[b_{1},\dots,b_{n}]\to C$ +\end_inset + +, +\begin_inset Formula $f=g$ +\end_inset + + si y sólo si +\begin_inset Formula $f|_{A}=g|_{A}$ +\end_inset + + y +\begin_inset Formula $f(b_{k})=g(b_{k})$ +\end_inset + + para todo +\begin_inset Formula $k$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Sean +\begin_inset Formula $A$ +\end_inset + + un anillo y +\begin_inset Formula $\sigma$ +\end_inset + + una permutación de +\begin_inset Formula $\mathbb{N}_{n}$ +\end_inset + + con inversa +\begin_inset Formula $\tau\coloneqq\sigma^{-1}$ +\end_inset + +, tomando +\begin_inset Formula $B=A[X_{1},\dots,X_{n}]$ +\end_inset + + y +\begin_inset Formula $b_{k}=X_{\sigma(k)}$ +\end_inset + + en el punto anterior obtenemos un automorfismo +\begin_inset Formula $\hat{\sigma}$ +\end_inset + + en +\begin_inset Formula $A[X_{1},\dots,X_{n}]$ +\end_inset + + con inversa +\begin_inset Formula $\hat{\tau}$ +\end_inset + + que permuta las indeterminadas. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A[X_{1},\dots,X_{n},Y_{1},\dots,Y_{m}]\cong A[X_{1},\dots,X_{n}][Y_{1},\dots,Y_{m}]\cong A[Y_{1},\dots,Y_{m}][X_{1},\dots,X_{n}]$ +\end_inset + +, por lo que en la práctica no distinguimos entre estos anillos. +\end_layout + +\begin_layout Enumerate +Todo homomorfismo de anillos conmutativos +\begin_inset Formula $f:A\to B$ +\end_inset + + induce un homomorfismo +\begin_inset Formula $\hat{f}:A[X_{1},\dots,X_{n}]\to B[X_{1},\dots,X_{n}]$ +\end_inset + + dado por +\begin_inset Formula $\hat{f}(p)\coloneqq\sum_{i\in\mathbb{N}^{n}}f(p_{i})X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Llamamos +\series bold +grado +\series default + de un monomio +\begin_inset Formula $aX_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$ +\end_inset + + a +\begin_inset Formula $i_{1}+\dots+i_{n}$ +\end_inset + +, y grado de +\begin_inset Formula $p\in A[X_{1},\dots,X_{n}]\setminus0$ +\end_inset + +, +\begin_inset Formula $\text{gr}(p)$ +\end_inset + +, al mayor de los grados de los monomios no nulos en la expresión por monomios + de +\begin_inset Formula $p$ +\end_inset + +. + Entonces +\begin_inset Formula $\text{gr}(p+q)\leq\max\{\text{gr}(p),\text{gr}(q)\}$ +\end_inset + + y +\begin_inset Formula $\text{gr}(pq)\leq\text{gr}(p)+\text{gr}(q)$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Un polinomio es +\series bold +homogéneo +\series default + de grado +\begin_inset Formula $n$ +\end_inset + + si es suma de monomios de grado +\begin_inset Formula $n$ +\end_inset + +. + Todo polinomio se escribe de modo único como suma de polinomios homogéneos + de distintos grados, sin más que agrupar los monomios de igual grado en + la expresión como suma de monomios. + Así, si +\begin_inset Formula $D$ +\end_inset + + es un dominio, +\begin_inset Formula $\text{gr}(pq)=\text{gr}(p)+\text{gr}(q)$ +\end_inset + + para cualesquiera +\begin_inset Formula $p,q\in D[X_{1},\dots,X_{n}]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{reminder} +\end_layout + +\end_inset + + +\end_layout + +\end_body +\end_document |
