diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-04-05 16:01:04 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-04-05 16:01:04 +0200 |
| commit | 74893dc5802a6b49d30c138dd5b5fd76794bfdd1 (patch) | |
| tree | 182e5eac19f899372999405223597ae71badc7db /anm | |
| parent | 0c01582cb98b52b0ef89eec0380e853a4f39039a (diff) | |
x
Diffstat (limited to 'anm')
| -rw-r--r-- | anm/n.lyx | 34 | ||||
| -rw-r--r-- | anm/n1.lyx | 90 | ||||
| -rw-r--r-- | anm/n2.lyx | 3334 | ||||
| -rw-r--r-- | anm/na.lyx | 74 |
4 files changed, 3516 insertions, 16 deletions
@@ -6,6 +6,9 @@ \origin unavailable \textclass book \use_default_options true +\begin_modules +algorithm2e +\end_modules \maintain_unincluded_children false \language spanish \language_package default @@ -150,6 +153,20 @@ filename "n1.lyx" \end_layout \begin_layout Chapter +Métodos directos +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n2.lyx" + +\end_inset + + +\end_layout + +\begin_layout Chapter \start_of_appendix Octave \end_layout @@ -164,5 +181,22 @@ filename "na.lyx" \end_layout +\begin_layout Standard +\begin_inset Note Note +status open + +\begin_layout Plain Layout +[L, U, P] = lu(A) +\end_layout + +\begin_layout Plain Layout +[L, U, P, Q] = lu(A) +\end_layout + +\end_inset + + +\end_layout + \end_body \end_document @@ -77,19 +77,6 @@ \begin_body -\begin_layout Standard -\begin_inset Note Note -status open - -\begin_layout Plain Layout -p1[7] no incluída. -\end_layout - -\end_inset - - -\end_layout - \begin_layout Section Matrices \end_layout @@ -543,8 +530,8 @@ base \begin_inset Formula $\mathbb{K}$ \end_inset - es un conjunto -\begin_inset Formula $\{v_{1},\dots,v_{n}\}$ + es una tupla +\begin_inset Formula $(v_{1},\dots,v_{n})$ \end_inset de vectores linealmente independientes de @@ -580,6 +567,31 @@ con \end_layout \begin_layout Standard +Un +\series bold +producto escalar +\series default + en un +\begin_inset Formula $\mathbb{R}$ +\end_inset + +-espacio vectorial +\begin_inset Formula $E$ +\end_inset + + es una función +\begin_inset Formula $\langle\cdot,\cdot\rangle:E\times E\to\mathbb{R}$ +\end_inset + + bilineal simétrica tal que +\begin_inset Formula $\forall f\in E\setminus\{0\},\langle f,f\rangle>0$ +\end_inset + +. + +\end_layout + +\begin_layout Standard Llamamos \series bold producto escalar euclídeo @@ -678,6 +690,26 @@ ortogonales \end_layout \begin_layout Standard +Una +\series bold +norma +\series default + en un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio vectorial +\begin_inset Formula $V$ +\end_inset + + es una aplicación +\begin_inset Formula $\Vert\cdot\Vert:V\to\mathbb{K}$ +\end_inset + + definida positiva, +\end_layout + +\begin_layout Standard Sean \begin_inset Formula $f:V\to W$ \end_inset @@ -1742,10 +1774,36 @@ espacio vectorial normado . Todas las normas en un espacio de dimensión finita son equivalentes, es decir, definen la misma topología. + \end_layout \begin_layout Standard -Llamamos +Si +\begin_inset Formula $E$ +\end_inset + + es un +\begin_inset Formula $\mathbb{R}$ +\end_inset + +-espacio vectorial con un producto escalar +\begin_inset Formula $\langle\cdot,\cdot\rangle$ +\end_inset + +, +\begin_inset Formula $\Vert\cdot\Vert:E\to\mathbb{R}$ +\end_inset + + dada por +\begin_inset Formula $\Vert f\Vert:=\sqrt{\langle f,f\rangle}$ +\end_inset + + define una norma en +\begin_inset Formula $E$ +\end_inset + +. + Llamamos \series bold norma \begin_inset Formula $p$ diff --git a/anm/n2.lyx b/anm/n2.lyx new file mode 100644 index 0000000..e7172c6 --- /dev/null +++ b/anm/n2.lyx @@ -0,0 +1,3334 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\end_preamble +\use_default_options true +\begin_modules +algorithm2e +\end_modules +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Algunos sistemas de ecuaciones lineales +\begin_inset Formula $Ax=b$ +\end_inset + + son fáciles de resolver: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + es diagonal no singular, para cada +\begin_inset Formula $k\in\{1,\dots,n\}$ +\end_inset + + es +\begin_inset Formula $a_{kk}x_{k}=b_{k}$ +\end_inset + + y por tanto +\begin_inset Formula $x_{k}=\frac{b_{k}}{a_{kk}}$ +\end_inset + +. + La complejidad de resolverlo es +\begin_inset Formula $\Theta(n)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + es triangular superior no singular podemos usar el +\series bold +método ascendente +\series default +: para cada +\begin_inset Formula $k$ +\end_inset + +, +\begin_inset Formula $\sum_{i=k}^{n}a_{ki}x_{i}=b_{k}$ +\end_inset + + y por tanto +\begin_inset Formula $x_{k}=a_{kk}^{-1}\left(b_{k}-\sum_{i=k+1}^{n}a_{ki}x_{i}\right)$ +\end_inset + +, lo que podemos usar para calcular las coordenadas desde +\begin_inset Formula $x_{n}$ +\end_inset + + hasta +\begin_inset Formula $x_{1}$ +\end_inset + +, +\begin_inset Quotes cld +\end_inset + +ascendiendo por el sistema +\begin_inset Quotes crd +\end_inset + +. + La complejidad es +\begin_inset Formula $\Theta(n^{2})$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + es triangular inferior no singular podemos usar el +\series bold +método descendente +\series default +: para cada +\begin_inset Formula $k$ +\end_inset + +, +\begin_inset Formula $\sum_{i=1}^{k}a_{ki}x_{i}=b_{k}$ +\end_inset + + y por tanto +\begin_inset Formula $x_{k}=a_{kk}^{-1}\left(b_{k}-\sum_{i=1}^{k-1}a_{ki}x_{i}\right)$ +\end_inset + +, y podemos calcular las coordenadas desde +\begin_inset Formula $x_{1}$ +\end_inset + + hasta +\begin_inset Formula $x_{n}$ +\end_inset + +, +\begin_inset Quotes cld +\end_inset + +descendiendo por el sistema +\begin_inset Quotes crd +\end_inset + +. + Como antes, la complejidad es +\begin_inset Formula $\Theta(n^{2})$ +\end_inset + +. +\end_layout + +\begin_layout Section +Factorización LU +\end_layout + +\begin_layout Standard +Una +\series bold +factorización LU +\series default + de una matriz +\begin_inset Formula $A\in{\cal M}_{n}$ +\end_inset + + es un par +\begin_inset Formula $(L,U)$ +\end_inset + + formado por una matriz triangular inferior +\begin_inset Formula $L\in{\cal M}_{n}$ +\end_inset + + y una superior +\begin_inset Formula $U\in{\cal M}_{n}$ +\end_inset + + no singulares tales que +\begin_inset Formula $A=LU$ +\end_inset + +. + Dado un sistema de ecuaciones lineales +\begin_inset Formula $Ax=b$ +\end_inset + +, si +\begin_inset Formula $(L,U)$ +\end_inset + + es factorización LU de +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $Ax=b\iff LUx=b$ +\end_inset + +, y si +\begin_inset Formula $L$ +\end_inset + + y +\begin_inset Formula $U$ +\end_inset + + son no singulares, podemos obtener +\begin_inset Formula $x$ +\end_inset + + resolviendo consecutivamente +\begin_inset Formula $Ly=b$ +\end_inset + + y +\begin_inset Formula $Ux=y$ +\end_inset + + con los métodos descendente y ascendente respectivamente. +\end_layout + +\begin_layout Standard +\begin_inset Float algorithm +wide false +sideways false +status open + +\begin_layout Plain Layout +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +Entrada{$A:=(a_{ij})$, matriz cuadrada de tamaño $n$.} +\end_layout + +\begin_layout Plain Layout + + +\backslash +Salida{Factorización $(L:=(l_{ij}),U:=(u_{ij}))$ de $A$, o error.} +\end_layout + +\begin_layout Plain Layout + +Inicializar $L$ y $U$ a 0 +\backslash +; +\end_layout + +\begin_layout Plain Layout + + +\backslash +Para{$k +\backslash +gets1$ +\backslash +KwA $n$}{ +\end_layout + +\begin_layout Plain Layout + + +\backslash +tcp{{ +\backslash +rm Hemos calculado las $k-1$ primeras columnas de $L$ y +\end_layout + +\begin_layout Plain Layout + + filas de $U$.}} +\end_layout + +\begin_layout Plain Layout + + $p +\backslash +gets a_{kk}- +\backslash +sum_{s=1}^{k-1}l_{ks}u_{sk}$ +\end_layout + +\begin_layout Plain Layout + + +\backslash +tcp*{$a_{kk}= +\backslash +sum_{s=1}^kl_{ks}u_{sk}$} +\end_layout + +\begin_layout Plain Layout + + +\backslash +lSSi{$p=0$}{terminar con error} +\end_layout + +\begin_layout Plain Layout + + +\backslash +lEnOtroCaso{establecer $l_{kk}$ y $u_{kk}$ de forma que +\end_layout + +\begin_layout Plain Layout + + $l_{kk}u_{kk}=p$} +\end_layout + +\begin_layout Plain Layout + + +\backslash +Para{$i +\backslash +gets k+1$ +\backslash +KwA $n$}{ +\end_layout + +\begin_layout Plain Layout + + $u_{ki} +\backslash +gets +\end_layout + +\begin_layout Plain Layout + + l_{kk}^{-1} +\backslash +left(a_{ki}- +\backslash +sum_{s=1}^{k-1}l_{ks}u_{si} +\backslash +right)$ +\end_layout + +\begin_layout Plain Layout + + +\backslash +tcp*{$a_{ki}= +\backslash +sum_{s=1}^kl_{ks}u_{si}$} +\end_layout + +\begin_layout Plain Layout + + $l_{ik} +\backslash +gets +\end_layout + +\begin_layout Plain Layout + + u_{kk}^{-1} +\backslash +left(a_{ik}- +\backslash +sum_{s=1}^{k-1}l_{is}u_{sk} +\backslash +right)$ +\end_layout + +\begin_layout Plain Layout + + +\backslash +tcp*{$a_{ik}= +\backslash +sum_{s=1}^kl_{is}u_{sk}$} +\end_layout + +\begin_layout Plain Layout + + } +\end_layout + +\begin_layout Plain Layout + +} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Plain Layout +\begin_inset Caption Standard + +\begin_layout Plain Layout +\begin_inset CommandInset label +LatexCommand label +name "alg:factor-lu" + +\end_inset + +Algoritmo de factorización LU. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +El algoritmo +\begin_inset CommandInset ref +LatexCommand ref +reference "alg:factor-lu" +plural "false" +caps "false" +noprefix "false" + +\end_inset + + permite factorizar matrices LU en tiempo +\begin_inset Formula $\Theta(n^{3})$ +\end_inset + + siempre que no se obtenga +\begin_inset Formula $p=0$ +\end_inset + + en algún paso, y su validez se deriva de los comentarios al margen. + Para determinar +\begin_inset Formula $l_{kk}$ +\end_inset + + y +\begin_inset Formula $u_{kk}$ +\end_inset + + hay varios criterios: +\end_layout + +\begin_layout Itemize + +\series bold +Criterio de Dootlittle +\series default +: +\begin_inset Formula $l_{kk}=1$ +\end_inset + +, +\begin_inset Formula $u_{kk}=p_{k}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Criterio de Crout +\series default +: +\begin_inset Formula $u_{kk}=1$ +\end_inset + +, +\begin_inset Formula $l_{kk}=p_{k}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una matriz +\begin_inset Formula $A$ +\end_inset + + no singular admite una factorización LU si y sólo si todos sus menores + principales (submatrices cuadradas obtenidas de tomar las +\begin_inset Formula $k$ +\end_inset + + primeras filas y columnas de +\begin_inset Formula $A$ +\end_inset + +) son no singulares, si y sólo si el algoritmo dado termina con éxito. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies2]$ +\end_inset + + Sea +\begin_inset Formula $(L:=(l_{ij}),U:=(u_{ij}))$ +\end_inset + + esta factorización, +\begin_inset Formula +\[ +\det A=\det L\det U=\prod_{k=1}^{n}l_{kk}\prod_{k=1}^{n}u_{kk}\neq0, +\] + +\end_inset + + luego +\begin_inset Formula $l_{11},\dots,l_{nn},u_{11},\dots,u_{nn}\neq0$ +\end_inset + + y, si +\begin_inset Formula $A_{k}$ +\end_inset + + es el menor principal de +\begin_inset Formula $A$ +\end_inset + + de tamaño +\begin_inset Formula $k$ +\end_inset + +, +\begin_inset Formula $\det A_{k}=\prod_{i=1}^{k}l_{ii}\prod_{i=1}^{k}u_{ii}\neq0$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies3]$ +\end_inset + + Sea +\begin_inset Formula $A_{k}$ +\end_inset + + el menor principal de +\begin_inset Formula $A$ +\end_inset + + de tamaño +\begin_inset Formula $k$ +\end_inset + +, por el punto anterior de la prueba, +\begin_inset Formula $l_{kk}u_{kk}=\frac{\det A_{k}}{\det A_{k-1}}$ +\end_inset + +. + Si el algoritmo falla es porque +\begin_inset Formula $p=0$ +\end_inset + + en alguna iteración +\begin_inset Formula $k$ +\end_inset + +, luego +\begin_inset Formula $l_{kk}u_{kk}=\frac{\det A_{k}}{\det A_{k-1}}=0$ +\end_inset + +, con lo que si los menores +\begin_inset Formula $A_{1},\dots,A_{k-1}$ +\end_inset + + eran no singulares, +\begin_inset Formula $A_{k}$ +\end_inset + + es singular. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies1]$ +\end_inset + + Obvio. +\end_layout + +\begin_layout Subsection +Factorización LDU +\end_layout + +\begin_layout Standard +Una +\series bold +factorización LDU +\series default + de +\begin_inset Formula $A\in{\cal M}_{n}$ +\end_inset + + es una terna +\begin_inset Formula $(L,D,U)$ +\end_inset + + formada por una matriz triangular inferior +\begin_inset Formula $L\in{\cal M}_{n}$ +\end_inset + +, una diagonal no singular +\begin_inset Formula $D\in{\cal M}_{n}$ +\end_inset + + y una triangular superior +\begin_inset Formula $U\in{\cal M}_{n}$ +\end_inset + + tales que +\begin_inset Formula $A=LDU$ +\end_inset + + y las diagonales principales de +\begin_inset Formula $L$ +\end_inset + + y +\begin_inset Formula $U$ +\end_inset + + están formadas por unos. +\end_layout + +\begin_layout Standard +Esta factorización, si existe, es única. + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $A=L_{1}D_{1}M_{1}^{t}=L_{2}D_{2}M_{2}^{t}$ +\end_inset + + con +\begin_inset Formula $L_{1},L_{2},M_{1},M_{2}\in{\cal M}_{n}$ +\end_inset + + triangulares inferiores con unos en la diagonal y +\begin_inset Formula $D_{1},D_{2}\in{\cal M}_{n}$ +\end_inset + + diagonales, entonces +\begin_inset Formula $L_{2}$ +\end_inset + + y +\begin_inset Formula $M_{1}^{t}$ +\end_inset + + son invertibles por tener determinante 1 y +\begin_inset Formula $L_{2}^{-1}L_{1}D_{1}=D_{2}M_{2}^{t}(M_{1}^{t})^{-1}$ +\end_inset + +, pero como la matriz a la izquierda de la igualdad es triangular inferior + y la de la derecha es triangular superior, ambas son diagonales y por tanto + también son diagonales +\begin_inset Formula $L_{2}^{-1}L_{1}$ +\end_inset + + y +\begin_inset Formula $M_{2}^{t}(M_{1}^{t})^{-1}$ +\end_inset + +. + Ahora bien, como +\begin_inset Formula $L_{2}^{-1}$ +\end_inset + + es la traspuesta de la adjunta de +\begin_inset Formula $L_{2}$ +\end_inset + +, los elementos de su diagonal son +\begin_inset Formula $\frac{1}{\det L_{2}}=1$ +\end_inset + + y, como los de +\begin_inset Formula $L_{1}$ +\end_inset + + también, y ambas son triangulares inferiores, los de +\begin_inset Formula $L_{2}^{-1}L_{1}$ +\end_inset + + también lo son, luego +\begin_inset Formula $L_{2}^{-1}L_{1}=I_{n}$ +\end_inset + + y +\begin_inset Formula $L_{1}=L_{2}$ +\end_inset + +. + Análogamente +\begin_inset Formula $M_{1}=M_{2}$ +\end_inset + +, y finalmente +\begin_inset Formula $D_{1}=L_{2}^{-1}L_{1}D_{1}=D_{2}M_{2}^{t}(M_{1}^{t})^{-1}=D_{2}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +A partir de la factorización de Dootlittle +\begin_inset Formula $A=LU$ +\end_inset + +, la factorización LDU de +\begin_inset Formula $A$ +\end_inset + + es +\begin_inset Formula $(L,D,\tilde{U})$ +\end_inset + + con +\begin_inset Formula $D:=\text{diag}(u_{11},\dots,u_{nn})$ +\end_inset + + y +\begin_inset Formula $\tilde{U}:=(u_{ij}/u_{ii})_{ij}$ +\end_inset + +. + Así, si +\begin_inset Formula $A$ +\end_inset + + es simétrica con +\begin_inset Formula $\det A\neq0$ +\end_inset + + y admite una factorización LU, existe una única factorización de la forma + +\begin_inset Formula $LDL^{t}$ +\end_inset + + donde +\begin_inset Formula $L$ +\end_inset + + es triangular con unos en la diagonal y +\begin_inset Formula $D$ +\end_inset + + es diagonal, pues sabemos que admite una factorización LDU +\begin_inset Formula $A=LDM^{t}$ +\end_inset + + y entonces +\begin_inset Formula $LDM^{t}=A=A^{t}=MDL^{t}$ +\end_inset + +, pero como esta factorización es única, +\begin_inset Formula $L=M$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Transformaciones de Gauss sin permutar filas +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $v\in\mathbb{K}^{n}$ +\end_inset + + y +\begin_inset Formula $k\in\{1,\dots,n\}$ +\end_inset + + con +\begin_inset Formula $v_{k}\neq0$ +\end_inset + +, se tiene +\begin_inset Formula +\[ +Mv:=\left(\begin{array}{cccccc} +1\\ + & \ddots & & & 0\\ + & & 1\\ + & & -\frac{v_{k+1}}{v_{k}} & 1\\ + & 0 & \vdots & & \ddots\\ + & & -\frac{v_{n}}{v_{k}} & & & 1 +\end{array}\right)\left(\begin{array}{c} +v_{1}\\ +\vdots\\ +v_{k}\\ +v_{k+1}\\ +\vdots\\ +v_{n} +\end{array}\right)=\left(\begin{array}{c} +v_{1}\\ +\vdots\\ +v_{k}\\ +0\\ +\vdots\\ +0 +\end{array}\right). +\] + +\end_inset + + +\begin_inset Formula $M$ +\end_inset + + corresponde a la operación de +\begin_inset Quotes cld +\end_inset + +hacer ceros +\begin_inset Quotes crd +\end_inset + + bajo +\begin_inset Formula $v_{k}$ +\end_inset + + multiplicando las filas +\begin_inset Formula $k+1$ +\end_inset + + hasta +\begin_inset Formula $n$ +\end_inset + + por múltiplos de la fila +\begin_inset Formula $k$ +\end_inset + +. + +\begin_inset Formula $M^{-1}$ +\end_inset + + es similar a +\begin_inset Formula $M$ +\end_inset + + pero cambiando el signo a los elementos debajo de la diagonal. + En efecto, sean +\begin_inset Formula $M'$ +\end_inset + + la matriz descrita y +\begin_inset Formula +\[ +\tau:=\left(\begin{array}{cccc} +0 & \cdots & 0 & \frac{v_{k+1}}{v_{k}}\\ +\vdots & & \vdots & \vdots\\ +0 & \cdots & 0 & \frac{v_{n}}{v_{k}} +\end{array}\right)\in{\cal M}_{(n-k)\times k}, +\] + +\end_inset + +entonces +\begin_inset Formula +\[ +MM'=\left(\begin{array}{c|c} +I_{k} & 0\\ +\hline -\tau & I_{n-k} +\end{array}\right)\left(\begin{array}{c|c} +I_{k} & 0\\ +\hline \tau & I_{n-k} +\end{array}\right)=\left(\begin{array}{c|c} +I_{k} & 0\\ +\hline 0 & I_{n-k} +\end{array}\right)=I_{n}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean ahora +\begin_inset Formula $A\in{\cal M}_{n}$ +\end_inset + + con columnas +\begin_inset Formula $A_{1},\dots,A_{n}$ +\end_inset + +, +\begin_inset Formula $M_{1}$ +\end_inset + + una matriz de la forma anterior tal que +\begin_inset Formula $M_{1}A_{1}=(a_{11},0,\dots,0)$ +\end_inset + + y +\begin_inset Formula +\[ +A^{(2)}:=M_{1}A=:\left(\begin{array}{cccc} +a_{11} & a_{12} & \cdots & a_{1n}\\ +0 & a_{22}^{(2)} & \cdots & a_{2n}^{(2)}\\ +\vdots & \vdots & \ddots & \vdots\\ +0 & a_{n2}^{(2)} & \cdots & a_{nn}^{(2)} +\end{array}\right). +\] + +\end_inset + +Si ahora llamamos +\begin_inset Formula $M_{2}$ +\end_inset + + a una matriz de la misma forma y tal que +\begin_inset Formula $M_{2}A_{2}^{(2)}=(a_{12},a_{22}^{(2)},0,\dots,0)$ +\end_inset + +, es fácil ver que +\begin_inset Formula $M_{2}A_{1}^{(2)}=A_{1}^{(2)}$ +\end_inset + +. + Definimos +\begin_inset Formula $A^{(3)},\dots,A^{(n)}$ +\end_inset + + y +\begin_inset Formula $M_{3},\dots,M_{n-1}$ +\end_inset + + por inducción, y entonces +\begin_inset Formula $A^{(n)}=M_{n-1}\cdots M_{1}A$ +\end_inset + + es triangular superior, suponiendo que se puede construir, lo que ocurre + cuando +\begin_inset Formula $a_{11}\neq0$ +\end_inset + + y, para +\begin_inset Formula $k\in\{2,\dots,n-1\}$ +\end_inset + +, +\begin_inset Formula $a_{kk}^{(k)}\neq0$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Sabemos que las transformaciones del tipo de +\begin_inset Formula $M_{1},\dots,M_{n}$ +\end_inset + + no afectan al determinante de la matriz ni el de sus menores, por lo que + la matriz es triangulable por el método de eliminación de Gauss sin permutacion +es de filas si y sólo si ninguno de sus menores principales hasta +\begin_inset Formula $n-1$ +\end_inset + + es singular, lo que si +\begin_inset Formula $A$ +\end_inset + + es singular equivale a que sea factorizable LU. +\end_layout + +\begin_layout Standard +En tal caso, sean +\begin_inset Formula $L:=M_{1}^{-1}\cdots M_{n-1}^{-1}$ +\end_inset + + y +\begin_inset Formula $U:=A^{(n)}$ +\end_inset + +, entonces +\begin_inset Formula $LU=A$ +\end_inset + +, siendo +\begin_inset Formula $L$ +\end_inset + + triangular inferior con unos en la diagonal y +\begin_inset Formula $U$ +\end_inset + + triangular superior, por lo que +\begin_inset Formula $(L,U)$ +\end_inset + + es una factorización de Dootlittle. +\end_layout + +\begin_layout Section +Método de Gauss +\end_layout + +\begin_layout Standard +Para evitar interrumpir una factorización LU al encontrar un cero en la + diagonal, podemos intercambiar la fila que da problemas con una de la inferiore +s. + Esto además interesa cuando encontramos un número pequeño para evitar la + inestabilidad en los cálculos. +\end_layout + +\begin_layout Standard +En el método con +\series bold +elección del pivote parcial +\series default +, además de las matrices +\begin_inset Formula $L$ +\end_inset + + y +\begin_inset Formula $U$ +\end_inset + +, se construye una matriz +\begin_inset Formula $P$ +\end_inset + + de permutación de filas de forma que +\begin_inset Formula $PA=LU$ +\end_inset + +, con lo que resolver un sistema +\begin_inset Formula $Ax=b$ +\end_inset + + equivale a resolver +\begin_inset Formula $LUx=Pb$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +En el algoritmo de Gauss sin permutaciones de filas, se inicializa +\begin_inset Formula $P$ +\end_inset + + a +\begin_inset Formula $I_{n}$ +\end_inset + + y, al principio de cada etapa +\begin_inset Formula $k$ +\end_inset + +, se busca el +\begin_inset Formula $i\in\{k,\dots,n\}$ +\end_inset + + con mayor +\begin_inset Formula $|a_{ik}^{(k)}|$ +\end_inset + + y se intercambian las filas +\begin_inset Formula $i$ +\end_inset + + y +\begin_inset Formula $k$ +\end_inset + + tanto en +\begin_inset Formula $A^{(k)}$ +\end_inset + + como en +\begin_inset Formula $L$ +\end_inset + + y +\begin_inset Formula $P$ +\end_inset + +. +\end_layout + +\begin_layout Standard +En el método con +\series bold +elección del pivote total +\series default +, se construye además una matriz +\begin_inset Formula $Q$ +\end_inset + + de permutación de columnas de forma que +\begin_inset Formula $PAQ=LU$ +\end_inset + +, y resolver +\begin_inset Formula $Ax=b$ +\end_inset + + equivale a resolver +\begin_inset Formula $LUy=Pb$ +\end_inset + + y calcular +\begin_inset Formula $x=Qy$ +\end_inset + +. +\end_layout + +\begin_layout Standard +En el algoritmo de Gauss sin permutaciones de filas, se inicializan +\begin_inset Formula $P$ +\end_inset + + y +\begin_inset Formula $Q$ +\end_inset + + a +\begin_inset Formula $I_{n}$ +\end_inset + + y, al principio de cada etapa +\begin_inset Formula $k$ +\end_inset + +, se busca el +\begin_inset Formula $(i,j)\in\{k,\dots,n\}^{2}$ +\end_inset + + con mayor +\begin_inset Formula $|a_{ij}^{(k)}|$ +\end_inset + + y se intercambian las filas +\begin_inset Formula $i$ +\end_inset + + y +\begin_inset Formula $k$ +\end_inset + + en +\begin_inset Formula $A^{(k)}$ +\end_inset + + y +\begin_inset Formula $P$ +\end_inset + + y las columnas +\begin_inset Formula $j$ +\end_inset + + y +\begin_inset Formula $k$ +\end_inset + + en +\begin_inset Formula $A^{(k)}$ +\end_inset + + y +\begin_inset Formula $Q$ +\end_inset + +. +\end_layout + +\begin_layout Section +Sistemas con matrices especiales +\end_layout + +\begin_layout Subsection +Diagonal estrictamente dominante +\end_layout + +\begin_layout Standard +Una matriz +\begin_inset Formula $A:=(a_{ij})\in{\cal M}_{n}(\mathbb{C})$ +\end_inset + + tiene +\series bold +diagonal estrictamente dominante +\series default + si para +\begin_inset Formula $k\in\{1,\dots,n\}$ +\end_inset + +, +\begin_inset Formula +\[ +|a_{kk}|>\sum_{\begin{subarray}{c} +j=1\\ +j\neq i +\end{subarray}}^{n}|a_{kj}|. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Toda matriz con diagonal estrictamente dominante es no singular y admite + una factorización LU. + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $A:=(a_{ij})$ +\end_inset + + fuese singular, sus columnas serían linealmente dependientes y existiría + +\begin_inset Formula $x\neq0$ +\end_inset + + con +\begin_inset Formula $Ax=0$ +\end_inset + +. + Sea +\begin_inset Formula $k$ +\end_inset + + con +\begin_inset Formula $|x_{k}|=\max_{i}|x_{i}|$ +\end_inset + +, como +\begin_inset Formula $\sum_{j}a_{ij}x_{ij}=0$ +\end_inset + + para todo +\begin_inset Formula $i$ +\end_inset + +, +\begin_inset Formula +\[ +a_{kk}x_{k}=-\sum_{\begin{subarray}{c} +j=1\\ +j\neq k +\end{subarray}}^{n}a_{kj}x_{j}, +\] + +\end_inset + + luego +\begin_inset Formula +\[ +|a_{kk}||x_{k}|\leq\sum_{\begin{subarray}{c} +j=1\\ +j\neq k +\end{subarray}}^{n}|a_{kj}||x_{j}|\leq\sum_{\begin{subarray}{c} +j=1\\ +j\neq k +\end{subarray}}|a_{kj}||x_{k}| +\] + +\end_inset + +y, despejando +\begin_inset Formula $|x_{k}|$ +\end_inset + +, queda que +\begin_inset Formula $A$ +\end_inset + + no es estrictamente dominante. +\begin_inset Formula $\#$ +\end_inset + + Como +\begin_inset Formula $A$ +\end_inset + + tiene diagonal estrictamente dominante, +\begin_inset Formula $a_{11}>0$ +\end_inset + + y se puede utilizar la transformación de Gauss +\begin_inset Formula $M_{1}$ +\end_inset + +. + Como +\begin_inset Formula $B:=(b_{ij}):=M_{1}A$ +\end_inset + + tiene la misma primera fila que +\begin_inset Formula $A$ +\end_inset + +, ceros bajo la diagonal en la primera columna y el resto de elementos son + +\begin_inset Formula $b_{ij}=a_{ij}-\frac{a_{i1}}{a_{11}}a_{1j}$ +\end_inset + +, para +\begin_inset Formula $i\in\{2,\dots,n\}$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +|b_{ii}| & =\left|a_{ii}-\frac{a_{i1}}{a_{11}}a_{1i}\right|\geq|a_{ii}|-\frac{|a_{i1}|}{|a_{11}|}|a_{1i}|>\sum_{j\neq i}|a_{ij}|-\frac{|a_{i1}|}{|a_{11}|}|a_{1i}|\\ + & =|a_{i1}|+\sum_{j\neq1,i}\left|b_{ij}+\frac{a_{i1}}{a_{11}}a_{1j}\right|-\frac{|a_{i1}|}{|a_{11}|}|a_{1i}|\\ + & \geq|a_{i1}|+\sum_{j\neq1,i}|b_{ij}|-\sum_{j\neq1,i}\frac{|a_{i1}|}{|a_{11}|}|a_{1j}|-\frac{|a_{i1}|}{|a_{11}|}|a_{1i}|\\ + & =|a_{i1}|+\sum_{j\neq1,i}|b_{ij}|-\frac{|a_{i1}|}{|a_{11}|}\sum_{j\neq1}|a_{1j}|>|a_{i1}|+\sum_{j\neq1,i}|b_{ij}|-\frac{|a_{i1}|}{|a_{11}|}|a_{11}|\\ + & =\sum_{j\neq1,i}|b_{ij}|=\sum_{j\neq i}|b_{ij}|. +\end{align*} + +\end_inset + +Así, +\begin_inset Formula $B$ +\end_inset + + es estrictamente dominante, por lo que podemos aplicarle la transformación + de Gauss en la segunda columna, y por inducción podemos convertir +\begin_inset Formula $A$ +\end_inset + + en triangular superior por el método de Gauss sin intercambio de filas, + luego +\begin_inset Formula $A$ +\end_inset + + admite una factorización LU. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $A$ +\end_inset + + es estrictamente dominante, los cálculos para el método de Gauss sin intercambi +os de filas o columnas serán estables porque los pivotes no serán demasiado + pequeños. +\end_layout + +\begin_layout Subsection +Matrices definidas positivas +\end_layout + +\begin_layout Standard +\begin_inset Formula $A\in{\cal M}_{n}(\mathbb{R})$ +\end_inset + + es +\series bold +definida positiva +\series default + ( +\series bold +PD +\series default +, +\emph on +positive definite +\emph default +) si +\begin_inset Formula $\forall x\in\mathbb{R}^{n}\setminus\{0\},x^{t}Ax>0.$ +\end_inset + + En tal caso: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A$ +\end_inset + + no es singular. +\end_layout + +\begin_deeper +\begin_layout Standard +Si lo fuera, las columnas serían linealmente dependientes y existiría +\begin_inset Formula $x\in\mathbb{R}^{n}\setminus\{0\}$ +\end_inset + + con +\begin_inset Formula $Ax=0$ +\end_inset + + y por tanto +\begin_inset Formula $x^{t}Ax=0\#$ +\end_inset + +. + +\end_layout + +\end_deeper +\begin_layout Enumerate +Para +\begin_inset Formula $X\in{\cal M}_{n\times k}$ +\end_inset + + con rango +\begin_inset Formula $k$ +\end_inset + +, +\begin_inset Formula $B:=X^{t}AX\in{\cal M}_{k}$ +\end_inset + + es PD. +\end_layout + +\begin_deeper +\begin_layout Standard +Para +\begin_inset Formula $x\in\mathbb{R}^{k}\setminus\{0\}$ +\end_inset + +, +\begin_inset Formula $Xx\neq0$ +\end_inset + +, luego +\begin_inset Formula $x^{t}Bx=x^{t}X^{t}AXx=(Xx)^{t}AXx>0$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Los menores principales de +\begin_inset Formula $A$ +\end_inset + + son PD. +\end_layout + +\begin_deeper +\begin_layout Standard +Para cada +\begin_inset Formula $k\in\{1,\dots,n\}$ +\end_inset + +, tomamos +\begin_inset Formula $X$ +\end_inset + + como la submatriz de +\begin_inset Formula $I_{n}$ +\end_inset + + formada por las +\begin_inset Formula $k$ +\end_inset + + primeras columnas y queda que +\begin_inset Formula $X^{t}AX$ +\end_inset + +, el menor principal de +\begin_inset Formula $A$ +\end_inset + + de tamaño +\begin_inset Formula $k$ +\end_inset + +, es PD. +\end_layout + +\end_deeper +\begin_layout Enumerate +Todos los elementos de la diagonal de +\begin_inset Formula $A$ +\end_inset + + son positivos. +\end_layout + +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula $A=:(a_{ij})_{ij}$ +\end_inset + +, para +\begin_inset Formula $a_{kk}$ +\end_inset + + tomamos +\begin_inset Formula $X$ +\end_inset + + como la columna +\begin_inset Formula $k$ +\end_inset + +-ésima de +\begin_inset Formula $I_{n}$ +\end_inset + + y queda que +\begin_inset Formula $X^{t}AX=(a_{kk})$ +\end_inset + + es PD, luego +\begin_inset Formula $1a_{kk}1=a_{kk}>0$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $A$ +\end_inset + + admite una factorización LDU con matriz diagonal PD. +\end_layout + +\begin_deeper +\begin_layout Standard +Todos los menores principales son PD y por tanto no singulares. + Sea +\begin_inset Formula $(L,D,U)$ +\end_inset + + la factorización, +\begin_inset Formula $L$ +\end_inset + + es no singular, luego +\begin_inset Formula $L^{-1}A(L^{-1})^{t}=DU(L^{-1})^{t}$ +\end_inset + + es PD, pero al ser +\begin_inset Formula $U(L^{-1})^{t}$ +\end_inset + + triangular superior con unos en la diagonal, +\begin_inset Formula $DM^{t}L^{-t}$ +\end_inset + + y +\begin_inset Formula $D=:(d_{ij})_{ij}$ +\end_inset + + tienen la misma diagonal, que tiene todos sus elementos positivos. + Entonces, para +\begin_inset Formula $x\in\mathbb{R}^{n}\setminus\{0\}$ +\end_inset + +, +\begin_inset Formula $x^{t}Dx=\sum_{k}d_{kk}x_{k}^{2}>0$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Subsection +Matrices simétricas definidas positivas (SPD) +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $A\in{\cal M}_{n}(\mathbb{R})$ +\end_inset + + simétrica, +\begin_inset Formula $A$ +\end_inset + + es definida positiva si y sólo si todos sus valores propios son positivos, + si y sólo si todos sus menores principales tienen determinante positivo, + si y sólo si admite una factorización LDU con diagonal definida positiva, + si y sólo si existe una matriz triangular inferior con diagonal positiva + +\begin_inset Formula $L_{C}$ +\end_inset + + tal que +\begin_inset Formula $A=L_{C}L_{C}^{t}$ +\end_inset + +, en cuyo caso esta es única. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies2]$ +\end_inset + + Sea +\begin_inset Formula $p$ +\end_inset + + un vector propio, su valor propio asociado es el cociente de Rayleigh +\begin_inset Formula $R_{A}(p)=\frac{p^{t}Ap}{p^{t}p}>0$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies1]$ +\end_inset + + Por ser +\begin_inset Formula $A$ +\end_inset + + simétrica, existe +\begin_inset Formula $O$ +\end_inset + + ortogonal con +\begin_inset Formula $D:=O^{t}AO$ +\end_inset + + diagonal. + Sean +\begin_inset Formula $\lambda_{1},\dots,\lambda_{n}$ +\end_inset + + los elementos de esta diagonal, si +\begin_inset Formula $\lambda_{1},\dots,\lambda_{n}>0$ +\end_inset + +, es claro que +\begin_inset Formula $D$ +\end_inset + + es PD, y por tanto +\begin_inset Formula $A=ODO^{t}$ +\end_inset + + también. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies3]$ +\end_inset + + Los menores principales de +\begin_inset Formula $A$ +\end_inset + + son simétricos y PD, luego todos sus valores propios son positivos y por + tanto el determinante es positivo. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies4]$ +\end_inset + + Como los menores principales son no singulares, +\begin_inset Formula $A$ +\end_inset + + admite una factorización LDU +\begin_inset Formula $(L,D,U)$ +\end_inset + +, y los elementos de la diagonal de +\begin_inset Formula $D$ +\end_inset + +, al ser cocientes de menores principales de +\begin_inset Formula $A$ +\end_inset + +, son positivos. +\end_layout + +\begin_layout Description +\begin_inset Formula $4\implies1]$ +\end_inset + + Sea +\begin_inset Formula $(L,D,L^{t})$ +\end_inset + + la factorización, como +\begin_inset Formula $D$ +\end_inset + + es PD, +\begin_inset Formula $LDL^{t}=A$ +\end_inset + + también. +\end_layout + +\begin_layout Description +\begin_inset Formula $4\implies5]$ +\end_inset + + Sea +\begin_inset Formula $(L,D,U)$ +\end_inset + + la factorización, como +\begin_inset Formula $D$ +\end_inset + + es PD, +\begin_inset Formula $\sqrt{D}:=\text{diag}(\sqrt{D_{11}},\dots,\sqrt{D_{nn}})$ +\end_inset + + tiene diagonal positiva, y como +\begin_inset Formula $A$ +\end_inset + + es simétrica y +\begin_inset Formula $U=L^{t}$ +\end_inset + +, basta tomar +\begin_inset Formula $L_{C}:=L\sqrt{D}$ +\end_inset + + y entonces +\begin_inset Formula $L_{C}L_{C}^{t}=L\sqrt{D}\sqrt{D}^{t}L^{t}=L\sqrt{D}\sqrt{D}U=LDU=A$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $5\implies4]$ +\end_inset + + Sean +\begin_inset Formula $D$ +\end_inset + + la matriz diagonal formada por los cuadrados de los elementos de la diagonal + de +\begin_inset Formula $L_{C}$ +\end_inset + + y +\begin_inset Formula $L$ +\end_inset + + el resultado de dividir cada columna de +\begin_inset Formula $L_{C}$ +\end_inset + + por su elemento de la diagonal, entonces +\begin_inset Formula $(L,D,L^{t})$ +\end_inset + + es una factorización LDU de +\begin_inset Formula $A$ +\end_inset + +. + Si +\begin_inset Formula $L_{C}$ +\end_inset + + no fuera única, podríamos obtener así factorizaciones LDU de +\begin_inset Formula $A$ +\end_inset + + distintas. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\begin_layout Subsection +Matrices tridiagonales +\end_layout + +\begin_layout Standard +Una matriz +\begin_inset Formula $A\in{\cal M}_{n}$ +\end_inset + + es +\series bold +banda +\series default + si existen enteros +\begin_inset Formula $p$ +\end_inset + + y +\begin_inset Formula $q$ +\end_inset + + tales que +\begin_inset Formula $a_{ij}=0$ +\end_inset + + para +\begin_inset Formula $j-i\geq p$ +\end_inset + + o +\begin_inset Formula $j-i\leq-q$ +\end_inset + +, y llamamos +\series bold +ancho de banda +\series default + a +\begin_inset Formula $p+q-1$ +\end_inset + +. + Si esto se cumple para +\begin_inset Formula $p=q=2$ +\end_inset + +, +\begin_inset Formula $A$ +\end_inset + + es +\series bold +tridiagonal +\series default +. +\end_layout + +\begin_layout Standard +Dada una matriz tridiagonal +\begin_inset Formula +\[ +A=\left(\begin{array}{ccccc} +b_{1} & c_{1}\\ +a_{2} & b_{2} & c_{2}\\ + & \ddots & \ddots & \ddots\\ + & & a_{n-1} & b_{n-1} & c_{n-1}\\ + & & & a_{n} & b_{n} +\end{array}\right), +\] + +\end_inset + +llamando +\begin_inset Formula $\delta_{0},\delta_{1}:=1$ +\end_inset + + y, para +\begin_inset Formula $k\in\{2,\dots,n\}$ +\end_inset + +, +\begin_inset Formula $\delta_{k}:=b_{k}\delta_{k-1}-a_{k}c_{k-1}\delta_{k-2}$ +\end_inset + +, entonces +\begin_inset Formula $\delta_{k}$ +\end_inset + + es el determinante del menor principal de orden +\begin_inset Formula $k$ +\end_inset + +, y si todos los +\begin_inset Formula $\delta_{k}$ +\end_inset + + son no nulos, +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +A=\left(\begin{array}{ccccc} +1\\ +a_{2}\frac{\delta_{0}}{\delta_{1}} & 1\\ + & \ddots & \ddots\\ + & & a_{n-1}\frac{\delta_{n-3}}{\delta_{n-2}} & 1\\ + & & & a_{n}\frac{\delta_{n-2}}{\delta_{n-1}} & 1 +\end{array}\right)\left(\begin{array}{ccccc} +\frac{\delta_{1}}{\delta_{0}} & c_{1}\\ + & \frac{\delta_{2}}{\delta_{1}} & c_{2}\\ + & & \ddots & \ddots\\ + & & & \frac{\delta_{n-1}}{\delta_{n-2}} & c_{n-1}\\ + & & & & \frac{\delta_{n}}{\delta_{n-1}} +\end{array}\right). +\] + +\end_inset + + +\end_layout + +\begin_layout Section +Factorización QR +\end_layout + +\begin_layout Standard +Dado +\begin_inset Formula $v\in\mathbb{C}^{n}$ +\end_inset + +, llamamos +\series bold +matriz de Householder +\series default + de +\begin_inset Formula $v$ +\end_inset + + a +\begin_inset Formula +\[ +H_{v}:=\begin{cases} +I_{n}-\frac{2}{v^{*}v}vv^{*} & \text{si }v\neq0,\\ +I_{n} & \text{si }v=0. +\end{cases} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $a,v\in\mathbb{R}^{n}$ +\end_inset + +, +\begin_inset Formula $H_{v}a$ +\end_inset + + es el vector simétrico de +\begin_inset Formula $a$ +\end_inset + + respecto al subespacio +\begin_inset Formula $v^{\bot}$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Para +\begin_inset Formula $v=0$ +\end_inset + +, +\begin_inset Formula $v^{\bot}=\mathbb{C}^{n}$ +\end_inset + + y esto es obvio. + Sea +\begin_inset Formula $v\neq0$ +\end_inset + +. + Entonces +\begin_inset Formula +\[ +H_{v}a=a-\frac{2}{v^{*}v}vv^{*}a=a-\frac{2v^{*}a}{\Vert v\Vert^{2}}v=a-\frac{2\Vert v\Vert\Vert a\Vert\cos\alpha}{\Vert v\Vert^{2}}v=a-2(\Vert a\Vert\cos\alpha)\frac{v}{\Vert v\Vert}, +\] + +\end_inset + + siendo +\begin_inset Formula $\alpha$ +\end_inset + + el ángulo entre +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $v$ +\end_inset + +, pero +\begin_inset Formula $p:=(\Vert a\Vert\cos\alpha)\frac{v}{\Vert v\Vert}$ +\end_inset + + es la proyección de +\begin_inset Formula $a$ +\end_inset + + en +\begin_inset Formula $\langle v\rangle$ +\end_inset + +, luego +\begin_inset Formula $H_{v}a=a-2p$ +\end_inset + + es la simetría de +\begin_inset Formula $a$ +\end_inset + + sobre +\begin_inset Formula $v^{\bot}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $H_{v}$ +\end_inset + + es unitaria. + +\series bold +Demostración: +\series default + Para +\begin_inset Formula $v=0$ +\end_inset + + es obvio. + Para +\begin_inset Formula $v\neq0$ +\end_inset + +, +\begin_inset Formula $(vv^{*})^{*}=v^{**}v^{*}=vv^{*}$ +\end_inset + +, luego +\begin_inset Formula +\[ +H_{v}H_{v}^{*}=\left(I_{n}-\frac{2}{v^{*}v}vv^{*}\right)\left(I_{n}-\frac{2}{v^{*}v}vv^{*}\right)=I_{n}-4\frac{vv^{*}}{v^{*}v}+4\frac{vv^{*}vv^{*}}{v^{*}vv^{*}v}=I_{n}-4\frac{vv^{*}}{v^{*}v}+4\frac{v\Vert v\Vert^{2}v^{*}}{\Vert v\Vert^{2}v^{*}v}=I_{n}, +\] + +\end_inset + +con lo que +\begin_inset Formula $H_{v}^{*}=H_{v}^{-1}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $a\in\mathbb{C}^{n}$ +\end_inset + + y +\begin_inset Formula $\alpha$ +\end_inset + + tal que +\begin_inset Formula $e^{i\alpha}=\text{sign}a_{1}$ +\end_inset + +, las matrices +\begin_inset Formula $A_{\gamma}:=H_{a+(\gamma,0,\dots,0)}$ +\end_inset + + con +\begin_inset Formula $\gamma=\pm\Vert a\Vert e^{i\alpha}$ +\end_inset + + cumplen +\begin_inset Formula $A_{\gamma}a=(\mp\Vert a\Vert e^{i\alpha},0,\dots,0)$ +\end_inset + +. + +\series bold +Demostración: +\series default + Para +\begin_inset Formula $a=0$ +\end_inset + + es +\begin_inset Formula $\gamma=0$ +\end_inset + + y +\begin_inset Formula $A_{\gamma}=H_{0}$ +\end_inset + +, con lo que +\begin_inset Formula $A_{\gamma}a=I_{n}0=0$ +\end_inset + +. + Sean +\begin_inset Formula $a\neq0$ +\end_inset + +, +\begin_inset Formula $e_{1}:=(1,0,\dots,0)$ +\end_inset + + y +\begin_inset Formula $v_{\gamma}:=a+\gamma e_{1}$ +\end_inset + +, entonces +\begin_inset Formula $v_{\gamma}^{*}a=(a^{*}+\overline{\gamma}e_{1}^{*})a=\Vert a\Vert^{2}+\overline{\gamma}a_{1}$ +\end_inset + + y +\begin_inset Formula $v_{\gamma}^{*}v_{\gamma}=(a^{*}+\overline{\gamma}e_{1}^{*})(a+\gamma e_{1})=\Vert a\Vert^{2}+2\text{Re}(\overline{\gamma}a_{1})+|\gamma|^{2}$ +\end_inset + +, luego +\begin_inset Formula +\begin{eqnarray*} +H_{v}a & = & a-2\frac{\Vert a\Vert^{2}+\overline{\gamma}a_{1}}{\Vert a\Vert^{2}+2\text{Re}(\overline{\gamma}a_{1})+|\gamma|^{2}}(a+\gamma e_{1})\\ + & = & \left(1-2\frac{\Vert a\Vert^{2}+\overline{\gamma}a_{1}}{\Vert a\Vert^{2}+2\text{Re}(\overline{\gamma}a_{1})+|\gamma|^{2}}\right)a-2\gamma\frac{\Vert a\Vert^{2}+\overline{\gamma}a_{1}}{\Vert a\Vert^{2}+2\text{Re}(\overline{\gamma}a_{1})+|\gamma|^{2}}e_{1}, +\end{eqnarray*} + +\end_inset + +pero para +\begin_inset Formula $\gamma=\pm\Vert a\Vert e^{i\alpha}$ +\end_inset + +, +\begin_inset Formula +\[ +2\frac{\Vert a\Vert^{2}+\overline{\gamma}a_{1}}{\Vert a\Vert^{2}+2\text{Re}(\overline{\gamma}a_{1})+|\gamma|^{2}}=2\frac{\Vert a\Vert^{2}\pm\Vert a\Vert e^{-i\alpha}a_{1}}{\Vert a\Vert^{2}+2\text{Re}(\pm\Vert a\Vert e^{-i\alpha}a_{1})+\Vert a\Vert^{2}\Vert e^{i\alpha}\Vert^{2}}=\frac{\Vert a\Vert^{2}\pm\Vert a\Vert e^{-i\alpha}a_{1}}{\Vert a\Vert^{2}\pm\Vert a\Vert e^{-i\alpha}a_{1}}=1, +\] + +\end_inset + +luego el coeficiente de +\begin_inset Formula $a$ +\end_inset + + en la última expresión de +\begin_inset Formula $H_{v}a$ +\end_inset + + es +\begin_inset Formula $1-1=0$ +\end_inset + + y el de +\begin_inset Formula $e_{1}$ +\end_inset + + es +\begin_inset Formula $-\gamma=\mp\Vert a\Vert e^{i\alpha}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una +\series bold +factorización QR +\series default + de una matriz +\begin_inset Formula $A\in{\cal M}_{m\times n}(\mathbb{C})$ +\end_inset + + es un par +\begin_inset Formula $(Q,R)$ +\end_inset + + con +\begin_inset Formula $Q\in{\cal M}_{m}$ +\end_inset + + es ortogonal y +\begin_inset Formula $R\in{\cal M}_{m\times n}$ +\end_inset + + es triangular superior. + El +\series bold +método de Householder +\series default + para obtener esta factorización es el algoritmo +\begin_inset CommandInset ref +LatexCommand ref +reference "alg:householder" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +, y consiste en usar matrices de Householder +\begin_inset Formula $H_{1},\dots,H_{m}$ +\end_inset + + para ir eliminando la parte inferior de las columnas de +\begin_inset Formula $A$ +\end_inset + + haciendo +\begin_inset Formula $R:=H_{m}\cdots H_{1}A$ +\end_inset + + y +\begin_inset Formula $Q:=(H_{m}\cdots H_{1})^{-1}=H_{1}^{-1}\cdots H_{m}^{-1}=H_{1}^{*}\cdots H_{m}^{*}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Float algorithm +wide false +sideways false +status open + +\begin_layout Plain Layout +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +Entrada{Matriz $A$ de tamaño $m +\backslash +times n$.} +\end_layout + +\begin_layout Plain Layout + + +\backslash +Salida{Factorización $(Q,R:=(r_{ij}))$ de $A$.} +\end_layout + +\begin_layout Plain Layout + +Inicializar $R +\backslash +gets A$ y $Q +\backslash +gets I_m$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + +\backslash +Para{$k +\backslash +gets 1$ +\backslash +KwA $n$}{ +\end_layout + +\begin_layout Plain Layout + + Obtener un vector $v$ de tamaño $m-k+1$ tal que $H_v(r_{kk}, +\backslash +dots,r_{mk})=(x,0, +\backslash +dots,0)$ para algún $x$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + $H +\backslash +gets H_{(0, +\backslash +dots,0,v_1, +\backslash +dots,v_m-k+1)}= +\backslash +left( +\backslash +begin{array}{c|c} +\end_layout + +\begin_layout Plain Layout + + I_{k-1} & 0 +\backslash + +\backslash + +\backslash +hline +\end_layout + +\begin_layout Plain Layout + + 0 & H' +\end_layout + +\begin_layout Plain Layout + + +\backslash +end{array} +\backslash +right)$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + $Q +\backslash +gets QH^*$ +\end_layout + +\begin_layout Plain Layout + + +\backslash +tcp*{$QH^*HR=QR=A$} +\end_layout + +\begin_layout Plain Layout + + $R +\backslash +gets HR$ +\end_layout + +\begin_layout Plain Layout + + +\backslash +tcp*{{ +\backslash +rm Anula $r_{k+1,k}, +\backslash +dots,r_{m,k}$}} +\end_layout + +\begin_layout Plain Layout + +} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Plain Layout +\begin_inset Caption Standard + +\begin_layout Plain Layout +\begin_inset CommandInset label +LatexCommand label +name "alg:householder" + +\end_inset + +Método de Householder de factorización QR +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $A\in{\cal M}_{m\times n}$ +\end_inset + + tiene rango +\begin_inset Formula $n\leq m$ +\end_inset + + y admite una factorización QR +\begin_inset Formula $(Q,R)$ +\end_inset + +, sean +\begin_inset Formula $A_{1},\dots,A_{n}$ +\end_inset + + las columnas de +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $Q_{1},\dots,Q_{m}$ +\end_inset + + las de +\begin_inset Formula $Q$ +\end_inset + +, entonces +\begin_inset Formula $\text{span}(A_{1},\dots,A_{k})=\text{span}(Q_{1},\dots,Q_{k})$ +\end_inset + + para +\begin_inset Formula $k\in\{1,\dots,n\}$ +\end_inset + +, y +\begin_inset Formula $\text{span}(A_{1},\dots,A_{n})^{\bot}=\text{span}(Q_{n+1},\dots,Q_{m})$ +\end_inset + +. + Además, si +\begin_inset Formula $Q'$ +\end_inset + + es la submatriz de +\begin_inset Formula $Q$ +\end_inset + + formada por sus +\begin_inset Formula $n$ +\end_inset + + primeras columnas y +\begin_inset Formula $R'$ +\end_inset + + es la submatriz de +\begin_inset Formula $R$ +\end_inset + + formada por sus +\begin_inset Formula $n$ +\end_inset + + primeras filas, entonces +\begin_inset Formula $A=Q'R'$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $(Q,R)$ +\end_inset + + es una factorización QR de +\begin_inset Formula $A\in{\cal M}_{m\times n}$ +\end_inset + +, para resolver el sistema +\begin_inset Formula $Ax=b$ +\end_inset + +, resolvemos +\begin_inset Formula $Rx=Q^{*}b=Qb$ +\end_inset + + por el método ascendente. + Como las matrices de Householder son ortogonales, el condicionamiento del + problema no varía. +\end_layout + +\begin_layout Standard +En la práctica no se calculan las matrices de Householder, sino su acción + sobre los vectores: +\begin_inset Formula +\begin{align*} +H_{v}b & =b-2\frac{v^{*}b}{\Vert v\Vert^{2}}v; & b^{*}H_{v} & =b^{*}-2\frac{b^{*}v}{\Vert v\Vert^{2}}v^{*}. +\end{align*} + +\end_inset + +Así, multiplicar una matriz de Householder de tamaño +\begin_inset Formula $n$ +\end_inset + + por un vector (a la izquierda o la derecha) es +\begin_inset Formula $\Theta(n)$ +\end_inset + +, con lo que multiplicar una matriz de Householder por una matriz de tamaño + +\begin_inset Formula $n\times m$ +\end_inset + + es +\begin_inset Formula $\Theta(nm)$ +\end_inset + +, y es fácil ver que la factorización QR de una matriz de tamaño +\begin_inset Formula $m\times n$ +\end_inset + + con el algoritmo indicado es +\begin_inset Formula $\Theta(nm(m+n))$ +\end_inset + +. +\end_layout + +\begin_layout Section +Problemas de mínimos cuadrados +\end_layout + +\begin_layout Standard +Dado un espacio vectorial normado +\begin_inset Formula $(E,\Vert\cdot\Vert)$ +\end_inset + +, un subespacio +\begin_inset Formula $G$ +\end_inset + + de +\begin_inset Formula $E$ +\end_inset + + y +\begin_inset Formula $f\in E$ +\end_inset + +, decimos que +\begin_inset Formula $g\in G$ +\end_inset + + es una +\series bold +mejor aproximación +\series default + de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $G$ +\end_inset + + si +\begin_inset Formula +\[ +\Vert f-g\Vert=\inf_{h\in G}\Vert f-h\Vert. +\] + +\end_inset + +Si +\begin_inset Formula $G$ +\end_inset + + es de dimensión finita sobre +\begin_inset Formula $\mathbb{R}$ +\end_inset + + o +\begin_inset Formula $\mathbb{C}$ +\end_inset + +, esta mejor aproximación existe. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $K:=\{g\in G:\Vert f-g\Vert\leq\Vert f\Vert\}$ +\end_inset + +, +\begin_inset Formula $K\neq\emptyset$ +\end_inset + + porque +\begin_inset Formula $0\in K$ +\end_inset + +. + +\begin_inset Formula $K$ +\end_inset + + es cerrado y acotado al ser la bola +\begin_inset Formula $\overline{B}(f,\Vert f\Vert)$ +\end_inset + +, luego por estar en +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + + o +\begin_inset Formula $\mathbb{C}^{n}\cong\mathbb{R}^{2n}$ +\end_inset + +, es compacto. + Sea +\begin_inset Formula $(g_{n})_{n}$ +\end_inset + + una sucesión en +\begin_inset Formula $K$ +\end_inset + + tal que +\begin_inset Formula $\Vert f-g_{n}\Vert\to\inf_{h\in G}\Vert f-h\Vert$ +\end_inset + +, por compacidad, +\begin_inset Formula $g\in K$ +\end_inset + +, luego +\begin_inset Formula $g$ +\end_inset + + es una mejor aproximación de +\begin_inset Formula $f$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un +\series bold +espacio de Hilbert +\series default + es un espacio normado completo. + Algunos son: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + + con la norma euclídea. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula ${\cal C}([a,b])$ +\end_inset + + con la norma dada por +\begin_inset Formula +\[ +\langle f,g\rangle:=\int_{a}^{b}f(x)g(x)w(x)dx, +\] + +\end_inset + +donde +\begin_inset Formula $w\in{\cal C}([a,b])$ +\end_inset + + tiene rango +\begin_inset Formula $(0,+\infty)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dado un espacio vectorial +\begin_inset Formula $E$ +\end_inset + + con producto escalar, llamamos +\series bold +ángulo +\series default + entre +\begin_inset Formula $f,g\in E\setminus\{0\}$ +\end_inset + + al +\begin_inset Formula $\alpha\in[0,\pi]$ +\end_inset + + con +\begin_inset Formula $\langle f,g\rangle=\Vert f\Vert\Vert g\Vert\cos\alpha$ +\end_inset + +, y decimos que +\begin_inset Formula $f,g\in E$ +\end_inset + + son +\series bold +ortogonales +\series default +, +\begin_inset Formula $f\bot g$ +\end_inset + +, si +\begin_inset Formula $\langle f,g\rangle=0$ +\end_inset + +. + Entonces, +\begin_inset Formula $\forall f,g\in E$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\Vert f+g\Vert^{2}=\Vert f\Vert^{2}+\Vert g\Vert^{2}+2\langle f,g\rangle$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Teorema de Pitágoras: +\series default + +\begin_inset Formula $f\bot g\iff\Vert f+g\Vert^{2}=\Vert f\Vert^{2}+\Vert g\Vert^{2}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Desigualdad de Cauchy-Schwartz: +\series default + +\begin_inset Formula $|\langle f,g\rangle|\leq\Vert f\Vert\Vert g\Vert$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Identidad del paralelogramo: +\series default + +\begin_inset Formula $\Vert f+g\Vert^{2}+\Vert f-g\Vert^{2}=2\Vert f\Vert^{2}+2\Vert g\Vert^{2}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $E$ +\end_inset + + un espacio normado con producto escalar y +\begin_inset Formula $C\subseteq E$ +\end_inset + + no vacío, convexo y completo: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\exists!g\in C:\Vert g\Vert=\min_{h\in C}\Vert h\Vert$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula $\alpha:=\inf_{h\in C}\Vert h\Vert$ +\end_inset + +, para +\begin_inset Formula $g,h\in C$ +\end_inset + +, por la identidad del paralelogramo, +\begin_inset Formula $\frac{1}{4}\Vert g-h\Vert^{2}=\frac{1}{2}\Vert g\Vert^{2}+\frac{1}{2}\Vert h\Vert^{2}-\frac{1}{4}\Vert g+h\Vert^{2}$ +\end_inset + +, pero +\begin_inset Formula $\frac{1}{4}\Vert g+h\Vert^{2}=\Vert\frac{g+h}{2}\Vert^{2}\overset{C\text{ convexo}}{\geq}\alpha^{2}$ +\end_inset + +, luego +\begin_inset Formula $\frac{1}{4}\Vert g-h\Vert^{2}\leq\frac{1}{2}\Vert g\Vert^{2}+\frac{1}{2}\Vert h\Vert^{2}-\alpha^{2}$ +\end_inset + +. + Entonces, dada una sucesión +\begin_inset Formula $(g_{n})_{n}$ +\end_inset + + de elementos de +\begin_inset Formula $C$ +\end_inset + + con +\begin_inset Formula $\Vert g_{n}\Vert\to\alpha$ +\end_inset + +, +\begin_inset Formula $\frac{1}{4}\Vert g_{n}-g_{m}\Vert^{2}\leq\frac{1}{2}\Vert g_{n}\Vert^{2}+\frac{1}{2}\Vert g_{m}\Vert^{2}-\alpha^{2}\to0$ +\end_inset + + cuando +\begin_inset Formula $n,m\to\infty$ +\end_inset + +, luego +\begin_inset Formula $(g_{n})_{n}$ +\end_inset + + es de Cauchy y, por completitud, convergente hacia un cierto +\begin_inset Formula $g\in C$ +\end_inset + + que cumple +\begin_inset Formula $\Vert g\Vert=\lim_{n}\Vert g_{n}\Vert=\alpha$ +\end_inset + +. + Si hubiera otro +\begin_inset Formula $h\in C$ +\end_inset + + con +\begin_inset Formula $\Vert h\Vert=\alpha$ +\end_inset + +, entonces +\begin_inset Formula $0\leq\frac{1}{4}\Vert g-h\Vert^{2}\leq\frac{1}{2}\alpha^{2}+\frac{1}{2}\alpha^{2}-\alpha^{2}=0$ +\end_inset + +, luego +\begin_inset Formula $g=h$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Para cada +\begin_inset Formula $f\in E$ +\end_inset + + existe una única mejor aproximación +\begin_inset Formula $g\in C$ +\end_inset + + de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $C$ +\end_inset + +. + +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $f-C=\{f-h\}_{h\in C}$ +\end_inset + + es convexo y completo, luego existe un único +\begin_inset Formula $t\in C$ +\end_inset + + con +\begin_inset Formula $\Vert t\Vert=\min_{h\in f-C}\Vert h\Vert=\min_{h\in C}\Vert f-h\Vert$ +\end_inset + + y +\begin_inset Formula $f-t$ +\end_inset + + es la mejor aproximación buscada. +\end_layout + +\end_deeper +\begin_layout Standard +Sean +\begin_inset Formula $E$ +\end_inset + + un espacio normado con producto escalar, +\begin_inset Formula $G\subseteq E$ +\end_inset + + un subespacio vectorial y +\begin_inset Formula $f\in E$ +\end_inset + +, +\begin_inset Formula $g\in G$ +\end_inset + + es una mejor aproximación de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $G$ +\end_inset + + si y sólo si +\begin_inset Formula $f-g\bot G$ +\end_inset + +, esto es, +\begin_inset Formula $\forall h\in G,f-g\bot h$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Dados +\begin_inset Formula $h\in G$ +\end_inset + + y +\begin_inset Formula $a>0$ +\end_inset + +, como +\begin_inset Formula $g-ah\in G$ +\end_inset + +, +\begin_inset Formula $\Vert f-g\Vert^{2}\leq\Vert f-(g-ah)\Vert^{2}=\Vert f-g+ah\Vert^{2}=\Vert f-g\Vert^{2}+a^{2}\Vert h\Vert^{2}+2a\langle f-g,h\rangle$ +\end_inset + +, luego +\begin_inset Formula $\langle f-g,h\rangle\geq-\frac{a}{2}\Vert h\Vert^{2}$ +\end_inset + + y, haciendo +\begin_inset Formula $a\to0$ +\end_inset + +, +\begin_inset Formula $\langle f-g,h\rangle\geq0$ +\end_inset + +, y cambiando +\begin_inset Formula $h$ +\end_inset + + por +\begin_inset Formula $-h$ +\end_inset + +, +\begin_inset Formula $\langle f-g,-h\rangle=-\langle f-g,h\rangle\geq0$ +\end_inset + +, luego +\begin_inset Formula $\langle f-g,h\rangle=0$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Para +\begin_inset Formula $h\in G$ +\end_inset + +, como +\begin_inset Formula $f-g\bot g-h$ +\end_inset + +, +\begin_inset Formula $\Vert f-h\Vert^{2}=\Vert f-g\Vert^{2}+\Vert g-h\Vert^{2}\geq\Vert f-g\Vert^{2}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $G\subseteq E$ +\end_inset + + es de dimensión finita, +\begin_inset Formula $\{g_{1},\dots,g_{m}\}$ +\end_inset + + es un conjunto de vectores que genera +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $f\in E$ +\end_inset + +, las tuplas +\begin_inset Formula $(x_{1},\dots,x_{m})$ +\end_inset + + tales que +\begin_inset Formula $f\bot\sum_{k=1}^{m}x_{k}g_{k}$ +\end_inset + + son precisamente las soluciones del sistema de +\series bold +ecuaciones normales +\series default + +\begin_inset Formula +\[ +\left\{ \sum_{j=1}^{m}\langle g_{j},g_{k}\rangle x_{j}=\langle f,g_{k}\rangle\right\} _{k\in\{1,\dots,m\}}. +\] + +\end_inset + +En particular, si +\begin_inset Formula $(g_{1},\dots,g_{m})$ +\end_inset + + es base de +\begin_inset Formula $G$ +\end_inset + +, el sistema es compatible determinado, y si esta base es ortonormal, la + proyección ortogonal de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $G$ +\end_inset + + es +\begin_inset Formula +\[ +\sum_{k=1}^{m}\langle f,g_{k}\rangle g_{k}, +\] + +\end_inset + +por lo que el problema de buscar una mejor aproximación por mínimos cuadrados + en un subespacio de un espacio de dimensión finita se reduce al de resolver + un sistema de ecuaciones lineales conocida una base del subespacio o al + de aplicar una fórmula conocida una base ortonormal de este. +\end_layout + +\begin_layout Standard +Un +\series bold +sistema lineal sobredeterminado +\series default + es uno con más ecuaciones que incógnitas en que la matriz de coeficientes + tiene rango máximo. + En general estos son incompatibles. + No obstante, para +\begin_inset Formula $A\in{\cal M}_{m\times n}(\mathbb{R})$ +\end_inset + + con +\begin_inset Formula $n\leq m$ +\end_inset + + tal que +\begin_inset Formula $\text{rg}A=n$ +\end_inset + + y +\begin_inset Formula $b\in\mathbb{R}^{m}$ +\end_inset + +, existe +\begin_inset Formula $u\in\mathbb{R}^{n}$ +\end_inset + + tal que +\begin_inset Formula $\forall x\in\mathbb{R}^{n},\Vert Au-b\Vert\leq\Vert Ax-b\Vert$ +\end_inset + +, y este es la única solución de +\begin_inset Formula $A^{t}Ax=A^{t}b$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $A_{1},\dots,A_{n}$ +\end_inset + + las columnas de +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $G:=\text{span}(A_{1},\dots,A_{n})$ +\end_inset + +, la mejor aproximación +\begin_inset Formula $\sum_{k=1}^{n}A_{k}x_{k}$ +\end_inset + + de +\begin_inset Formula $b$ +\end_inset + + en +\begin_inset Formula $G$ +\end_inset + + existe y para cada +\begin_inset Formula $k\in\{1,\dots,n\}$ +\end_inset + + cumple +\begin_inset Formula +\[ +(A_{k})^{t}Ax=\langle A_{k},Ax\rangle=\left\langle A_{k},\sum_{j=1}^{n}A_{j}x_{j}\right\rangle =\sum_{j=1}^{n}\langle A_{k},A_{j}\rangle x_{j}=\langle A_{k},b\rangle=(A_{k})^{t}b, +\] + +\end_inset + +luego cumple +\begin_inset Formula $A^{t}Ax=A^{t}b$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Para resolver este sistema por factorización LU, hacemos los productos +\begin_inset Formula $A^{t}A$ +\end_inset + + ( +\begin_inset Formula $\Theta(n^{2}m)$ +\end_inset + +) y +\begin_inset Formula $A^{t}b$ +\end_inset + + ( +\begin_inset Formula $\Theta(nm)$ +\end_inset + +), factorizamos ( +\begin_inset Formula $\Theta(n^{3})$ +\end_inset + +) y resolvemos por los métodos ascendente y descendente ( +\begin_inset Formula $\Theta(n^{2})$ +\end_inset + +), y el tiempo es +\begin_inset Formula $\Theta(n^{2}(m+n))$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Por factorización QR, vemos que si +\begin_inset Formula $(Q,R)$ +\end_inset + + es una factorización QR de +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $A^{t}=(QR)^{t}=R^{t}Q^{t}$ +\end_inset + +, luego +\begin_inset Formula $A^{t}A=R^{t}Q^{t}QR=R^{t}R$ +\end_inset + + y solo tenemos que resolver +\begin_inset Formula $R^{t}Rx=A^{t}b$ +\end_inset + +. + Así, hacemos el producto +\begin_inset Formula $A^{t}b$ +\end_inset + + ( +\begin_inset Formula $\Theta(nm)$ +\end_inset + +), factorizamos calculando solo +\begin_inset Formula $R$ +\end_inset + + ( +\begin_inset Formula $\Theta(n^{2}m)$ +\end_inset + +) y resolvemos por los métodos ascendente y descendente ( +\begin_inset Formula $\Theta(n^{2})$ +\end_inset + +), y el tiempo es +\begin_inset Formula $\Theta(n^{2}m)$ +\end_inset + +. +\end_layout + +\end_body +\end_document @@ -967,5 +967,79 @@ n columnas. \end_layout +\begin_layout Section +Descomposiciones matriciales +\end_layout + +\begin_layout Description + +\family typewriter +[ +\series bold +\emph on +L +\emph default +, +\emph on +U +\emph default +, +\emph on +P +\emph default +, +\series default +\emph on +Q +\series bold +\emph default +]=lu( +\series default +\emph on +A +\emph default +) +\family default + Descomposición de Gauss de +\family typewriter +\series bold +\emph on +A +\family default +\series default +\emph default + con elección de pivote total. +\end_layout + +\begin_layout Description + +\family typewriter +[ +\emph on +L +\emph default +, +\emph on +U +\emph default +, +\emph on +P +\emph default +]=lu( +\emph on +A +\emph default +) +\family default + Descomposición de Gauss de +\family typewriter +\emph on +A +\family default +\emph default + con elección de pivote parcial. +\end_layout + \end_body \end_document |
