diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-31 13:13:32 +0100 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-31 13:13:32 +0100 |
| commit | de3e935e35f0fdad86aaf142e657cd9c0fbf0ef8 (patch) | |
| tree | 0e8b1a3733ac53b621f6b8e59c0ec771bb85de4a /ac/nc.lyx | |
| parent | c4f1b931887d96b91f7c984479203ad20ed80b54 (diff) | |
Terminados apuntes de Álgebra Conmutativa
Diffstat (limited to 'ac/nc.lyx')
| -rw-r--r-- | ac/nc.lyx | 152 |
1 files changed, 152 insertions, 0 deletions
diff --git a/ac/nc.lyx b/ac/nc.lyx new file mode 100644 index 0000000..cfcca89 --- /dev/null +++ b/ac/nc.lyx @@ -0,0 +1,152 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +kern-1em +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{align*} +\binom{n}{k} & =\binom{n}{n-k}; & & & \binom{r}{k} & =(-1)^{k}\binom{k-r-1}{k};\\ +\binom{r}{k} & =\frac{r}{k}\binom{r-1}{k-1}, & k & \neq0; & \binom{n}{m} & =(-1)^{n-m}\binom{-(m+1)}{n-m}, & n & \geq0;\\ +\binom{r}{k} & =\frac{r}{r-k}\binom{r-1}{k}, & k & \neq r; & \sum_{k=0}^{n}\binom{r+k}{k} & =\binom{r+n+1}{n}, & n & \geq0;\\ +\binom{r}{k} & =\binom{r-1}{k}+\binom{r-1}{k-1}; & & & \sum_{k=0}^{n}\binom{k}{m} & =\binom{n+1}{m+1}, & m,n & \geq0; +\end{align*} + +\end_inset + + +\begin_inset Formula +\begin{align*} +\binom{r}{m}\binom{m}{k} & =\binom{r}{k}\binom{r-k}{m-k}, & \sum_{k}\binom{r}{k}\binom{s}{n-k} & =\binom{r+s}{n};\\ +\sum_{k}\binom{r}{m+k}\binom{s}{n+k} & =\binom{r+s}{r-m+n}, & \sum_{k}\binom{r}{k}\binom{s+k}{n}(-1)^{r-k} & =\binom{s}{n-r}, & r & \geq0; +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{align*} +\sum_{k=0}^{r}\binom{r-k}{m}\binom{s}{k-t}(-1)^{k-t} & =\binom{r-t-s}{r-t-m}, & t,r,m & \geq0;\\ +\sum_{k=0}^{r}\binom{r-k}{m}\binom{s+k}{n} & =\binom{r+s+1}{m+n+1}, & n\geq s & \geq0,\ m,r\geq0;\\ +\sum_{k\geq0}\binom{r-tk}{k}\binom{s-t(n-k)}{n-k}\frac{r}{r-tk} & =\binom{r+s-tn}{n}; +\end{align*} + +\end_inset + + +\begin_inset Formula +\begin{align*} +\sum_{k}\binom{n}{k}x(x-kz)^{k-1}(y+kz)^{n-k} & =(x+y)^{n}, & x & \neq0; +\end{align*} + +\end_inset + + +\begin_inset Formula +\begin{align*} +\sum_{k}\binom{r}{k}x^{k}y^{r-k} & =(x+y)^{r}, & r & \geq0; & \sum_{k}\binom{r}{k}x^{k} & =(1+x)^{r}, & r & \geq0\text{ o }|x|<1; +\end{align*} + +\end_inset + + +\end_layout + +\end_body +\end_document |
