aboutsummaryrefslogtreecommitdiff
path: root/af/n1.lyx
diff options
context:
space:
mode:
authorJuan Marin Noguera <juan@mnpi.eu>2023-01-13 18:02:06 +0100
committerJuan Marin Noguera <juan@mnpi.eu>2023-01-13 18:02:06 +0100
commitb95397e214010cd9ba0da24b951145341e9949c9 (patch)
treea1ec7072a961dff8bbc0a244cb702ae729332e0c /af/n1.lyx
parent1269f25f04e51f39e70c1cbda674b0bd95b92b1e (diff)
Teorema de Radon-Nikodym
Diffstat (limited to 'af/n1.lyx')
-rw-r--r--af/n1.lyx216
1 files changed, 216 insertions, 0 deletions
diff --git a/af/n1.lyx b/af/n1.lyx
index dc624d5..bdf50e4 100644
--- a/af/n1.lyx
+++ b/af/n1.lyx
@@ -7143,6 +7143,222 @@ En particular, dado un espacio vectorial
.
\end_layout
+\begin_layout Standard
+Dado un espacio medible
+\begin_inset Formula $(\Omega,\Sigma)$
+\end_inset
+
+ con medidas
+\begin_inset Formula $\mu$
+\end_inset
+
+ y
+\begin_inset Formula $\nu$
+\end_inset
+
+,
+\begin_inset Formula $\nu$
+\end_inset
+
+ es
+\series bold
+absolutamente continua
+\series default
+ respecto de
+\begin_inset Formula $\mu$
+\end_inset
+
+ si
+\begin_inset Formula $\forall A\in\Sigma,(\mu(A)=0\implies\nu(A)=0)$
+\end_inset
+
+, y es
+\series bold
+finita
+\series default
+ si
+\begin_inset Formula $\nu(\Omega)<\infty$
+\end_inset
+
+.
+
+\series bold
+Teorema de Radon-Nicodym:
+\series default
+ Si
+\begin_inset Formula $(\Omega,\Sigma)$
+\end_inset
+
+ es un espacio medible con medidas finitas
+\begin_inset Formula $\mu$
+\end_inset
+
+ y
+\begin_inset Formula $\nu$
+\end_inset
+
+ siendo
+\begin_inset Formula $\nu$
+\end_inset
+
+ absolutamente continua respecto de
+\begin_inset Formula $\mu$
+\end_inset
+
+, existe
+\begin_inset Formula $g:\Omega\to[0,+\infty]$
+\end_inset
+
+
+\begin_inset Formula $\mu$
+\end_inset
+
+-integrable tal que
+\begin_inset Formula
+\[
+\forall A\in\Sigma,\nu(A)=\int_{A}g\dif\mu.
+\]
+
+\end_inset
+
+
+\series bold
+Demostración:
+\series default
+
+\begin_inset Formula $\sigma\coloneqq\mu+\nu$
+\end_inset
+
+ es una medida finita en
+\begin_inset Formula $X$
+\end_inset
+
+ tal que
+\begin_inset Formula $\forall A\in\Sigma,(\sigma(A)=0\iff\mu(A)=0)$
+\end_inset
+
+, y la función lineal entre espacios de Hilbert
+\begin_inset Formula $T:L^{2}(\Omega,\Sigma,\sigma)\to\mathbb{R}$
+\end_inset
+
+ dada por
+\begin_inset Formula
+\[
+Tu\coloneqq\int_{\Omega}u\dif\mu
+\]
+
+\end_inset
+
+está bien definida y es continua porque, si
+\begin_inset Formula $\Vert u\Vert_{L^{2}(\Omega,\Sigma,\sigma)}=1$
+\end_inset
+
+,
+\begin_inset Formula
+\begin{align*}
+|Tu| & =\left|\int_{\Omega}u\dif\mu\right|\leq\int_{\Omega}|u|\dif\mu\leq\sqrt{\int_{\Omega}|u|^{2}\dif\mu}+\sqrt{\int_{\Omega}\dif\mu}\leq\\
+ & \leq\sqrt{\int_{\Omega}|u|^{2}\dif\mu+\int_{\Omega}|u|^{2}\dif\nu}+\sqrt{\int_{\Omega}\dif\mu+\int_{\Omega}\dif\nu}=1+\sqrt{\sigma(X)}.
+\end{align*}
+
+\end_inset
+
+Por el teorema de representación de Riesz, existe
+\begin_inset Formula $f\in L^{2}(\Omega,\Sigma,\sigma)$
+\end_inset
+
+ tal que, para
+\begin_inset Formula $u\in L^{2}(\Omega,\Sigma,\sigma)$
+\end_inset
+
+,
+\begin_inset Formula
+\[
+Tu=\int_{\Omega}u\dif\mu=\int_{\Omega}uf\dif\sigma,
+\]
+
+\end_inset
+
+pero esta igualdad se da para cuando
+\begin_inset Formula $u=\chi_{A}$
+\end_inset
+
+ para cualquier
+\begin_inset Formula $A\in{\cal F}$
+\end_inset
+
+ y por linealidad para cualquier función
+\begin_inset Formula $\Sigma$
+\end_inset
+
+-medible simple, y por el teorema de convergencia dominada también se da
+ para cualquier función
+\begin_inset Formula $\Sigma$
+\end_inset
+
+-medible no negativa en casi todo punto.
+ Además, para
+\begin_inset Formula $A\in\Sigma$
+\end_inset
+
+,
+\begin_inset Formula
+\[
+\mu(A)=\int_{\Omega}\chi_{A}f\dif\sigma=\int_{A}f\dif\sigma,
+\]
+
+\end_inset
+
+de modo que
+\begin_inset Formula $f$
+\end_inset
+
+ es
+\begin_inset Formula $\Sigma$
+\end_inset
+
+-medible y, haciendo
+\begin_inset Formula $A=\{x\mid f(x)\leq0\}$
+\end_inset
+
+ o
+\begin_inset Formula $A=\{x\mid f(x)>1\}$
+\end_inset
+
+, vemos que
+\begin_inset Formula $f(\omega)\in(0,1]$
+\end_inset
+
+ para casi todo
+\begin_inset Formula $\omega\in\Omega$
+\end_inset
+
+, de modo que
+\begin_inset Formula $\frac{1}{g}$
+\end_inset
+
+ es
+\begin_inset Formula $\Sigma$
+\end_inset
+
+-medible no negativa en casi todo punto y, en casi todo punto,
+\begin_inset Formula $\frac{1}{f}f=1$
+\end_inset
+
+, con lo que para
+\begin_inset Formula $A\in\Sigma$
+\end_inset
+
+,
+\begin_inset Formula
+\[
+\int_{A}\frac{1}{f}\dif\mu=\int_{A}\dif\sigma\implies\nu(A)=\sigma(A)-\mu(A)=\int_{A}\left(\frac{1}{f}-1\right)\dif\mu\eqqcolon\int_{A}g\dif\mu.
+\]
+
+\end_inset
+
+
+\end_layout
+
\begin_layout Section
Problemas variacionales cuadráticos
\end_layout