diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 | 
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 | 
| commit | c34b47089a133e58032fe4ea52f61efacaf5f548 (patch) | |
| tree | 4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /cyn | |
| parent | 214b20d1614b09cd5c18e111df0f0d392af2e721 (diff) | |
Oops
Diffstat (limited to 'cyn')
| -rw-r--r-- | cyn/n2.lyx | 2 | ||||
| -rw-r--r-- | cyn/n5.lyx | 6 | ||||
| -rw-r--r-- | cyn/n7.lyx | 10 | ||||
| -rw-r--r-- | cyn/n8.lyx | 2 | 
4 files changed, 10 insertions, 10 deletions
| @@ -606,7 +606,7 @@ imagen inversa  \end_inset   como  -\begin_inset Formula $f(Y)^{-1}:=f^{-1}(Y):=\{a\in A|f(a)\in Y\}$ +\begin_inset Formula $f(Y)^{-1}\coloneqq f^{-1}(Y)\coloneqq \{a\in A|f(a)\in Y\}$  \end_inset  . @@ -835,7 +835,7 @@ Sea  \end_inset  , por lo que existe  -\begin_inset Formula $c:=\min B$ +\begin_inset Formula $c\coloneqq \min B$  \end_inset  . @@ -1110,7 +1110,7 @@ Identificamos los enteros con los  \end_inset  , escribimos  -\begin_inset Formula $\frac{m}{n}:=[(m,n)]$ +\begin_inset Formula $\frac{m}{n}\coloneqq [(m,n)]$  \end_inset   y denotamos con  @@ -2100,7 +2100,7 @@ raíz   Así, todo número complejo tiene  \begin_inset Formula   \[ -\phi(n)=|\{m\in\{1,\dots,n-1\}\mid \text{mcd}(m,n)=1\}| +\phi(n)=|\{m\in\{1,\dots,n-1\}\mid\text{mcd}(m,n)=1\}|  \]  \end_inset @@ -806,7 +806,7 @@ El máximo común divisor de  Demostración:  \series default   Sea  -\begin_inset Formula $d:=\text{mcd}(a_{1},\dots,a_{n})$ +\begin_inset Formula $d\coloneqq \text{mcd}(a_{1},\dots,a_{n})$  \end_inset  , como  @@ -814,7 +814,7 @@ Demostración:  \end_inset  , entonces  -\begin_inset Formula $d|(f:=\text{mcd}(a_{1},a_{2})),a_{3},\dots,a_{n}|e:=\text{mcd}(\text{mcd}(a_{1},a_{2}),a_{3},\dots,a_{n})$ +\begin_inset Formula $d|(f\coloneqq \text{mcd}(a_{1},a_{2})),a_{3},\dots,a_{n}|e\coloneqq \text{mcd}(\text{mcd}(a_{1},a_{2}),a_{3},\dots,a_{n})$  \end_inset   y por tanto  @@ -1735,7 +1735,7 @@ teorema  \end_inset  , el número  -\begin_inset Formula $N:=p_{1}\cdots p_{n}+1$ +\begin_inset Formula $N\coloneqq p_{1}\cdots p_{n}+1$  \end_inset   también lo es. @@ -2127,7 +2127,7 @@ La ecuación  \end_inset   tiene solución si y sólo si  -\begin_inset Formula $d:=\text{mcd}(a,m)|b$ +\begin_inset Formula $d\coloneqq \text{mcd}(a,m)|b$  \end_inset  , y las soluciones son todos los enteros  @@ -2232,7 +2232,7 @@ x\equiv b_{k} & (m_{k})  \end_inset  tiene solución única módulo  -\begin_inset Formula $M:=m_{1}\cdots m_{k}$ +\begin_inset Formula $M\coloneqq m_{1}\cdots m_{k}$  \end_inset  . @@ -453,7 +453,7 @@ divisor  \end_layout  \begin_layout Enumerate -\begin_inset Formula $A|B\land B|A\implies\exists\mu\in K\backslash\{0\}\mid A=\mu B$ +\begin_inset Formula $A|B\land B|A\implies\exists\mu\in K\backslash\{0\}:A=\mu B$  \end_inset  . | 
