diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-11-17 21:05:37 +0100 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-11-17 21:05:37 +0100 |
| commit | aaa417e16cceb5642ed6cd6e81526283376c9f09 (patch) | |
| tree | 6aeaf25361be9253a8ba2bf0fceae6e982fb2ac1 /ac | |
| parent | 4a5e53efc8a8f2e4673dd658b7e0b6f5baae1de8 (diff) | |
| parent | f7fb83aa769b19e6511eaac70431562686942f1e (diff) | |
Merge branch 'af'
Diffstat (limited to 'ac')
| -rw-r--r-- | ac/n1.lyx | 639 |
1 files changed, 637 insertions, 2 deletions
@@ -661,6 +661,215 @@ end{reminder} \end_layout \begin_layout Standard +Un anillo es +\series bold +conmutativo +\series default + si su producto es conmutativo, y tiene +\series bold +identidad +\series default + si este tiene elemento neutro +\begin_inset Formula $1\in A$ +\end_inset + + llamado +\series bold +uno +\series default +. + Salvo que se indique lo contrario, al hablar de anillos nos referiremos + a anillos conmutativos y con identidad. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $\mathbb{Q}$ +\end_inset + +, +\begin_inset Formula $\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $\mathbb{C}$ +\end_inset + + y +\begin_inset Formula $\mathbb{Z}_{n}$ +\end_inset + + para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + son anillos con la suma y el producto usuales. +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $c\in\mathbb{C}$ +\end_inset + +, +\begin_inset Formula $\mathbb{Z}[c]\coloneqq\left\{ \sum_{n=0}^{\infty}a_{n}c^{n}\right\} _{a\in\mathbb{Z}^{\mathbb{N}}}\subseteq\mathbb{C}$ +\end_inset + + es un anillo con la suma y el producto de complejos, y en particular lo + es +\begin_inset Formula $\mathbb{Z}[\text{i}]\coloneqq\{a+b\text{i}\}_{a,b\in\mathbb{Z}}$ +\end_inset + +, el +\series bold +anillo de los enteros de Gauss +\series default +. +\end_layout + +\begin_layout Enumerate +El conjunto de funciones +\begin_inset Formula $\mathbb{R}\to\mathbb{R}$ +\end_inset + + que se anulan en casi todos los puntos es un anillo conmutativo sin identidad + con la suma y producto de funciones. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A_{1},\dots,A_{n}$ +\end_inset + + son anillos, +\begin_inset Formula $\prod_{i=1}^{n}A_{i}$ +\end_inset + + es un anillo con las operaciones componente a componente, el +\series bold +anillo producto +\series default + de +\begin_inset Formula $A_{1},\dots,A_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Dado un anillo +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $A\llbracket X\rrbracket\coloneqq A^{\mathbb{N}}$ +\end_inset + + es un anillo con la suma componente a componente y el producto +\begin_inset Formula $a\cdot b\coloneqq(\sum_{k=0}^{n}a_{k}b_{n-k})_{n}$ +\end_inset + +, el +\series bold +anillo de las series de potencias +\series default + sobre +\begin_inset Formula $A$ +\end_inset + +, y un +\begin_inset Formula $a\in A$ +\end_inset + + se suele denotar como +\begin_inset Formula $\sum_{n}a_{n}X^{n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{reminder}{ga} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Llamamos +\begin_inset Formula $Y^{X}$ +\end_inset + + al conjunto de funciones de +\begin_inset Formula $X$ +\end_inset + + a +\begin_inset Formula $Y$ +\end_inset + +. + [...] Si +\begin_inset Formula $A$ +\end_inset + + es un anillo [...], +\begin_inset Formula $A^{X}=\prod_{x\in X}A$ +\end_inset + + es un anillo [...]. + Si +\begin_inset Formula $A$ +\end_inset + + es un anillo y +\begin_inset Formula $n$ +\end_inset + + es un entero positivo, el conjunto +\begin_inset Formula ${\cal M}_{n}(A)$ +\end_inset + + de matrices cuadradas en +\begin_inset Formula $A$ +\end_inset + + de tamaño +\begin_inset Formula $n$ +\end_inset + + es un anillo con la suma y el producto habituales. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{reminder} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard Dados dos anillos \begin_inset Formula $A$ \end_inset @@ -2013,7 +2222,11 @@ máximo común divisor \begin_inset Formula $a=\text{mcd}S$ \end_inset -, si divide a cada elemento de +[ +\begin_inset Formula $=\gcd S$ +\end_inset + +], si divide a cada elemento de \begin_inset Formula $S$ \end_inset @@ -2033,7 +2246,11 @@ mínimo común múltiplo \begin_inset Formula $a=\text{mcm}S$ \end_inset -, si es múltiplo de cada elemento de +[ +\begin_inset Formula $=\text{lcm}S$ +\end_inset + +], si es múltiplo de cada elemento de \begin_inset Formula $S$ \end_inset @@ -2430,6 +2647,424 @@ Todo cuerpo es un DFU, pues no tiene elementos nulos no invertibles. También lo son los anillos de polinomios sobre un DFU. \end_layout +\begin_layout Standard +Para +\begin_inset Formula $n\geq2$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $r\in\mathbb{Z}_{n}$ +\end_inset + + es unidad si y sólo si +\begin_inset Formula $\gcd\{r,n\}=1$ +\end_inset + + en +\begin_inset Formula $\mathbb{Z}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si fuera +\begin_inset Formula $d\coloneqq\gcd\{r,n\}>1$ +\end_inset + +, sean +\begin_inset Formula $r',n'\in\mathbb{Z}$ +\end_inset + + con +\begin_inset Formula $r=dr'$ +\end_inset + + y +\begin_inset Formula $n=dn'$ +\end_inset + +, entonces +\begin_inset Formula $n'\not\equiv0\bmod n$ +\end_inset + + pero +\begin_inset Formula $rn'=dr'n'=r'n\equiv0\bmod n$ +\end_inset + +, con lo que +\begin_inset Formula $r$ +\end_inset + + es divisor de cero. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Una identidad de Bézout +\begin_inset Formula $ar+bn=1$ +\end_inset + + se traduce en que +\begin_inset Formula $ar\equiv1\bmod n$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $r\in\mathbb{Z}_{n}$ +\end_inset + + es nilpotente si y sólo si todos los divisores primos de +\begin_inset Formula $n$ +\end_inset + + dividen a +\begin_inset Formula $r$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $m$ +\end_inset + + con +\begin_inset Formula $r^{m}\equiv0$ +\end_inset + + y +\begin_inset Formula $p$ +\end_inset + + un divisor primo de +\begin_inset Formula $n$ +\end_inset + +, como +\begin_inset Formula $n$ +\end_inset + + divide a +\begin_inset Formula $r^{m}$ +\end_inset + +, +\begin_inset Formula $p$ +\end_inset + + divide a +\begin_inset Formula $r^{m}$ +\end_inset + + y por tanto a +\begin_inset Formula $r$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $p_{1}^{k_{1}}\cdots p_{s}^{k_{s}}$ +\end_inset + + la descomposición prima de +\begin_inset Formula $n$ +\end_inset + +, como +\begin_inset Formula $p_{1}\cdots p_{s}$ +\end_inset + + divide a +\begin_inset Formula $r$ +\end_inset + +, si +\begin_inset Formula $m\coloneqq\max\{k_{1},\dots,k_{s}\}$ +\end_inset + +, +\begin_inset Formula $n$ +\end_inset + + divide a +\begin_inset Formula $p_{1}^{m}\cdots p_{s}^{m}$ +\end_inset + + y este a +\begin_inset Formula $r^{m}$ +\end_inset + +, luego +\begin_inset Formula $n$ +\end_inset + + divide a +\begin_inset Formula $r^{m}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\mathbb{Z}_{n}$ +\end_inset + + es un cuerpo si y sólo si es un dominio, si y sólo si +\begin_inset Formula $n$ +\end_inset + + es primo. +\end_layout + +\begin_deeper +\begin_layout Description +\begin_inset Formula $1\implies2]$ +\end_inset + + Visto. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies3]$ +\end_inset + + Probamos el contrarrecíproco. + Si existen +\begin_inset Formula $p,q\in\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $1<p,q<n$ +\end_inset + +, con +\begin_inset Formula $n=pq$ +\end_inset + +, +\begin_inset Formula $p$ +\end_inset + + es divisor de 0 en +\begin_inset Formula $\mathbb{Z}_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies1]$ +\end_inset + + Para +\begin_inset Formula $r\in\mathbb{Z}_{n}\setminus\{0\}$ +\end_inset + +, +\begin_inset Formula $\gcd\{r,n\}=1$ +\end_inset + + en +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + y por tanto +\begin_inset Formula $r$ +\end_inset + + es unidad. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\mathbb{Z}_{n}$ +\end_inset + + es reducido si y sólo si +\begin_inset Formula $n$ +\end_inset + + es +\series bold +libre de cuadrados +\series default +, es decir, si no tiene divisores cuadrados de primos. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si no fuera libre de cuadrados, sea +\begin_inset Formula $n=p^{2}q$ +\end_inset + + para ciertos +\begin_inset Formula $p,q\in\mathbb{Z}$ +\end_inset + + con +\begin_inset Formula $p$ +\end_inset + + primo, en +\begin_inset Formula $\mathbb{Z}_{n}$ +\end_inset + + +\begin_inset Formula $pq\neq0$ +\end_inset + + pero +\begin_inset Formula $(pq)^{2}=p^{2}q^{2}=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +La descomposición en primos de +\begin_inset Formula $n$ +\end_inset + + es de la forma +\begin_inset Formula $p_{1}\cdots p_{s}$ +\end_inset + + con los +\begin_inset Formula $p_{i}$ +\end_inset + + distintos, y si +\begin_inset Formula $r\in\mathbb{Z}_{n}$ +\end_inset + + cumple +\begin_inset Formula $r^{2}=0$ +\end_inset + + entonces en +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + cada +\begin_inset Formula $p_{i}$ +\end_inset + + divide a +\begin_inset Formula $r^{2}$ +\end_inset + + y por tanto a +\begin_inset Formula $r$ +\end_inset + +, luego +\begin_inset Formula $n$ +\end_inset + + divide a +\begin_inset Formula $r$ +\end_inset + + y +\begin_inset Formula $r=0$ +\end_inset + + en +\begin_inset Formula $\mathbb{Z}_{n}$ +\end_inset + +. +\end_layout + +\end_deeper \begin_layout Section Subanillos \end_layout |
