diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-05-22 21:38:01 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-05-22 21:38:01 +0200 |
| commit | 79d1f965297ebd88f8f4131291748a3a961b91b2 (patch) | |
| tree | afbb27c7dbaf65ca104769b7ab052e3cd77a0b68 /anm | |
| parent | f2acc97f6cc7c9c5f8ad46ae5e9f436f7222308c (diff) | |
anm/n5
Diffstat (limited to 'anm')
| -rw-r--r-- | anm/n.lyx | 62 | ||||
| -rw-r--r-- | anm/n5.lyx | 1121 |
2 files changed, 1174 insertions, 9 deletions
@@ -7,6 +7,7 @@ \textclass book \begin_preamble \usepackage{blkarray} +\input{../defs} \end_preamble \use_default_options true \begin_modules @@ -137,26 +138,55 @@ Bibliografía: \end_layout \begin_layout Itemize -Introducción y complementos de análisis matricial, Antonio José Pallarés - Ruiz (2019), Universidad de Murcia. +Antonio José Pallarés Ruiz (2019), Universidad de Murcia. + +\emph on +Introducción y complementos de análisis matricial +\emph default +. \end_layout \begin_layout Itemize -Introduction à l'analyse numérique matricielle et à l'optimisation, P. +P. G. Ciarlet (1990). + +\emph on +Introduction à l'analyse numérique matricielle et à l'optimisation +\emph default +. \end_layout \begin_layout Itemize -Numerical mathematics, G. - Hammerlin y K. +G. + Hammerlin, K. H. - Hoffmann. + Hoffmann (1991). + +\emph on +Numerical Mathemati +\emph default +cs. +\end_layout + +\begin_layout Itemize +J. + Stoer y R. + Bulirsch (1993). + +\emph on +Introduction to Numerical Analysis, Second Edition +\emph default +. \end_layout \begin_layout Itemize -Comparisons of spectral radii and the theorem of Stein–Rosenberg, Wen Li, - Ludwig Elsner y Linzhang Lu (2000), +Wen Li, Ludwig Elsner, Linzhang Lu (2000). + +\emph on +Comparisons of spectral radii and the theorem of Stein–Rosenberg +\emph default + ( \begin_inset Flex URL status open @@ -167,7 +197,7 @@ https://core.ac.uk/download/pdf/82203897.pdf \end_inset -. +). \end_layout \begin_layout Chapter @@ -227,6 +257,20 @@ filename "n4.lyx" \end_layout \begin_layout Chapter +Sistemas de ecuaciones no lineales +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n5.lyx" + +\end_inset + + +\end_layout + +\begin_layout Chapter \start_of_appendix Octave \end_layout diff --git a/anm/n5.lyx b/anm/n5.lyx new file mode 100644 index 0000000..99fb55e --- /dev/null +++ b/anm/n5.lyx @@ -0,0 +1,1121 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\usepackage{blkarray} +\end_preamble +\use_default_options true +\begin_modules +algorithm2e +\end_modules +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Iteración de punto fijo +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{CN} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dado un espacio métrico +\begin_inset Formula $(X,d)$ +\end_inset + +, +\begin_inset Formula $f:X\to X$ +\end_inset + + es +\series bold +contractiva +\series default + si existe +\begin_inset Formula $c\in(0,1)$ +\end_inset + + tal que +\begin_inset Formula $\forall x,y\in X,d(f(x),f(y))\leq cd(x,y)$ +\end_inset + +, y decimos que +\begin_inset Formula $c$ +\end_inset + + es una +\series bold +constante de contractividad +\series default + de +\begin_inset Formula $f$ +\end_inset + +. + [...] +\series bold +Teorema del punto fijo de Banach: +\series default + Si +\begin_inset Formula $(X,d)$ +\end_inset + + es completo y +\begin_inset Formula $f:X\to X$ +\end_inset + + es contractiva con constante +\begin_inset Formula $c$ +\end_inset + +, existe un único punto fijo +\begin_inset Formula $\xi\in X$ +\end_inset + + y la sucesión dada por +\begin_inset Formula $x_{0}$ +\end_inset + + arbitrario y +\begin_inset Formula $x_{n+1}=f(x)$ +\end_inset + + converge a +\begin_inset Formula $\xi$ +\end_inset + + con +\begin_inset Formula +\[ +d(x_{n},\xi)\leq\frac{c^{n}}{1-c}d(x_{0},x_{1}). +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{FVV1} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Definimos la norma de una aplicación +\begin_inset Formula $L:(E,\Vert\cdot\Vert)\rightarrow(F,\Vert\cdot\Vert')$ +\end_inset + + como +\begin_inset Formula $\Vert L\Vert:=[...]\sup\{\Vert L(x)\Vert'\}_{x\in E,\Vert x\Vert\leq1}$ +\end_inset + + [...]. +\end_layout + +\begin_layout Standard +[...] En +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + +, todas las normas son equivalentes. + [...] Un +\series bold +espacio de Banach +\series default + es un espacio normado completo. + [...] +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + + es un espacio de Banach con cualquier norma. + +\end_layout + +\begin_layout Standard +[...] El +\series bold +teorema del incremento finito +\series default + afirma que, sean +\begin_inset Formula $f:\Omega\subseteq\mathbb{R}^{m}\rightarrow\mathbb{R}^{n}$ +\end_inset + +, +\begin_inset Formula $a,b\in\Omega$ +\end_inset + + con el segmento +\begin_inset Formula $[a,b]\subseteq\Omega$ +\end_inset + + y +\begin_inset Formula $L:\mathbb{R}^{m}\rightarrow\mathbb{R}^{n}$ +\end_inset + + lineal, si +\begin_inset Formula $\Vert df(x)\Vert\leq M$ +\end_inset + + para todo +\begin_inset Formula $x\in[a,b]$ +\end_inset + + se tiene +\begin_inset Formula $\Vert f(b)-f(a)\Vert\leq M\Vert b-a\Vert$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember{FVV1} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $\Omega\subseteq\mathbb{R}^{n}$ +\end_inset + + abierto, +\begin_inset Formula $f:\Omega\to\mathbb{R}^{n}$ +\end_inset + + +\begin_inset Formula ${\cal C}^{1}$ +\end_inset + + y +\begin_inset Formula $x\in\Omega$ +\end_inset + + un punto fijo de +\begin_inset Formula $f$ +\end_inset + + con +\begin_inset Formula $\Vert df(x)\Vert<1$ +\end_inset + +, existe +\begin_inset Formula $\delta>0$ +\end_inset + + tal que +\begin_inset Formula $f(\overline{B}(x,\delta))\subseteq\overline{B}(x,r)$ +\end_inset + +, y toda sucesión +\begin_inset Formula $(x_{n})_{n}$ +\end_inset + + dada por +\begin_inset Formula $x_{0}\in\overline{B}(x,\delta)$ +\end_inset + + y +\begin_inset Formula $x_{k+1}:=f(x_{k})$ +\end_inset + + converge. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $R:=[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]$ +\end_inset + +, +\begin_inset Formula $f:R\to R$ +\end_inset + + diferenciable y +\begin_inset Formula $K\in(0,1)$ +\end_inset + + tal que +\begin_inset Formula +\[ +\left|\frac{\partial f_{i}}{\partial x_{j}}(x)\right|\leq\frac{K}{n} +\] + +\end_inset + +para cada +\begin_inset Formula $x\in R$ +\end_inset + + e +\begin_inset Formula $i,j\in\{1,\dots,n\}$ +\end_inset + +, entonces +\begin_inset Formula $\Vert df\Vert_{\infty}\leq K$ +\end_inset + +. +\end_layout + +\begin_layout Standard +La +\series bold +aceleración de Gauss-Seidel +\series default + de una iteración de punto fijo consiste en considerar, en vez de +\begin_inset Formula $x_{k+1}:=g(x_{k})$ +\end_inset + +, +\begin_inset Formula +\begin{eqnarray*} +x_{(k+1)1} & := & g_{1}(x_{k1},\dots,x_{kn}),\\ +x_{(k+1)2} & := & g_{2}(x_{(k+1)1},x_{k2},\dots,x_{kn}),\\ + & \vdots\\ +x_{(k+1)n} & := & g_{n}(x_{(k+1)1},\dots,x_{(k+1)(n-1)},x_{kn}). +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Section +Método de Newton +\end_layout + +\begin_layout Standard +Consideremos una ecuación +\begin_inset Formula $f(x)=0$ +\end_inset + + con +\begin_inset Formula $f:\mathbb{R}^{n}\to\mathbb{R}^{n}$ +\end_inset + + diferenciable. + Sustituyendo +\begin_inset Formula $f$ +\end_inset + + por su polinomio de Taylor de primer orden en +\begin_inset Formula $x_{0}$ +\end_inset + + tenemos +\begin_inset Formula $f(x_{0})+df(x_{0})(x-x_{0})=0$ +\end_inset + +, lo que nos da una aproximación de +\begin_inset Formula $x$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $f:\Omega\subseteq\mathbb{R}^{n}\to\mathbb{R}^{n}$ +\end_inset + + es +\begin_inset Formula ${\cal C}^{2}$ +\end_inset + +, +\begin_inset Formula $\xi\in\Omega$ +\end_inset + + es un cero de +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $df(\xi)$ +\end_inset + + es no singular, existe +\begin_inset Formula $r>0$ +\end_inset + + tal que, para todo +\begin_inset Formula $x\in B(\xi,r)$ +\end_inset + +, la sucesión dada por +\begin_inset Formula $x_{0}:=x$ +\end_inset + + y +\begin_inset Formula $x_{k+1}:=x_{k}-df(x_{k})^{-1}f(x_{k})$ +\end_inset + + converge a +\begin_inset Formula $\xi$ +\end_inset + +, y existe +\begin_inset Formula $M>0$ +\end_inset + + tal que +\begin_inset Formula +\[ +\Vert x_{k+1}-\xi\Vert\leq M\Vert x_{k}-\xi\Vert^{2}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Demostración +\series default + para +\begin_inset Formula $n=2$ +\end_inset + + +\series bold +: +\series default + Queremos ver que +\begin_inset Formula $g(x):=x-df(x)^{-1}f(x)$ +\end_inset + + es contractiva cerca de +\begin_inset Formula $\xi$ +\end_inset + +, para lo que basta ver que es +\begin_inset Formula ${\cal C}^{1}$ +\end_inset + + y que +\begin_inset Formula $dg(\xi)=0$ +\end_inset + +. + Como +\begin_inset Formula $f$ +\end_inset + + es +\begin_inset Formula ${\cal C}^{2}$ +\end_inset + +, +\begin_inset Formula $\det\circ df$ +\end_inset + + es continua y diferenciable en +\begin_inset Formula $\Omega$ +\end_inset + +, y en particular, en un entorno de +\begin_inset Formula $\xi$ +\end_inset + +, las diferenciales tienen inversa +\begin_inset Formula +\[ +df(x)^{-1}\equiv\frac{1}{\det df(x)}\begin{pmatrix}\frac{\partial f_{2}}{\partial x_{2}}(x) & -\frac{\partial f_{1}}{\partial x_{2}}(x)\\ +\frac{\partial f_{2}(x)}{\partial x_{1}}(x) & \frac{\partial f_{1}(x)}{\partial x_{1}}(x) +\end{pmatrix}=:\begin{pmatrix}a_{11}(x) & a_{12}(x)\\ +a_{21}(x) & a_{22}(x) +\end{pmatrix}, +\] + +\end_inset + +y +\begin_inset Formula $a_{11},a_{12},a_{21},a_{22}$ +\end_inset + + son +\begin_inset Formula ${\cal C}^{1}$ +\end_inset + +. + Entonces +\begin_inset Formula +\[ +g(x,y):=\begin{pmatrix}x-a_{11}(x,y)f_{1}(x,y)-a_{12}(x,y)f_{2}(x,y)\\ +y-a_{21}(x,y)f_{1}(x,y)-a_{22}(x,y)f_{2}(x,y) +\end{pmatrix}. +\] + +\end_inset + +Las derivadas parciales de +\begin_inset Formula $g_{1}$ +\end_inset + + son +\begin_inset Formula +\begin{eqnarray*} +\frac{\partial g_{1}}{\partial x_{1}}(x) & = & 1-\frac{\partial a_{11}}{\partial x_{1}}(x)f_{1}(x)-a_{11}(x)\frac{\partial f_{1}}{\partial x_{1}}(x)-\frac{\partial a_{12}}{\partial x_{1}}(x)f_{2}(x)-a_{12}(x)\frac{\partial f_{2}}{\partial x_{1}}(x),\\ +\frac{\partial g_{1}}{\partial x_{2}}(x) & = & -\frac{\partial a_{11}}{\partial x_{2}}(x)f_{1}(x)-a_{11}(x)\frac{\partial f_{1}}{\partial x_{2}}(x)-\frac{\partial a_{12}}{\partial x_{2}}(x)f_{2}(x)-a_{12}(x)\frac{\partial f_{2}}{\partial x_{2}}(x). +\end{eqnarray*} + +\end_inset + +Así, como +\begin_inset Formula $f(\xi)=0$ +\end_inset + +, +\begin_inset Formula +\begin{eqnarray*} +\frac{\partial g_{1}}{\partial x_{1}}(\xi) & = & 1-a_{11}(\xi)\frac{\partial f_{1}}{\partial x_{1}}(\xi)-a_{12}(\xi)\frac{\partial f_{2}}{\partial x_{1}}(\xi)\\ + & = & 1-\frac{1}{\det df(x)}\left(\frac{\partial f_{2}}{\partial x_{2}}(\xi)\frac{\partial f_{1}}{\partial x_{1}}(\xi)-\frac{\partial f_{1}}{\partial x_{2}}(\xi)\frac{\partial f_{2}}{\partial x_{1}}(\xi)\right)=1-1=0;\\ +\frac{\partial g_{1}}{\partial x_{2}}(\xi) & = & -a_{11}(\xi)\frac{\partial f_{1}}{\partial x_{2}}(\xi)-a_{12}(\xi)\frac{\partial f_{2}}{\partial x_{2}}(\xi)\\ + & = & -\frac{1}{\det df(x)}\left(\frac{\partial f_{2}}{\partial x_{2}}(\xi)\frac{\partial f_{1}}{\partial x_{2}}(\xi)-\frac{\partial f_{1}}{\partial x_{2}}(\xi)\frac{\partial f_{2}}{\partial x_{2}}(\xi)\right)=0. +\end{eqnarray*} + +\end_inset + +Para +\begin_inset Formula $g_{2}$ +\end_inset + + es análogo, y solo queda ver el orden de convergencia. + Dados un abierto conexo +\begin_inset Formula $C\subseteq\mathbb{R}^{n}$ +\end_inset + + y +\begin_inset Formula $f:C\to\mathbb{R}^{n}$ +\end_inset + +, si existe +\begin_inset Formula $K>0$ +\end_inset + + tal que para +\begin_inset Formula $x,y\in C$ +\end_inset + +, +\begin_inset Formula $\Vert df(x)-df(y)\Vert\leq K\Vert x-y\Vert$ +\end_inset + +, entonces, para +\begin_inset Formula $x,y\in C$ +\end_inset + +, +\begin_inset Formula +\[ +\Vert f(x)-f(y)-df(y)(x-y)\Vert\leq\frac{K}{2}\Vert x-y\Vert^{2}. +\] + +\end_inset + + En efecto, sea +\begin_inset Formula $\varphi:[0,1]\to C$ +\end_inset + + dada por +\begin_inset Formula $\varphi(t):=f(y+t(x-y))$ +\end_inset + +, por la regla de la cadena, +\begin_inset Formula $\varphi'(t)=df(y+t(x-y))(x-y)$ +\end_inset + +, por lo que +\begin_inset Formula +\begin{align*} +\Vert\varphi'(t)-\varphi'(0)\Vert & =\Vert(df(y+t(x-y))-df(y))(x-y)\Vert\leq\\ + & \leq\Vert df(y+t(x-y))-df(y)\Vert\Vert x-y\Vert\leq Kt\Vert x-y\Vert^{2}, +\end{align*} + +\end_inset + +y como además +\begin_inset Formula +\[ +\Delta:=f(x)-f(y)-df(y)(x-y)=\varphi(1)-\varphi(0)-\varphi'(0)=\int_{0}^{1}(\varphi'(t)-\varphi'(0))dt, +\] + +\end_inset + +queda +\begin_inset Formula +\[ +\Vert\Delta\Vert\leq\int_{0}^{1}\Vert\varphi'(t)-\varphi'(0)\Vert dt\leq K\Vert x-y\Vert^{2}\int_{0}^{1}t\,dt=\frac{K}{2}\Vert x-y\Vert^{2}. +\] + +\end_inset + +Cuando esto se cumple, +\begin_inset Formula +\begin{align*} +\Vert x_{k+1}-\xi\Vert & =\Vert(x_{k}-\xi)-df(x_{k})^{-1}f(x_{k})\Vert=\Vert df(x_{k})^{-1}(df(x_{k})(x_{k}-\xi)-f(x_{k}))\Vert\leq\\ + & \leq\Vert df(x_{k})^{-1}\Vert\Vert df(x_{k})(x_{k}-\xi)-f(x_{k})\Vert\overset{f(\xi)=0}{=}\\ + & =\Vert df(x_{k})^{-1}\Vert\Vert f(\xi)-f(x_{k})-df(x_{k})(\xi-x_{k})\Vert\leq\Vert df(x_{k})^{-1}\Vert\frac{K}{2}\Vert x_{k}-\xi\Vert^{2}, +\end{align*} + +\end_inset + +y tomando +\begin_inset Formula $M:=\frac{K}{2}\sup_{x\in B(\xi,r)}\Vert df(x)^{-1}\Vert$ +\end_inset + + se obtiene la acotación. +\end_layout + +\begin_layout Section +Método de Broyden +\end_layout + +\begin_layout Standard +El método de Newton requiere calcular la matriz diferencial en cada iteración + ( +\begin_inset Formula $O(n^{2})$ +\end_inset + + si se usa derivación numérica) y resolver un sistema lineal ( +\begin_inset Formula $O(n^{3})$ +\end_inset + +). + Para reducir el orden de complejidad, podemos aproximar la diferencial + con una matriz +\begin_inset Formula $A_{k}$ +\end_inset + + tal que +\begin_inset Formula $A_{k}(x_{k}-x_{k-1})=f(x_{k})-f(x_{k-1})$ +\end_inset + +, con lo que solo necesitamos la diferencial para obtener +\begin_inset Formula $x_{1}$ +\end_inset + +. + A cambio, pasamos de orden de convergencia cuadrático a supralineal. +\end_layout + +\begin_layout Standard +Podemos usar +\begin_inset Formula +\[ +A_{k}:=A_{k-1}+\frac{1}{\Vert x_{k}-x_{k-1}\Vert_{2}^{2}}f(x_{k})(x_{k}-x_{k-1})^{t}, +\] + +\end_inset + +tomando +\begin_inset Formula $A_{0}:=df(x_{0})$ +\end_inset + +. + En efecto, como +\begin_inset Formula $x_{k}=x_{k-1}-A_{k-1}^{-1}f(x_{k-1})$ +\end_inset + +, tenemos +\begin_inset Formula $A_{k-1}(x_{k}-x_{k-1})=f(x_{k-1})$ +\end_inset + +, y por tanto +\begin_inset Formula +\[ +\left(A_{k-1}+\frac{1}{\Vert x_{k}-x_{k-1}\Vert_{2}^{2}}f(x_{k})(x_{k}-x_{k-1})^{t}\right)(x_{k}-x_{k-1})=A_{k-1}(x_{k}-x_{k-1})+f(x_{k})=f(x_{k})-f(x_{k-1}). +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Para calcular la inversa de +\begin_inset Formula $A_{k}$ +\end_inset + + podemos usar la +\series bold +fórmula de Sherman-Morrison +\series default +, +\begin_inset Formula +\[ +(A+vy^{t})^{-1}=A^{-1}-\frac{1}{1+y^{t}A^{-1}v}(A^{-1}v)(y^{t}A^{-1}), +\] + +\end_inset + +suponiendo que +\begin_inset Formula $y^{t}A^{-1}x\neq-1$ +\end_inset + +. + Esto reduce el orden de complejidad de cada iteración a +\begin_inset Formula $O(n^{2})$ +\end_inset + + en el caso general. +\end_layout + +\begin_layout Section +Método del descenso rápido +\end_layout + +\begin_layout Standard +\begin_inset Float algorithm +wide false +sideways false +status open + +\begin_layout Plain Layout +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +Entrada{Función $f: +\backslash +mathbb{R}^n +\backslash +to +\backslash +mathbb{R}^n$, aproximación inicial $x +\backslash +in +\backslash +mathbb{R}^n$, margen de error $e>0$ y tolerancia $t>0$.} +\end_layout + +\begin_layout Plain Layout + + +\backslash +Salida{$x$ tal que $f(x) +\backslash +approx 0$, o error indicando que no se puede mejorar la aproximación.} +\end_layout + +\begin_layout Plain Layout + +Definir $g(x):= +\backslash +sum_{k=1}^n f_k(x)^2$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + +\backslash +Mientras{$g(x)>e$}{ +\end_layout + +\begin_layout Plain Layout + + $u +\backslash +gets{ +\backslash +nabla g(x) +\backslash +over +\backslash +Vert +\backslash +nabla g(x) +\backslash +Vert}$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + $ +\backslash +alpha +\backslash +gets 1$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + +\backslash +lMientras{$g(x- +\backslash +alpha u) > g(x)$}{$ +\backslash +alpha +\backslash +gets +\backslash +frac12 +\backslash +alpha$} +\end_layout + +\begin_layout Plain Layout + + +\backslash +lSSi{$| +\backslash +alpha|<t$}{ +\backslash +Devolver error} +\end_layout + +\begin_layout Plain Layout + + +\backslash +tcp{{ +\backslash +rm Interpolar en $(0,g(x)),( +\backslash +frac +\backslash +alpha2,g(x+ +\backslash +frac +\backslash +alpha2u)),( +\backslash +alpha,g(x+ +\backslash +alpha u))$.}} +\end_layout + +\begin_layout Plain Layout + + $g_0 +\backslash +gets g(x)$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + $g_1 +\backslash +gets g(x+ +\backslash +frac +\backslash +alpha2u)$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + $g_2 +\backslash +gets g(x+ +\backslash +alpha u)$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + $h_0 +\backslash +gets {2(g_1 - g_0) +\backslash +over +\backslash +alpha}$ +\end_layout + +\begin_layout Plain Layout + + +\backslash +tcp*{{ +\backslash +rm Usamos diferencias divididas de Newton.}} +\end_layout + +\begin_layout Plain Layout + + $h_1 +\backslash +gets {2(g_2 - g_1) +\backslash +over +\backslash +alpha}$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + $h_{01} +\backslash +gets {h_2 - h_1 +\backslash +over +\backslash +alpha}$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + +\backslash +tcp{{ +\backslash +rm Obtener y usar el vértice de la parábola resultante.}} +\end_layout + +\begin_layout Plain Layout + + $ +\backslash +alpha_0 +\backslash +gets +\backslash +frac12 ( +\backslash +frac +\backslash +alpha2 - +\backslash +frac{h_0}{h_{01}})$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + +\backslash +lSSi{$g(x+ +\backslash +alpha_0u) < g_2$}{$x +\backslash +gets x + +\backslash +alpha_0u$} +\end_layout + +\begin_layout Plain Layout + + +\backslash +lEnOtroCaso{$x +\backslash +gets x + +\backslash +alpha u$} +\end_layout + +\begin_layout Plain Layout + +} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Plain Layout +\begin_inset Caption Standard + +\begin_layout Plain Layout +\begin_inset CommandInset label +LatexCommand label +name "alg:steepest-descent" + +\end_inset + +Método del descenso rápido. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +El método del descenso rápido o +\emph on +\lang english +steepest descent +\emph default +\lang spanish + es el algoritmo +\begin_inset CommandInset ref +LatexCommand ref +reference "alg:steepest-descent" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +, y consiste en minimizar la función +\begin_inset Formula $g(x):=\Vert f(x)\Vert_{2}^{2}$ +\end_inset + + desplazándonos, en cada iteración, en la dirección de mayor descenso en + esta función. + No es un método muy rápido, pero permite una estimación inicial más lejana + que los métodos de Newton y Broyden, por lo que se suele usar para obtener + una aproximación no muy fina que a su vez se usa con Newton o Broyden. +\end_layout + +\end_body +\end_document |
