diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-09-25 19:41:10 +0200 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-09-26 23:03:04 +0200 |
| commit | cb94d72599347de5111223e1a514b2497f33f806 (patch) | |
| tree | d58b9cc0323ff03df2664dd4ea6f68f774cb3d7a /ac | |
| parent | bc2868bdb026ec73d97f397331da552953e22db9 (diff) | |
AC tema 1
Diffstat (limited to 'ac')
| -rw-r--r-- | ac/n.lyx | 2 | ||||
| -rw-r--r-- | ac/n1.lyx | 3505 |
2 files changed, 3422 insertions, 85 deletions
@@ -151,8 +151,6 @@ Alberto del Valle Robles. Cuarto curso del Grado en Matemáticas. Departamento de Matemáticas, Universidad de Murcia. Basado en apuntes previos de José Luis García Hernández. -\backslash - \end_layout \begin_layout Itemize @@ -331,154 +331,101 @@ Dados un anillo \begin_inset Formula $a,b,c\in A$ \end_inset -: -\end_layout - -\begin_layout Enumerate +, \begin_inset Formula $a0=0$ \end_inset -. +, \begin_inset Note Comment status open \begin_layout Plain Layout -\begin_inset Formula $a0+0=a0=a(0+0)=a0+a0\implies0=a0.$ +pues +\begin_inset Formula $a0+0=a0=a(0+0)=a0+a0\implies0=a0$ \end_inset - +; \end_layout \end_inset - -\end_layout - -\begin_layout Enumerate + \begin_inset Formula $-(-a)=a$ \end_inset -. +, \begin_inset Note Comment status open \begin_layout Plain Layout -\begin_inset Formula $x=-(-a)\implies0=x+(-a)\implies a=x+(-a)+a=x.$ +pues +\begin_inset Formula $x=-(-a)\implies0=x+(-a)\implies a=x+(-a)+a=x$ \end_inset - +; \end_layout \end_inset - -\end_layout - -\begin_layout Enumerate + \begin_inset Formula $a-b=c\iff b+c=a$ \end_inset -. +, \begin_inset Note Comment status open -\begin_layout Itemize -\begin_inset Argument item:1 -status open - \begin_layout Plain Layout -\begin_inset Formula $\implies]$ -\end_inset - - -\end_layout - -\end_inset - - +pues \begin_inset Formula $a-b=c\implies a=a-b+b=c+b=b+c$ \end_inset -. -\end_layout - -\begin_layout Itemize -\begin_inset Argument item:1 -status open - -\begin_layout Plain Layout -\begin_inset Formula $\impliedby]$ -\end_inset - - -\end_layout - -\end_inset - - + y \begin_inset Formula $b+c=a\implies c=-b+b+c=-b+a=a-b$ \end_inset -. +; \end_layout \end_inset - -\end_layout - -\begin_layout Enumerate + \begin_inset Formula $(a-b)c=ac-bc$ \end_inset -. + \begin_inset Note Comment status open \begin_layout Plain Layout -\begin_inset Formula $(a-b)c+bc=ac-bc+bc=ac\implies ac-bc=(a-b)c.$ +, pues +\begin_inset Formula $(a-b)c+bc=ac-bc+bc=ac\implies ac-bc=(a-b)c$ \end_inset - +, \end_layout \end_inset - -\end_layout - -\begin_layout Enumerate + y \begin_inset Formula $(-a)b=-(ab)$ \end_inset -. + \begin_inset Note Comment status open \begin_layout Plain Layout -\begin_inset Formula $(-a)b=(0-a)b=0b-ab=0-ab=-ab.$ -\end_inset - - -\end_layout - +, pues +\begin_inset Formula $(-a)b=(0-a)b=0b-ab=0-ab=-ab$ \end_inset -\begin_inset Note Note -status open - -\begin_layout Plain Layout -Anillo trivial si y solo si -\begin_inset Formula $1=0$ -\end_inset - -, salvo isomorfismo. \end_layout \end_inset - +. \end_layout \begin_layout Standard @@ -670,7 +617,11 @@ anillo cero \series bold trivial \series default - al único con un solo elemento, o en el que +, +\begin_inset Formula $0$ +\end_inset + +, al único con un solo elemento, o en el que \begin_inset Formula $1=0$ \end_inset @@ -928,10 +879,18 @@ nilpotente . Llamamos +\series bold +nilradical +\series default + de +\begin_inset Formula $A$ +\end_inset + +, \begin_inset Formula $\text{Nil}(A)$ \end_inset - al conjunto de elementos de +, al conjunto de elementos de \begin_inset Formula $A$ \end_inset @@ -1028,6 +987,13 @@ cuerpo \end_layout \begin_layout Standard +\begin_inset Newpage pagebreak +\end_inset + + +\end_layout + +\begin_layout Standard Para \begin_inset Formula $n\geq2$ \end_inset @@ -1944,6 +1910,79 @@ ideal \end_inset . + En concreto, definiendo la relación de equivalencia +\series bold +módulo +\series default + +\begin_inset Formula $I$ +\end_inset + + en +\begin_inset Formula $A$ +\end_inset + + como +\begin_inset Formula $a\equiv b\iff a-b\in I$ +\end_inset + +, el conjunto cociente +\begin_inset Formula $A\slash I\coloneqq A\slash\equiv$ +\end_inset + + es un anillo con la suma +\begin_inset Formula $\overline{a}+\overline{b}\coloneqq\overline{a+b}$ +\end_inset + +, el producto +\begin_inset Formula $\overline{a}\,\overline{b}\coloneqq\overline{ab}$ +\end_inset + +, +\begin_inset Formula $0=\overline{0}$ +\end_inset + +, +\begin_inset Formula $1=\overline{1}$ +\end_inset + +, +\begin_inset Formula $-\overline{a}=\overline{-a}$ +\end_inset + + y, si +\begin_inset Formula $a\in A^{*}$ +\end_inset + +, +\begin_inset Formula $\overline{a}\in(A/I)^{*}$ +\end_inset + + y +\begin_inset Formula $\overline{a}^{-1}=\overline{a^{-1}}$ +\end_inset + +, donde +\begin_inset Formula $\overline{a}$ +\end_inset + + es la clase de equivalencia de +\begin_inset Formula $a$ +\end_inset + +, y la +\series bold +proyección canónica +\series default + +\begin_inset Formula $p:A\to A/I$ +\end_inset + + es un homomorfismo con núcleo +\begin_inset Formula $I$ +\end_inset + +. \end_layout \begin_layout Itemize @@ -1972,17 +2011,3317 @@ Sean \end_inset . -\begin_inset Note Note + Entonces +\begin_inset Formula $f(ax)=f(a)f(x)=f(a)0=0$ +\end_inset + + y +\begin_inset Formula $f(x+y)=f(x)+f(y)=0+0=0$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $a\equiv a',b\equiv b'\in A$ +\end_inset + +, sean +\begin_inset Formula $x\coloneqq a-a',y\coloneqq b-b'\in I$ +\end_inset + +, entonces +\begin_inset Formula $a+b=a'+x+b'+y=a'+b'+(x+y)$ +\end_inset + + con +\begin_inset Formula $x+y\in I$ +\end_inset + +, luego +\begin_inset Formula $a+b\equiv a'+b'$ +\end_inset + + y la suma está bien definida. + Además +\begin_inset Formula $ab=(a'+x)(b'+y)=a'b'+a'y+b'x+xy$ +\end_inset + + con +\begin_inset Formula $a'y+b'x+xy\in I$ +\end_inset + +, luego +\begin_inset Formula $ab\equiv a'+b'$ +\end_inset + + y el producto está bien definido. + Entonces es fácil ver que +\begin_inset Formula $A/I$ +\end_inset + + es un anillo con los neutros y simétricos indicados. + Además, +\begin_inset Formula $p(1)=[1]$ +\end_inset + +, +\begin_inset Formula $p(a+b)=[a+b]=[a]+[b]=p(a)+p(b)$ +\end_inset + + y del mismo modo +\begin_inset Formula $p(ab)=p(a)p(b)$ +\end_inset + +, y +\begin_inset Formula $p(x)=[x]=0\iff x-0=x\in I$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Llamamos +\begin_inset Formula ${\cal I}(A)$ +\end_inset + + al conjunto de ideales de +\begin_inset Formula $A$ +\end_inset + +. + Todo anillo +\begin_inset Formula $A$ +\end_inset + + tiene al menos el +\series bold +ideal trivial +\series default + +\begin_inset Formula $0\coloneqq\{0\}$ +\end_inset + + y el +\series bold +ideal impropio +\series default + +\begin_inset Formula $A$ +\end_inset + +, que es el único que contiene una unidad. + En efecto, si +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + + y existe +\begin_inset Formula $u\in I\cap A^{*}$ +\end_inset + +, para +\begin_inset Formula $a\in A$ +\end_inset + +, +\begin_inset Formula $a=(au^{-1})u\in I$ +\end_inset + +. + +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + + es +\series bold +propio +\series default +, +\begin_inset Formula $I\triangleleft A$ +\end_inset + +, si no es impropio. +\end_layout + +\begin_layout Standard +La intersección de toda familia de ideales de +\begin_inset Formula $A$ +\end_inset + + es un ideal de +\begin_inset Formula $A$ +\end_inset + +. + Dados un anillo +\begin_inset Formula $A$ +\end_inset + + y un subconjunto +\begin_inset Formula $S\subseteq A$ +\end_inset + +, llamamos +\series bold +ideal de +\begin_inset Formula $A$ +\end_inset + + generado por +\begin_inset Formula $G$ +\end_inset + + +\series default + a +\begin_inset Formula +\[ +(S)\coloneqq\bigcap\{I\trianglelefteq A:G\subseteq I\}=\{a_{1}s_{1}+\dots+a_{n}s_{n}\}_{n\in\mathbb{N},a\in A^{n},s\in S^{n}}, +\] + +\end_inset + +y decimos que +\begin_inset Formula $S$ +\end_inset + + es un +\series bold +conjunto generador +\series default + de +\begin_inset Formula $(S)$ +\end_inset + +. + En efecto, +\begin_inset Formula $\bigcap\{I\trianglelefteq A:S\subseteq I\}$ +\end_inset + + es un ideal de +\begin_inset Formula $A$ +\end_inset + + que contiene a +\begin_inset Formula $S$ +\end_inset + + y es el menor de ellos, pero todo ideal de +\begin_inset Formula $A$ +\end_inset + + que contenga a +\begin_inset Formula $S$ +\end_inset + + debe contener a las combinaciones +\begin_inset Formula $A$ +\end_inset + +-lineales finitas de elementos de +\begin_inset Formula $S$ +\end_inset + +, y el conjunto de estas combinaciones es claramente un ideal, luego ambos + conjuntos son iguales. +\end_layout + +\begin_layout Standard +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + + es +\series bold +finitamente generado +\series default + (FG) si existe +\begin_inset Formula $S\subseteq I$ +\end_inset + + finito tal que +\begin_inset Formula $I=(S)$ +\end_inset + +, en cuyo caso, si +\begin_inset Formula $S=\{b_{1},\dots,b_{n}\}$ +\end_inset + +, escribimos +\begin_inset Formula $I\eqqcolon(b_{1},\dots,b_{n})$ +\end_inset + +. + Un +\series bold +ideal principal +\series default + de un anillo +\begin_inset Formula $A$ +\end_inset + + es uno de la forma +\begin_inset Formula $Ab\coloneqq(b)$ +\end_inset + + para algún +\begin_inset Formula $b\in A$ +\end_inset + +. + Por ejemplo, +\begin_inset Formula $0=(0)$ +\end_inset + + y +\begin_inset Formula $A=(1)$ +\end_inset + +. + Dados +\begin_inset Formula $b\in A$ +\end_inset + + e +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + +, +\begin_inset Formula $(b)\subseteq I$ +\end_inset + + si y sólo si +\begin_inset Formula $b\in I$ +\end_inset + +, y en particular para +\begin_inset Formula $b'\in A$ +\end_inset + +, +\begin_inset Formula $(b)\subseteq(b')$ +\end_inset + + si y sólo si +\begin_inset Formula $b'\mid b$ +\end_inset + + y en un dominio +\begin_inset Formula $(b)=(b')$ +\end_inset + + si y sólo si +\begin_inset Formula $b$ +\end_inset + + y +\begin_inset Formula $b'$ +\end_inset + + son asociados. +\end_layout + +\begin_layout Standard +\begin_inset Formula $A$ +\end_inset + + es un cuerpo si y sólo si sus únicos ideales son 0 y +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Dado +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + +, si existe +\begin_inset Formula $e\in I\setminus\{0\}$ +\end_inset + +, +\begin_inset Formula $1=e^{-1}e\in I$ +\end_inset + + e +\begin_inset Formula $I=A$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $A$ +\end_inset + + no fuera un cuerpo, sea +\begin_inset Formula $e\in A\setminus0$ +\end_inset + + no invertible, +\begin_inset Formula $1\notin(e)$ +\end_inset + +, pues no existe +\begin_inset Formula $f\in A$ +\end_inset + + tal que +\begin_inset Formula $ef=1$ +\end_inset + +, luego +\begin_inset Formula $0\subsetneq(e)\subsetneq A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un +\series bold +dominio de ideales principales +\series default + (DIP) es uno en que todos los ideales son principales, como +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + y +\begin_inset Formula $\mathbb{K}[x]$ +\end_inset + + para todo cuerpo +\begin_inset Formula $\mathbb{K}$ +\end_inset + +. + Todo DIP es un DFU. +\end_layout + +\begin_layout Standard +No todos los ideales son finitamente generados. + En efecto, dado un anillo no trivial +\begin_inset Formula $A$ +\end_inset + +, en +\begin_inset Formula $A^{\mathbb{N}}$ +\end_inset + + con las operaciones componente a componente, +\begin_inset Formula $A^{(\mathbb{N})}$ +\end_inset + + formado por los elementos de +\begin_inset Formula $A^{\mathbb{N}}$ +\end_inset + + con una cantidad finita de entradas no nulas es un ideal de +\begin_inset Formula $A^{\mathbb{N}}$ +\end_inset + +, pero no es finitamente generado porque si tomamos una cantidad finita + de elementos del ideal, hay un índice a partir del cual todos tienen solo + ceros y no generan elementos de +\begin_inset Formula $A^{(\mathbb{N})}$ +\end_inset + + con un 1 después de esta posición. +\end_layout + +\begin_layout Standard +Dados subconjuntos +\begin_inset Formula $S_{1}$ +\end_inset + + y +\begin_inset Formula $S_{2}$ +\end_inset + + de un anillo +\begin_inset Formula $A$ +\end_inset + +, llamamos +\begin_inset Formula $S_{1}+S_{2}\coloneqq\{x+y\}_{x\in S_{1},y\in S_{2}}$ +\end_inset + + y +\begin_inset Formula $S_{1}\cdot S_{2}\coloneqq\{xy\}_{x\in S_{1},y\in S_{2}}$ +\end_inset + +. + Si +\begin_inset Formula $S_{1}\eqqcolon\{a\}$ +\end_inset + +, llamamos +\begin_inset Formula $a+S_{2}\coloneqq\{a\}+S_{2}$ +\end_inset + + y +\begin_inset Formula $a\cdot S_{2}\coloneqq\{a\}\cdot S_{2}$ +\end_inset + +. + Por ejemplo, para +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + + y +\begin_inset Formula $a\in A$ +\end_inset + +, +\begin_inset Formula $a+I$ +\end_inset + + es la clase de equivalencia de +\begin_inset Formula $A$ +\end_inset + + en +\begin_inset Formula $A/I$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El +\series bold +ideal suma +\series default + de +\begin_inset Formula $I,J\trianglelefteq A$ +\end_inset + + es el ideal +\begin_inset Formula $I+J$ +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +, pues si +\begin_inset Formula $a\in A$ +\end_inset + +, +\begin_inset Formula $x,x'\in I$ +\end_inset + + e +\begin_inset Formula $y,y'\in J$ +\end_inset + +, +\begin_inset Formula $(x+y)+(x'+y')=(x+x')+(y+y')\in I+J$ +\end_inset + + y +\begin_inset Formula $a(x+y)=ax+ay\in I+J$ +\end_inset + + +\end_layout + +\end_inset + +. + Si +\begin_inset Formula $S_{1},S_{2}\subseteq A$ +\end_inset + +, +\begin_inset Formula $(S_{1})+(S_{2})=(S_{1}\cup S_{2})$ +\end_inset + +, con lo que +\begin_inset Formula $I+J=(I\cup J)$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\subseteq]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $a$ +\end_inset + + está en todo +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + + con +\begin_inset Formula $S_{1}\subseteq I$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + en todo +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + + con +\begin_inset Formula $S_{2}\subseteq I$ +\end_inset + +, en particular +\begin_inset Formula $a$ +\end_inset + + está en todo +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + + con +\begin_inset Formula $S_{1}\cup S_{2}\subseteq I$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + también. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 status open \begin_layout Plain Layout -TODO pg. - 14, seguir por 11–13, luego por 15. +\begin_inset Formula $\supseteq]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $a=a_{1}s_{1}+\dots+a_{n}s_{n}\in(S_{1}\cup S_{2})$ +\end_inset + + con los +\begin_inset Formula $a_{i}\in A$ +\end_inset + + y los +\begin_inset Formula $s_{i}\in S_{1}\cup S_{2}$ +\end_inset + +, podemos suponer que +\begin_inset Formula $s_{1},\dots,s_{k}\in G_{1}$ +\end_inset + + y +\begin_inset Formula $s_{k+1},\dots,s_{n}\in G_{2}$ +\end_inset + + para cierto +\begin_inset Formula $k$ +\end_inset + +, luego +\begin_inset Formula $a$ +\end_inset + + es suma de un elemento de +\begin_inset Formula $(S_{1})$ +\end_inset + + y uno de +\begin_inset Formula $(S_{2})$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +El +\series bold +ideal producto +\series default + de +\begin_inset Formula $I,J\trianglelefteq A$ +\end_inset + + es +\begin_inset Formula +\[ +IJ\coloneqq(I\cdot J)=\{x_{1}y_{1}+\dots+x_{n}y_{n}\}_{n\in\mathbb{N},x\in I^{n},y\in J^{n}}\subseteq I\cap J. +\] + +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Description +\begin_inset Formula $1\subseteq2]$ +\end_inset + + Los elementos de +\begin_inset Formula $I\cdot J$ +\end_inset + + son de la forma +\begin_inset Formula $a_{1}x_{1}y_{1}+\dots+a_{n}x_{n}y_{n}$ +\end_inset + + con los +\begin_inset Formula $a_{i}\in A$ +\end_inset + +, los +\begin_inset Formula $x_{i}\in I$ +\end_inset + + y los +\begin_inset Formula $y_{i}\in J$ +\end_inset + +, pero cada +\begin_inset Formula $a_{i}x_{i}\in I$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\subseteq1]$ +\end_inset + + Es una suma finita de elementos de +\begin_inset Formula $I\cdot J$ +\end_inset + +, luego está en +\begin_inset Formula $(I\cdot J)$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\subseteq3]$ +\end_inset + + Cada +\begin_inset Formula $x_{i}y_{i}\in I,J$ +\end_inset + +, luego cada +\begin_inset Formula $x_{i},y_{i}\in I\cap J$ +\end_inset + + y la suma está en +\begin_inset Formula $I\cap J$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $S_{1},S_{2}\subseteq A$ +\end_inset + +, +\begin_inset Formula $(S_{1})(S_{2})=(S_{1}\cdot S_{2})$ +\end_inset + +, y en particular el producto de ideal principales es un ideal principal. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\subseteq]$ +\end_inset + + +\end_layout + +\end_inset + +Usando combinaciones lineales, los elementos de +\begin_inset Formula $(S_{1})(S_{2})$ +\end_inset + + son sumas de elementos de la forma +\begin_inset Formula $a_{i}x_{i}b_{j}y_{j}$ +\end_inset + + con +\begin_inset Formula $a_{i},b_{j}\in A$ +\end_inset + +, +\begin_inset Formula $x_{i}\in S_{1}$ +\end_inset + + e +\begin_inset Formula $y_{j}\in S_{2}$ +\end_inset + +, pero entonces +\begin_inset Formula $x_{i}y_{j}\in S_{1}\cdot S_{2}$ +\end_inset + + y, como +\begin_inset Formula $(S_{1}\cdot S_{2})$ +\end_inset + + es un ideal, +\begin_inset Formula $(a_{i}b_{j})(x_{i}y_{j})$ +\end_inset + + está en +\begin_inset Formula $(S_{1}\cdot S_{2})$ +\end_inset + + y la suma de estos elementos también. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\supseteq]$ +\end_inset + + +\end_layout + +\end_inset + +Los elementos de +\begin_inset Formula $(S_{1}\cdot S_{2})$ +\end_inset + + tienen forma +\begin_inset Formula $s=a_{1}x_{1}y_{1}+\dots+a_{n}x_{n}y_{n}$ +\end_inset + + con los +\begin_inset Formula $a_{i}\in A$ +\end_inset + +, los +\begin_inset Formula $x_{i}\in S_{1}$ +\end_inset + + y los +\begin_inset Formula $y_{i}\in S_{2}$ +\end_inset + +, pero +\begin_inset Formula $a_{i}x_{i}\in(S_{1})$ +\end_inset + + e +\begin_inset Formula $y_{i}\in(S_{2})$ +\end_inset + +, luego cada +\begin_inset Formula $a_{i}x_{i}y_{i}\in(S_{1})(S_{2})=((S_{1})\cdot(S_{2}))$ +\end_inset + + y por tanto +\begin_inset Formula $s\in(S_{1})(S_{2})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $I,J\trianglelefteq A$ +\end_inset + +, en general +\begin_inset Formula $I\cdot J$ +\end_inset + + no es un ideal. + En efecto, sean +\begin_inset Formula $A\coloneqq\mathbb{Z}[x,y]=\mathbb{Z}[x][y]$ +\end_inset + + e +\begin_inset Formula $I\coloneqq(x,y)\trianglelefteq A$ +\end_inset + +, entonces +\begin_inset Formula $x^{2},y^{2},xy\in I\cdot I$ +\end_inset + +, y si +\begin_inset Formula $I\cdot I$ +\end_inset + + fuera un ideal sería +\begin_inset Formula $p\coloneqq x^{2}+xy+y^{2}\in I\cdot I$ +\end_inset + + y por tanto habría +\begin_inset Formula $q=a_{0}x+b_{0}y+\dots,r=a_{1}x+b_{1}y+\dots\in I$ +\end_inset + + con +\begin_inset Formula $p=qr$ +\end_inset + +, pero entonces +\begin_inset Formula $a_{0}a_{1},b_{0}b_{1},a_{0}b_{1}+b_{0}a_{1}=1$ +\end_inset + +, pero como los coeficientes son enteros las dos primeras ecuaciones implican + +\begin_inset Formula $a_{0}=a_{1},b_{0}=b_{1}\in\{\pm1\}$ +\end_inset + + y por tanto +\begin_inset Formula $a_{0}b_{1}+b_{0}a_{1}\in\{\pm2\}\#$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Para +\begin_inset Formula $I,J\trianglelefteq A$ +\end_inset + +, en general +\begin_inset Formula $IJ\neq I\cap J$ +\end_inset + +, pues por ejemplo en +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + es +\begin_inset Formula $(2)\cap(4)=(4)$ +\end_inset + + pero +\begin_inset Formula $(2)(4)=(8)$ +\end_inset + +. +\end_layout + +\begin_layout Section +Isomorfía +\end_layout + +\begin_layout Standard +Dado un homomorfismo de anillos +\begin_inset Formula $f:A\to B$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $J\trianglelefteq B$ +\end_inset + +, la +\series bold +contracción +\series default + de +\begin_inset Formula $J$ +\end_inset + + es +\begin_inset Formula $f^{-1}(J)\trianglelefteq A$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula $\pi:B\to B/J$ +\end_inset + + la proyección canónica, +\begin_inset Formula $J=\pi^{-1}(0)$ +\end_inset + +, luego +\begin_inset Formula $f^{-1}(J)=(\pi\circ f)^{-1}(0)$ +\end_inset + + es un ideal. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + +, +\begin_inset Formula $f(I)\trianglelefteq\text{Im}f$ +\end_inset + +, y llamamos +\series bold +extensión +\series default + de +\begin_inset Formula $I$ +\end_inset + + relativa a +\begin_inset Formula $f$ +\end_inset + + a +\begin_inset Formula $(f(I))$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $f(a)\in\text{Im}f$ +\end_inset + + para cierto +\begin_inset Formula $a\in A$ +\end_inset + + y +\begin_inset Formula $f(x),f(y)\in f(I)$ +\end_inset + + con +\begin_inset Formula $x,y\in I$ +\end_inset + +, +\begin_inset Formula $f(x)+f(y)=f(x+y)\in f(I)$ +\end_inset + + y +\begin_inset Formula $f(a)f(x)=f(ax)\in f(I)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +En general +\begin_inset Formula $f(I)$ +\end_inset + + no es ideal de +\begin_inset Formula $B$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +La inclusión +\begin_inset Formula $\iota:\mathbb{Z}\to\mathbb{Q}$ +\end_inset + + es un homomorfismo de anillos y +\begin_inset Formula $\mathbb{Z}\trianglelefteq A$ +\end_inset + +, pero +\begin_inset Formula $\iota(\mathbb{Z})=\mathbb{Z}$ +\end_inset + + no es ideal de +\begin_inset Formula $\mathbb{Q}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard + +\series bold +Teorema de la correspondencia: +\end_layout + +\begin_layout Enumerate +Dado un homomorfismo de anillos +\begin_inset Formula $f:A\to B$ +\end_inset + +, la extensión es una biyección +\begin_inset Formula +\[ +\{I\trianglelefteq A:\ker f\subseteq I\}\to\{J\trianglelefteq\text{Im}f\}, +\] + +\end_inset + + y su inversa es la contracción. +\end_layout + +\begin_deeper +\begin_layout Standard +Primero vemos que las imágenes están donde deben. + Si +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + +, sabemos que +\begin_inset Formula $f(I)\trianglelefteq\text{Im}f$ +\end_inset + +, y si +\begin_inset Formula $J\trianglelefteq\text{Im}f$ +\end_inset + +, sabemos que +\begin_inset Formula $f^{-1}(J)\trianglelefteq A$ +\end_inset + + y, como +\begin_inset Formula $0\in J$ +\end_inset + +, +\begin_inset Formula $f^{-1}(0)=\ker f\subseteq f^{-1}(J)$ +\end_inset + +. + Ahora vemos que la extensión y la contracción son inversas una de la otra. + Por teoría de conjuntos, para todo +\begin_inset Formula $J\subseteq\text{Im}f$ +\end_inset + +, +\begin_inset Formula $f(f^{-1}(J))=J$ +\end_inset + +, y para todo +\begin_inset Formula $I\subseteq A$ +\end_inset + +, +\begin_inset Formula $I\subseteq f^{-1}(f(I))$ +\end_inset + +, por lo que solo hay que ver que +\begin_inset Formula $f^{-1}(f(I))\subseteq I$ +\end_inset + +. + Sea +\begin_inset Formula $x\in f^{-1}(f(I))$ +\end_inset + +, +\begin_inset Formula $f(x)\in f(I)$ +\end_inset + +, luego existe +\begin_inset Formula $y\in I$ +\end_inset + + con +\begin_inset Formula $f(x)=f(y)$ +\end_inset + +, pero entonces +\begin_inset Formula $f(x-y)=0$ +\end_inset + +, +\begin_inset Formula $x-y\in\ker f\subseteq I$ +\end_inset + + y +\begin_inset Formula $x=y+(x-y)\in I$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $I$ +\end_inset + + es un ideal de +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $p:A\to A/I$ +\end_inset + + es la proyección canónica, +\begin_inset Formula $\rho:\{J\trianglelefteq A:I\subseteq J\}\to\{K\trianglelefteq A/I\}$ +\end_inset + + dada por +\begin_inset Formula $\rho(J)\coloneqq J/I\coloneqq p(J)=\{x+I\}_{x\in J}$ +\end_inset + + es una biyección que conserva la inclusión de los elementos. +\end_layout + +\begin_deeper +\begin_layout Standard +Basta aplicar el punto anterior a +\begin_inset Formula $p$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Sean +\begin_inset Formula $I,J\trianglelefteq A$ +\end_inset + + y +\begin_inset Formula $p:A\to A/I$ +\end_inset + + la proyección canónica, +\begin_inset Formula $p(J)=(J+I)/I$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Hay tantos ideales de +\begin_inset Formula $\mathbb{Z}_{n}$ +\end_inset + + como divisores positivos de +\begin_inset Formula $n$ +\end_inset + +. + En efecto, como +\begin_inset Formula $\mathbb{Z}_{n}=\mathbb{Z}/(n)$ +\end_inset + +, por el teorema anterior hay una biyección entre +\begin_inset Formula ${\cal I}(\mathbb{Z}_{n})$ +\end_inset + + y +\begin_inset Formula $\{I\trianglelefteq\mathbb{Z}:(n)\subseteq I\}$ +\end_inset + +, pero +\begin_inset Formula $\mathbb{Z}$ +\end_inset + + es un DIP, luego estos elementos se corresponden precisamente con los +\begin_inset Formula $m\in\mathbb{Z}$ +\end_inset + + con +\begin_inset Formula $(n)\subseteq(m)$ +\end_inset + +, que son aquellos con +\begin_inset Formula $m\mid n$ +\end_inset + +, y tomamos solo los +\begin_inset Formula $m$ +\end_inset + + positivos ya que los negativos son sus asociados. +\end_layout + +\begin_layout Standard + +\series bold +Teorema del factor: +\series default + Sean +\begin_inset Formula $f:A\to B$ +\end_inset + + un homomorfismo de anillos, +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + + y +\begin_inset Formula $p:A\to A/I$ +\end_inset + + la proyección canónica, existe un homomorfismo +\begin_inset Formula $\overline{f}:A/I\to B$ +\end_inset + + con +\begin_inset Formula $\overline{f}\circ p=f$ +\end_inset + + si y sólo si +\begin_inset Formula $I\subseteq\ker f$ +\end_inset + +, en cuyo caso +\begin_inset Formula $\overline{f}$ +\end_inset + + es único y +\begin_inset Formula $\ker\overline{f}=\ker f/I$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Para +\begin_inset Formula $x\in I$ +\end_inset + +, +\begin_inset Formula $f(x)=\overline{f}(p(x))=h(0+I)=0$ +\end_inset + +, luego +\begin_inset Formula $I\subseteq\ker f$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $\overline{f}:A/I\to B$ +\end_inset + + con +\begin_inset Formula $\overline{f}\circ p=f$ +\end_inset + +, para +\begin_inset Formula $a\in A$ +\end_inset + +, +\begin_inset Formula $\overline{f}(a+I)=f(a)$ +\end_inset + +, lo que prueba la unicidad. + Para la existencia, si +\begin_inset Formula $a+I=b+I$ +\end_inset + +, +\begin_inset Formula $f(b)=f(a+b-a)=f(a)+f(b-a)=f(a)$ +\end_inset + + porque +\begin_inset Formula $b-a\in I\subseteq\ker f$ +\end_inset + +. + Finalmente +\begin_inset Formula $x+I\in\ker\overline{f}\iff\overline{f}(x+I)=f(x)=0\iff x\in\ker f$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teoremas de isomorfía: +\end_layout + +\begin_layout Enumerate +Para un isomorfismo de anillos +\begin_inset Formula $f:A\to B$ +\end_inset + +, +\begin_inset Formula $A/\ker f\cong\text{Im}f$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $B'\coloneqq\text{Im}f$ +\end_inset + + es un subanillo de +\begin_inset Formula $B$ +\end_inset + +, luego +\begin_inset Formula $f:A\to B'$ +\end_inset + + es un homomorfismo suprayectivo y, por el teorema del factor, existe +\begin_inset Formula $\overline{f}:A/\ker f\to B'$ +\end_inset + + con +\begin_inset Formula $\overline{f}\circ p=f$ +\end_inset + + y +\begin_inset Formula $\ker\overline{f}=\ker f/\ker f=0$ +\end_inset + +, que es pues inyectivo y es suprayectivo por serlo +\begin_inset Formula $f$ +\end_inset + +, de modo que es un isomorfismo. +\end_layout + +\end_deeper +\begin_layout Enumerate +Sean +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + + y +\begin_inset Formula $S$ +\end_inset + + un subanillo de +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $I+S$ +\end_inset + + es un subanillo de +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $I\cap S\trianglelefteq S$ +\end_inset + +, +\begin_inset Formula $I\trianglelefteq I+S$ +\end_inset + + y +\begin_inset Formula $S/(I\cap S)\cong(I+S)/I$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Es fácil comprobar que +\begin_inset Formula $I+S$ +\end_inset + + es subanillo de +\begin_inset Formula $A$ +\end_inset + + y claramente +\begin_inset Formula $I\cap S\trianglelefteq S$ +\end_inset + + e +\begin_inset Formula $I\trianglelefteq I+S$ +\end_inset + +. + Sea ahora el homomorfismo +\begin_inset Formula $f:S\to(I+S)/I$ +\end_inset + + dado por +\begin_inset Formula $f(a)=a+I$ +\end_inset + +, +\begin_inset Formula $f(a)=0\iff a\in I$ +\end_inset + +, luego +\begin_inset Formula $\ker f=I\cap S$ +\end_inset + +, e +\begin_inset Formula $\text{Im}f=(I+S)/I$ +\end_inset + +, pues un +\begin_inset Formula $(x+s)+I\in(I+S)/I$ +\end_inset + + arbitrario, con +\begin_inset Formula $x\in I$ +\end_inset + + y +\begin_inset Formula $s\in S$ +\end_inset + +, es la imagen por +\begin_inset Formula $f$ +\end_inset + + de +\begin_inset Formula $s$ +\end_inset + +. + Entonces, por el primer teorema de isomorfía, +\begin_inset Formula $S/(I\cap S)\cong(I+S)/I$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $I,J\trianglelefteq A$ +\end_inset + + con +\begin_inset Formula $I\subseteq J$ +\end_inset + +, +\begin_inset Formula $(A/I)/(J/I)\cong A/J$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula $p:A\to A/J$ +\end_inset + + la proyección canónica, como +\begin_inset Formula $I\subseteq J=\ker f$ +\end_inset + +, el teorema del factor nos da un homomorfismo +\begin_inset Formula $\overline{p}:A/I\to A/J$ +\end_inset + + con +\begin_inset Formula $\ker\overline{p}=\ker p/I=J/I$ +\end_inset + +, que es suprayectivo por serlo +\begin_inset Formula $p$ +\end_inset + +, y el resultado se obtiene del primer teorema de isomorfía. +\end_layout + +\end_deeper +\begin_layout Standard +\begin_inset Formula $I,J\trianglelefteq A$ +\end_inset + + son +\series bold +comaximales +\series default + si +\begin_inset Formula $I+J=A$ +\end_inset + +, si y sólo si +\begin_inset Formula $\exists a\in I,b\in J:a+b=1$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema chino de los restos: +\series default + Dados anillos +\begin_inset Formula $A,B_{1},\dots,B_{n}$ +\end_inset + + y homomorfismos +\begin_inset Formula $g_{i}:A\to B_{i}$ +\end_inset + + con +\begin_inset Formula $K_{i}\coloneqq\ker g_{i}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\phi:A\to B_{1}\times\dots\times B_{n}$ +\end_inset + + dado por +\begin_inset Formula $\phi(x)=(g_{1}(x),\dots,g_{n}(x))$ +\end_inset + + es un homomorfismo con núcleo +\begin_inset Formula $K_{1}\cap\dots\cap K_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si los +\begin_inset Formula $g_{i}$ +\end_inset + + son suprayectivos y los +\begin_inset Formula $K_{i}$ +\end_inset + + son comaximales dos a dos, +\begin_inset Formula $\phi$ +\end_inset + + es suprayectivo, +\begin_inset Formula $\ker\phi=K_{1}\cdots K_{n}$ +\end_inset + + y +\begin_inset Formula $A/(K_{1}\cdots K_{n})\cong B_{1}\times\dots\times B_{n}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Para +\begin_inset Formula $n\in\{0,1\}$ +\end_inset + + es claro, por lo que suponemos +\begin_inset Formula $n\geq2$ +\end_inset + +. + Primero vemos que +\begin_inset Formula $K_{1}$ +\end_inset + + es comaximal con +\begin_inset Formula $K_{2}\cdots K_{n}$ +\end_inset + +. + Si +\begin_inset Formula $n=2$ +\end_inset + + esto es claro. + Si +\begin_inset Formula $n=3$ +\end_inset + +, existen +\begin_inset Formula $a,a'\in K_{1}$ +\end_inset + +, +\begin_inset Formula $b\in K_{2}$ +\end_inset + + y +\begin_inset Formula $b'\in K_{3}$ +\end_inset + + con +\begin_inset Formula $1=a+b=a'+b'$ +\end_inset + +, luego +\begin_inset Formula $1=aa'+ab'+ba'+bb'$ +\end_inset + + con +\begin_inset Formula $bb'\in K_{2}K_{3}$ +\end_inset + + y el resto de sumandos en +\begin_inset Formula $K_{1}$ +\end_inset + +. + Si +\begin_inset Formula $n>3$ +\end_inset + + basta hacer inducción. + Al ser +\begin_inset Formula $K_{2}\cap\dots\cap K_{n}$ +\end_inset + + más grande que +\begin_inset Formula $K_{2}\cdots K_{n}$ +\end_inset + +, también es comaximal con +\begin_inset Formula $K_{1}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean ahora +\begin_inset Formula $a\in K_{1}$ +\end_inset + + y +\begin_inset Formula $b\in K_{2}\cap\dots\cap K_{n}$ +\end_inset + + con +\begin_inset Formula $a+b=1$ +\end_inset + +, como +\begin_inset Formula $g_{1}(a)=0$ +\end_inset + +, +\begin_inset Formula $g_{1}(b)=g_{1}(a)+g_{1}(b)=g_{1}(a+b)=1$ +\end_inset + +, y para +\begin_inset Formula $j\in\{2,\dots,n\}$ +\end_inset + +, +\begin_inset Formula $g_{j}(b)=0$ +\end_inset + +. + Sea ahora +\begin_inset Formula $x\in B_{1}$ +\end_inset + + arbitrario, por suprayectividad existe +\begin_inset Formula $u\in A$ +\end_inset + + con +\begin_inset Formula $g_{1}(u)=x$ +\end_inset + +, con lo que +\begin_inset Formula $g_{1}(ub)=g_{1}(u)g_{1}(b)=x$ +\end_inset + + y, para +\begin_inset Formula $j\in\{2,\dots,n\}$ +\end_inset + +, +\begin_inset Formula $g_{j}(ub)=g_{j}(u)g_{j}(b)=0$ +\end_inset + +, de modo que +\begin_inset Formula $\phi(u)=(x,0,\dots,0)$ +\end_inset + +. + Por simetría, para cada +\begin_inset Formula $i$ +\end_inset + + y +\begin_inset Formula $x\in B_{i}$ +\end_inset + + existe +\begin_inset Formula $u$ +\end_inset + + tal que +\begin_inset Formula $\phi(u)=(0,\dots,0,x,0,\dots,0)$ +\end_inset + + con +\begin_inset Formula $x$ +\end_inset + + en la +\begin_inset Formula $i$ +\end_inset + +-ésima posición, y como todo elemento de +\begin_inset Formula $B_{1}\times\dots\times B_{n}$ +\end_inset + + es suma de elementos de esta forma, +\begin_inset Formula $\phi$ +\end_inset + + es suprayectiva. +\end_layout + +\begin_layout Standard +Veamos ahora que +\begin_inset Formula $\ker\phi=K_{1}\cap\dots\cap K_{n}=K_{1}\cdots K_{n}$ +\end_inset + +. + Para +\begin_inset Formula $n=2$ +\end_inset + +, sea +\begin_inset Formula $x\in K_{1}\cap K_{2}$ +\end_inset + +, existen +\begin_inset Formula $a\in K_{1}$ +\end_inset + + y +\begin_inset Formula $b\in K_{2}$ +\end_inset + + con +\begin_inset Formula $a+b=1$ +\end_inset + +, luego +\begin_inset Formula $x=1x=ax+bx$ +\end_inset + +, pero como +\begin_inset Formula $a\in K_{1}$ +\end_inset + + y +\begin_inset Formula $x\in K_{2}$ +\end_inset + +, +\begin_inset Formula $ax\in K_{1}K_{2}$ +\end_inset + +, y análogamente +\begin_inset Formula $xb\in K_{1}K_{2}$ +\end_inset + +, luego +\begin_inset Formula $x\in K_{1}K_{2}$ +\end_inset + + y +\begin_inset Formula $K_{1}\cap K_{2}\subseteq K_{1}K_{2}$ +\end_inset + +, y la otra inclusión la sabemos. + Para +\begin_inset Formula $n>2$ +\end_inset + + basta hacer inducción. + La última afirmación se debe al primer teorema de isomorfía. +\end_layout + +\end_deeper +\begin_layout Section +Ideales notables +\end_layout + +\begin_layout Standard +\begin_inset Formula $I\triangleleft A$ +\end_inset + + es +\series bold +maximal +\series default + en +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $I\trianglelefteq_{\text{m}}A$ +\end_inset + +, si es maximal en el conjunto de ideales propios de +\begin_inset Formula $A$ +\end_inset + +, si y sólo si +\begin_inset Formula $A/I$ +\end_inset + + es un cuerpo. + +\series bold +Demostración: +\series default + Como +\begin_inset Formula $J\mapsto J/I$ +\end_inset + + conserva la inclusión, +\begin_inset Formula $I$ +\end_inset + + es maximal si y sólo si lo es +\begin_inset Formula $I/I=0$ +\end_inset + +, si y sólo si +\begin_inset Formula $A/I$ +\end_inset + + no es trivial y no tiene ideales propios no nulos (si tuviera alguno, contendrí +a a 0 y 0 no sería maximal), si y sólo si es un cuerpo no trivial, pero + sabemos que +\begin_inset Formula $A/I$ +\end_inset + + es no trivial porque +\begin_inset Formula $I$ +\end_inset + + es propio. +\end_layout + +\begin_layout Standard +Llamamos +\series bold +espectro maximal +\series default + de +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $\text{MaxSpec}(A)$ +\end_inset + +, al conjunto de ideales maximales de +\begin_inset Formula $A$ +\end_inset + +. + Para +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + +, la biyección +\begin_inset Formula $\{J\in{\cal I}(A):I\subseteq J\}\to{\cal I}(A/I)$ +\end_inset + + del teorema de la correspondencia se restringe a una biyección +\begin_inset Formula $\{J\in\text{MaxSpec}(A):I\subseteq J\}\to\text{MaxSpec}(A/I)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una +\series bold +cadena +\series default + en un conjunto ordenado es un subconjunto que, con el mismo orden, es totalment +e ordenado. + Un conjunto ordenado es +\series bold +inductivo +\series default + si toda cadena no vacía tiene cota superior. + +\series bold +Lema de Zorn: +\series default + Todo conjunto inductivo no vacío tiene un elemento maximal. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $I\triangleleft A$ +\end_inset + +, existe un ideal maximal de +\begin_inset Formula $A$ +\end_inset + + que contiene a +\begin_inset Formula $I$ +\end_inset + +, y en particular todo anillo no trivial tiene al menos un elemento maximal. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $\Omega\coloneqq\{J\triangleleft A:I\subseteq J\}$ +\end_inset + +, +\begin_inset Formula $\Omega\neq\emptyset$ +\end_inset + + porque +\begin_inset Formula $I\in\Omega$ +\end_inset + +. + Considerándolo ordenado por inclusión, si +\begin_inset Formula ${\cal C}$ +\end_inset + + es una cadena no vacía en +\begin_inset Formula $\Omega$ +\end_inset + +, +\begin_inset Formula $\bigcup{\cal C}$ +\end_inset + + es una cota superior, pues si +\begin_inset Formula $x,y\in\bigcup{\cal C}$ +\end_inset + + y +\begin_inset Formula $a\in A$ +\end_inset + +, sean +\begin_inset Formula $I,J\in{\cal C}$ +\end_inset + + tales que +\begin_inset Formula $x\in I$ +\end_inset + + e +\begin_inset Formula $y\in J$ +\end_inset + +, entonces por ejemplo +\begin_inset Formula $I\subseteq J$ +\end_inset + +, luego +\begin_inset Formula $x,y\in J\subseteq\bigcup{\cal C}$ +\end_inset + + y +\begin_inset Formula $x+y,ax,ay\in J\subseteq\bigcup{\cal C}$ +\end_inset + + para +\begin_inset Formula $a\in A$ +\end_inset + +, de modo que +\begin_inset Formula $\bigcup{\cal C}$ +\end_inset + + es un ideal, contiene a +\begin_inset Formula $I$ +\end_inset + + y no es propio porque ninguno de los elementos de +\begin_inset Formula ${\cal C}$ +\end_inset + + contiene a 1. + Entonces, por el lema de Zorn, +\begin_inset Formula $\Omega$ +\end_inset + + tiene un elemento maximal +\begin_inset Formula $J$ +\end_inset + +, que es un ideal propio que contiene a +\begin_inset Formula $I$ +\end_inset + + y es maximal porque, para +\begin_inset Formula $J'\triangleleft A$ +\end_inset + + con +\begin_inset Formula $J\subseteq J'$ +\end_inset + +, +\begin_inset Formula $J'\in\Omega$ +\end_inset + + y por tanto +\begin_inset Formula $J'=J$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $I\triangleleft A$ +\end_inset + + es +\series bold +primo +\series default +, +\begin_inset Formula $I\trianglelefteq_{\text{p}}A$ +\end_inset + +, si +\begin_inset Formula $\forall x,y\in A,(xy\in I\implies x\in I\lor y\in I)$ +\end_inset + +, si y sólo si +\begin_inset Formula $\forall n\in\mathbb{N}^{*},\forall x_{1},\dots,x_{n}\in A,(x_{1}\cdots x_{n}\in I\implies\exists k:x_{k}\in I)$ +\end_inset + +, si y sólo si +\begin_inset Formula $A/I$ +\end_inset + + es un dominio, si y sólo si +\begin_inset Formula $\forall n\in\mathbb{N}^{*},\forall I_{1},\dots,I_{n}\trianglelefteq A,(I_{1}\cdots I_{n}\subseteq J\implies\exists k:I_{k}\subseteq J)$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\iff2]$ +\end_inset + + Trivial. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\iff3]$ +\end_inset + + Para +\begin_inset Formula $x,y\in A$ +\end_inset + +, +\begin_inset Formula $xy\in I\implies x\in I\lor y\in I$ +\end_inset + + si y sólo si, en +\begin_inset Formula $A/I$ +\end_inset + +, +\begin_inset Formula $\overline{x}\,\overline{y}=\overline{xy}=0\implies\overline{x}=0\lor\overline{y}=0$ +\end_inset + +, y que esto se de para todo +\begin_inset Formula $\overline{x},\overline{y}\in A/I$ +\end_inset + + equivale a que +\begin_inset Formula $A/I$ +\end_inset + + sea un dominio. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies4]$ +\end_inset + + Si fuera cada +\begin_inset Formula $I_{k}\nsubseteq J$ +\end_inset + +, sea +\begin_inset Formula $x_{k}\in I_{k}\setminus J$ +\end_inset + + para cada +\begin_inset Formula $k$ +\end_inset + +, +\begin_inset Formula $x_{1}\cdots x_{n}\in I_{1}\cdots I_{n}\subseteq J$ +\end_inset + +, pero si +\begin_inset Formula $J$ +\end_inset + + es primo existe +\begin_inset Formula $k$ +\end_inset + + con +\begin_inset Formula $x_{j}\in J\#$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $4\implies1]$ +\end_inset + + Sean +\begin_inset Formula $a_{1},a_{2}\in A$ +\end_inset + + con +\begin_inset Formula $a_{1}a_{2}\in J$ +\end_inset + +, +\begin_inset Formula $(a_{1})(a_{2})=(a_{1}a_{2})\subseteq J$ +\end_inset + +, luego por hipótesis +\begin_inset Formula $(a_{1})\subseteq J$ +\end_inset + + y por tanto +\begin_inset Formula $a_{1}\in J$ +\end_inset + + o +\begin_inset Formula $(a_{2})\subseteq J$ +\end_inset + + y por tanto +\begin_inset Formula $a_{2}\in J$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El +\series bold +espectro primo +\series default + de +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $\text{Spec}(A)$ +\end_inset + +, es el conjunto de todos los ideales primos. + +\begin_inset Formula $\text{MaxSpec}(A)\subseteq\text{Spec}(A)$ +\end_inset + +, pues todo cuerpo es un dominio. + Para +\begin_inset Formula $I\triangleleft A$ +\end_inset + +, la biyección +\begin_inset Formula $\{J\in{\cal I}(A):I\subseteq J\}\to{\cal I}(A/I)$ +\end_inset + + se restringe a una biyección +\begin_inset Formula $\{J\in\text{Spec}(A):I\subseteq J\}\to\text{Spec}(A/I)$ +\end_inset + +. + En efecto, para +\begin_inset Formula $J\in{\cal I}(A)$ +\end_inset + + con +\begin_inset Formula $I\subseteq J$ +\end_inset + +, +\begin_inset Formula $(A/I)/(J/I)\cong A/J$ +\end_inset + + por el tercer teorema de isomorfía, con lo que +\begin_inset Formula $J$ +\end_inset + + es primo si y sólo si +\begin_inset Formula $A/J$ +\end_inset + + es un dominio, si y sólo si lo es +\begin_inset Formula $(A/I)/(J/I)$ +\end_inset + +, si y sólo si +\begin_inset Formula $J/I$ +\end_inset + + es primo en +\begin_inset Formula $A/I$ +\end_inset + +. +\end_layout + +\begin_layout Standard +En un anillo +\begin_inset Formula $A$ +\end_inset + +: \end_layout +\begin_layout Enumerate +Sean +\begin_inset Formula $I_{1},\dots,I_{n}\trianglelefteq A$ +\end_inset + + con intersección +\begin_inset Formula $J$ \end_inset + prima, algún +\begin_inset Formula $I_{k}=J$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $J$ +\end_inset + + está contenido en cada +\begin_inset Formula $I_{k}$ +\end_inset + + y, como +\begin_inset Formula $I_{1}\cdots I_{n}\subseteq I_{1}\cap\dots\cap I_{n}=J$ +\end_inset + +, algún +\begin_inset Formula $I_{k}\subseteq J$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Sean +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + + y +\begin_inset Formula $J_{1},\dots,J_{n}\trianglelefteq_{\text{p}}A$ +\end_inset + +, si +\begin_inset Formula $I\subseteq J_{1}\cup\dots\cup J_{n}$ +\end_inset + +, +\begin_inset Formula $I$ +\end_inset + + está contenido en algún +\begin_inset Formula $J_{k}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Para +\begin_inset Formula $n=1$ +\end_inset + + es trivial. + Si +\begin_inset Formula $n>1$ +\end_inset + +, supuesto esto probado para +\begin_inset Formula $n-1$ +\end_inset + +, si fuera +\begin_inset Formula $I\nsubseteq J_{k}$ +\end_inset + + para todo +\begin_inset Formula $k$ +\end_inset + +, para cada +\begin_inset Formula $i$ +\end_inset + +, +\begin_inset Formula $I\subseteq J_{k}$ +\end_inset + + para +\begin_inset Formula $k\neq i$ +\end_inset + + y por tanto existe +\begin_inset Formula $a_{i}\in I$ +\end_inset + + con +\begin_inset Formula $a_{i}\notin\bigcup_{k\neq i}J_{k}$ +\end_inset + + y por tanto +\begin_inset Formula $a_{i}\in J_{i}$ +\end_inset + +. + Sea entonces +\begin_inset Formula $b_{i}\coloneqq\prod_{k\neq i}a_{k}$ +\end_inset + +, +\begin_inset Formula $b_{i}\in I$ +\end_inset + + y +\begin_inset Formula $b_{i}\in\bigcap_{k\neq i}J_{k}$ +\end_inset + +, pero +\begin_inset Formula $b_{i}\notin J_{i}$ +\end_inset + + porque es el producto de elementos fuera de +\begin_inset Formula $J_{i}$ +\end_inset + + y +\begin_inset Formula $J_{i}$ +\end_inset + + es primo. + Entonces +\begin_inset Formula $b\coloneqq\sum_{k=1}^{n}b_{k}\in I=\bigcup_{k=1}^{n}J_{k}$ +\end_inset + + y debe haber un +\begin_inset Formula $k$ +\end_inset + + con +\begin_inset Formula $b\in J_{k}$ +\end_inset + +, pero de ser así, como +\begin_inset Formula $b_{i}\in J_{k}$ +\end_inset + + para +\begin_inset Formula $i\neq k$ +\end_inset + +, sería +\begin_inset Formula $b-\sum_{i\neq k}b_{i}=b_{k}\in J_{k}\#$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Dado un conjunto ordenado +\begin_inset Formula $(S,\leq)$ +\end_inset + +, su +\series bold +opuesto +\series default + es +\begin_inset Formula $(S,\leq)^{\text{op}}\coloneqq(S,\geq)$ +\end_inset + +. + +\begin_inset Formula $(S,\leq)$ +\end_inset + + es +\series bold +contra-inductivo +\series default + si su opuesto es inductivo, es decir, si toda subcadena no vacía tiene + una cota inferior. + +\series bold +Lema de Zorn dual: +\series default + Todo conjunto contra-inductivo tiene al menos un elemento minimal. +\end_layout + +\begin_layout Standard +Un +\series bold +primo minimal +\series default + de +\begin_inset Formula $A$ +\end_inset + + es un elemento minimal de +\begin_inset Formula $\text{Spec}(A)$ +\end_inset + +. + Llamamos +\begin_inset Formula $\text{MinSpec}(A)$ +\end_inset + + al conjunto de primos minimales de +\begin_inset Formula $A$ +\end_inset + +. + Para +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + + y +\begin_inset Formula $Q\trianglelefteq_{\text{p}}A$ +\end_inset + + contiene a +\begin_inset Formula $I$ +\end_inset + +, +\begin_inset Formula $Q$ +\end_inset + + contiene un +\series bold +primo minimal sobre +\begin_inset Formula $I$ +\end_inset + + +\series default +, un minimal entre los ideales primos que contienen a +\begin_inset Formula $I$ +\end_inset + +, y en particular todo +\begin_inset Formula $Q\trianglelefteq_{\text{p}}A$ +\end_inset + + contiene un primo minimal. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $\Omega\coloneqq\{P\trianglelefteq_{\text{p}}A:I\subseteq P\subseteq Q\}$ +\end_inset + +, +\begin_inset Formula $\Omega\neq\emptyset$ +\end_inset + + porque +\begin_inset Formula $Q\in\Omega$ +\end_inset + +. + Sea entonces +\begin_inset Formula ${\cal C}$ +\end_inset + + una cadena no vacía en +\begin_inset Formula $\Omega$ +\end_inset + +, +\begin_inset Formula $\bigcap{\cal C}\in\Omega$ +\end_inset + +, pues es un ideal propio entre +\begin_inset Formula $I$ +\end_inset + + y +\begin_inset Formula $Q$ +\end_inset + + y, usando el contrarrecíproco de la definición de primo, si +\begin_inset Formula $x,y\notin\bigcap{\cal C}$ +\end_inset + +, sean +\begin_inset Formula $J_{1},J_{2}\in{\cal C}$ +\end_inset + + con +\begin_inset Formula $x\notin J_{1}$ +\end_inset + + e +\begin_inset Formula $y\notin J_{2}$ +\end_inset + +, si por ejemplo +\begin_inset Formula $J_{1}\subseteq J_{2}$ +\end_inset + +, +\begin_inset Formula $x,y\notin J_{1}$ +\end_inset + +, luego +\begin_inset Formula $xy\notin J_{1}$ +\end_inset + + y por tanto +\begin_inset Formula $xy\notin\bigcap{\cal C}$ +\end_inset + +. + Entonces, por el lema de Zorn dual, +\begin_inset Formula $\Omega$ +\end_inset + + tiene un minimal +\begin_inset Formula $J$ +\end_inset + +, que es un ideal primo de +\begin_inset Formula $A$ +\end_inset + + entre +\begin_inset Formula $I$ +\end_inset + + y +\begin_inset Formula $Q$ +\end_inset + + y, si +\begin_inset Formula $J'$ +\end_inset + + es un ideal primo de +\begin_inset Formula $A$ +\end_inset + + que contiene a +\begin_inset Formula $I$ +\end_inset + + con +\begin_inset Formula $J'\subseteq J$ +\end_inset + +, entonces +\begin_inset Formula $J'\subseteq Q$ +\end_inset + + y +\begin_inset Formula $J'\in\Omega$ +\end_inset + +, luego +\begin_inset Formula $J'=J$ +\end_inset + + y +\begin_inset Formula $J$ +\end_inset + + es minimal sobre +\begin_inset Formula $I$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + + es un +\series bold +radical +\series default + de +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $I\trianglelefteq_{\text{r}}A$ +\end_inset + +, si +\begin_inset Formula $\forall x\in A,\forall n\in\mathbb{N},(x^{n}\in I\implies x\in I)$ +\end_inset + +, si y sólo si +\begin_inset Formula $\forall x\in A,(x^{2}\in I\implies x\in I)$ +\end_inset + +, si y sólo si +\begin_inset Formula $A/I$ +\end_inset + + es reducido. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies2]$ +\end_inset + + Obvio. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies1]$ +\end_inset + + Sean +\begin_inset Formula $x\in A$ +\end_inset + + y +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + con +\begin_inset Formula $x^{n}\in I$ +\end_inset + +, si +\begin_inset Formula $n=0$ +\end_inset + +, +\begin_inset Formula $1\in I$ +\end_inset + + y +\begin_inset Formula $x\in I$ +\end_inset + +, y si +\begin_inset Formula $n=1$ +\end_inset + + es obvio. + En otro caso, si +\begin_inset Formula $n$ +\end_inset + + es par, +\begin_inset Formula $x^{n/2}\in I$ +\end_inset + +, y si es impar, +\begin_inset Formula $x^{n+1}=xx^{n}\in I$ +\end_inset + + y por tanto +\begin_inset Formula $x^{(n+1)/2}\in I$ +\end_inset + +. + En cualquier caso +\begin_inset Formula $x^{k}\in I$ +\end_inset + + para cierto +\begin_inset Formula $k$ +\end_inset + + con +\begin_inset Formula $1\leq k<n$ +\end_inset + +, y repitiendo el proceso llegamos a que +\begin_inset Formula $x\in I$ +\end_inset + +. + +\end_layout + +\begin_layout Description +\begin_inset Formula $1\iff3]$ +\end_inset + + +\begin_inset Formula $x^{n}\in I\implies x\in I$ +\end_inset + + es equivalente a que, en +\begin_inset Formula $A/I$ +\end_inset + +, +\begin_inset Formula $\overline{x}^{n}=\overline{x^{n}}=0\implies\overline{x}=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Newpage pagebreak +\end_inset + + +\end_layout + +\begin_layout Standard +Propiedades: +\end_layout + +\begin_layout Enumerate +Todo ideal primo es radical. +\end_layout + +\begin_layout Enumerate +La intersección de una familia de radicales es un radical. +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + +, la biyección del teorema de la correspondencia se restringe a una entre + los radicales de +\begin_inset Formula $A$ +\end_inset + + que contienen a +\begin_inset Formula $I$ +\end_inset + + y los radicales de +\begin_inset Formula $A/I$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula $J\trianglelefteq A$ +\end_inset + + con +\begin_inset Formula $I\subseteq J$ +\end_inset + +, por el tercer teorema de isomorfía, +\begin_inset Formula $(A/I)/(J/I)\cong A/J$ +\end_inset + +, luego +\begin_inset Formula $J$ +\end_inset + + es un radical de +\begin_inset Formula $A$ +\end_inset + + si y sólo si +\begin_inset Formula $A/J$ +\end_inset + + es reducido, si y sólo si lo es +\begin_inset Formula $(A/I)/(J/I)$ +\end_inset + +, si y sólo si +\begin_inset Formula $J/I$ +\end_inset + + es un radical de +\begin_inset Formula $A/I$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Un +\series bold +subconjunto multiplicativo +\series default + de un anillo +\begin_inset Formula $A$ +\end_inset + + es un +\begin_inset Formula $S\subseteq A$ +\end_inset + + cerrado para el producto y que contiene al 1. + +\series bold + Lema de Krull: +\series default + Sean +\begin_inset Formula $A$ +\end_inset + + un anillo, +\begin_inset Formula $S\subseteq A$ +\end_inset + + un subconjunto multiplicativo e +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + + disjunto de +\begin_inset Formula $S$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula ${\cal I}_{I,S}\coloneqq\{J\trianglelefteq A:I\subseteq J,J\cap S=\emptyset\}$ +\end_inset + + es un conjunto inductivo no vacío. +\end_layout + +\begin_deeper +\begin_layout Standard +La unión de elementos de una cadena vacía de +\begin_inset Formula ${\cal I}_{I,S}$ +\end_inset + + está en +\begin_inset Formula ${\cal I}_{I,S}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Todo elemento maximal de +\begin_inset Formula ${\cal I}_{I,S}$ +\end_inset + + es un ideal primo de +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $J$ +\end_inset + + maximal de +\begin_inset Formula ${\cal I}_{I,S}$ +\end_inset + + y supongamos que existen +\begin_inset Formula $x,y\in A$ +\end_inset + + con +\begin_inset Formula $x,y\notin J$ +\end_inset + + pero +\begin_inset Formula $xy\in J$ +\end_inset + +. + Entonces +\begin_inset Formula $J\subsetneq(x)+J$ +\end_inset + +, por lo que +\begin_inset Formula $(x)+J\notin{\cal I}_{I,S}$ +\end_inset + + y, como es un ideal que contiene a +\begin_inset Formula $I$ +\end_inset + +, debe contener un elemento de +\begin_inset Formula $S$ +\end_inset + +, +\begin_inset Formula $a_{1}x+b_{1}\in((x)+J)\cap S$ +\end_inset + +, donde +\begin_inset Formula $a_{1}\in A$ +\end_inset + + y +\begin_inset Formula $b_{1}\in J$ +\end_inset + +, y análogamente existe +\begin_inset Formula $a_{2}y+b_{2}\in((y)+J)\cap S$ +\end_inset + + con +\begin_inset Formula $a_{2}\in A$ +\end_inset + + y +\begin_inset Formula $b_{2}\in J$ +\end_inset + +, pero entonces +\begin_inset Formula $s\coloneqq(a_{1}x+b_{1})(a_{2}y+b_{2})=a_{1}a_{2}xy+a_{1}xb_{2}+b_{1}a_{2}y+b_{1}b_{2}\in S$ +\end_inset + +, pero como +\begin_inset Formula $xy,b_{1},b_{2}\in J$ +\end_inset + +, +\begin_inset Formula $s\in J\cap S\#$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Para +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + +, llamamos +\series bold +radical +\series default + de +\begin_inset Formula $I$ +\end_inset + + a +\begin_inset Formula +\[ +\sqrt{I}\coloneqq\{x\in A:\exists n\in\mathbb{N}:x^{n}\in I\}=\bigcap\{J\trianglelefteq_{\text{r}}A:I\subseteq J\}=\bigcap\{J\trianglelefteq_{\text{p}}A:I\subseteq J\}, +\] + +\end_inset + +y en particular +\begin_inset Formula +\[ +\sqrt{0}=\text{Nil}(A)=\bigcap\{J\trianglelefteq_{\text{r}}A\}=\bigcap\{J\trianglelefteq_{\text{p}}A\}. +\] + +\end_inset + + +\end_layout + +\begin_layout Description +\begin_inset Formula $1\subseteq2]$ +\end_inset + + Sean +\begin_inset Formula $x\in A$ +\end_inset + +, +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + con +\begin_inset Formula $x^{n}\in I$ +\end_inset + + y +\begin_inset Formula $J\trianglelefteq_{\text{r}}A$ +\end_inset + + con +\begin_inset Formula $I\subseteq J$ +\end_inset + +, +\begin_inset Formula $x^{n}\in J$ +\end_inset + + y por tanto +\begin_inset Formula $x\in J$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\subseteq3]$ +\end_inset + + Todo ideal primo es radical. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\subseteq1]$ +\end_inset + + Sea +\begin_inset Formula $x\in A$ +\end_inset + + tal que +\begin_inset Formula $\forall n\in\mathbb{N},x^{n}\notin I$ +\end_inset + +, y queremos ver que existe +\begin_inset Formula $P\trianglelefteq_{\text{p}}A$ +\end_inset + + con +\begin_inset Formula $I\subseteq P$ +\end_inset + + y +\begin_inset Formula $x\notin P$ +\end_inset + +. + +\begin_inset Formula $S\coloneqq\{x^{n}\}_{n\in\mathbb{N}}$ +\end_inset + + es un subconjunto multiplicativo de +\begin_inset Formula $A$ +\end_inset + + y por el lema de Krull existe un maximal +\begin_inset Formula $P$ +\end_inset + + de +\begin_inset Formula ${\cal I}_{I,S}$ +\end_inset + + que es primo, de modo que +\begin_inset Formula $P\trianglelefteq_{\text{p}}A$ +\end_inset + +, +\begin_inset Formula $I\subseteq P$ +\end_inset + + y +\begin_inset Formula $x\notin P$ +\end_inset + + porque +\begin_inset Formula $x\in S$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Así: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $I\subseteq\sqrt{I}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $I$ +\end_inset + + es radical si y sólo si +\begin_inset Formula $I=\sqrt{I}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $I\trianglelefteq A$ +\end_inset + + y +\begin_inset Formula $J\trianglelefteq_{\text{r}}A$ +\end_inset + + con +\begin_inset Formula $I\subseteq J$ +\end_inset + +, entonces +\begin_inset Formula $\sqrt{I}\subseteq J$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $I\triangleleft A$ +\end_inset + es un radical si y sólo si es intersección de ideales primos. \end_layout \end_body |
