diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2021-04-11 20:31:27 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2021-04-12 17:37:59 +0200 |
| commit | c515af67b9e44b18917be217e0161b4570fa563d (patch) | |
| tree | 08a11cab7b5ffd018af2ea9559c0c9642f188231 /ealg/n1.lyx | |
| parent | 986fe0646b72fc35e7dc4bc89c1fb26fe3e68f2a (diff) | |
Polinomios y eso
Diffstat (limited to 'ealg/n1.lyx')
| -rw-r--r-- | ealg/n1.lyx | 1834 |
1 files changed, 1834 insertions, 0 deletions
diff --git a/ealg/n1.lyx b/ealg/n1.lyx new file mode 100644 index 0000000..e50b9eb --- /dev/null +++ b/ealg/n1.lyx @@ -0,0 +1,1834 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Trabajaremos solo con anillos conmutativos. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{GyA} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dado un anillo conmutativo +\begin_inset Formula $A$ +\end_inset + +, llamamos +\begin_inset Formula $A[[X]]$ +\end_inset + + al anillo conmutativo de las sucesiones de elementos de +\begin_inset Formula $A$ +\end_inset + + entendidas como +\series bold +series de potencias +\series default + en una +\series bold +indeterminada +\series default + [o +\series bold +variable +\series default +] +\begin_inset Formula $X$ +\end_inset + +, +\begin_inset Formula $(a_{n})_{n}=\sum_{n=0}^{\infty}a_{n}X^{n}$ +\end_inset + +, con las operaciones +\begin_inset Formula +\begin{align*} +(a_{n})_{n}+(b_{n})_{n} & :=(a_{n}+b_{n})_{n}; & (a_{n})_{n}(b_{n})_{n} & :=\left(\sum_{k=0}^{n}a_{k}b_{n-k}\right)_{n}. +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Llamamos +\begin_inset Formula $A[X]$ +\end_inset + + al subanillo de +\begin_inset Formula $A[[X]]$ +\end_inset + + formado por las sucesiones con un número finito de elementos no nulos, + [...] +\series bold +polinomios +\series default + en +\begin_inset Formula $X$ +\end_inset + +. + +\begin_inset Formula $A$ +\end_inset + + es un subanillo de +\begin_inset Formula $A[X]$ +\end_inset + + identificando los elementos de +\begin_inset Formula $A$ +\end_inset + + con los +\series bold +polinomios constantes +\series default +, de la forma +\begin_inset Formula $P(X)=a_{0}$ +\end_inset + +. + [...] +\end_layout + +\begin_layout Standard +Dado +\begin_inset Formula $p:=\sum_{k\in\mathbb{N}}p_{k}X^{k}\in A[X]\setminus\{0\}$ +\end_inset + +, llamamos +\series bold +grado +\series default + de +\begin_inset Formula $p$ +\end_inset + + a +\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}:p_{k}\neq0\}$ +\end_inset + +, +\series bold +coeficiente +\series default + de +\series bold +grado +\series default + +\begin_inset Formula $k$ +\end_inset + + de +\begin_inset Formula $p$ +\end_inset + + a +\begin_inset Formula $p_{k}$ +\end_inset + + [...] y +\series bold +coeficiente principal +\series default + al de grado +\begin_inset Formula $\text{gr}(p)$ +\end_inset + +. + Un polinomio es +\series bold +mónico +\series default + si su coeficiente princial es 1. + El polinomio 0 tiene grado +\begin_inset Formula $-\infty$ +\end_inset + + [...]. +\end_layout + +\begin_layout Standard +Un +\series bold +monomio +\series default + es un polinomio de la forma +\begin_inset Formula $aX^{n}$ +\end_inset + + con +\begin_inset Formula $a\in A$ +\end_inset + + y +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +. + Todo polinomio en +\begin_inset Formula $A[X]$ +\end_inset + + se escribe como suma finita de monomios de distinto grado de forma única + salvo orden. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $P,Q\in A[X]\setminus\{0\}$ +\end_inset + + tienen coeficientes principales respectivos +\begin_inset Formula $p$ +\end_inset + + y +\begin_inset Formula $q$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{gr}(P+Q)\leq\max\{\text{gr}(P),\text{gr}(Q)\}$ +\end_inset + +, con desigualdad estricta si y sólo si +\begin_inset Formula $\text{gr}(P)=\text{gr}(Q)$ +\end_inset + + y +\begin_inset Formula $p+q=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{gr}(PQ)\leq\text{gr}(P)+\text{gr}(Q)$ +\end_inset + +, con igualdad si y sólo si +\begin_inset Formula $pq\neq0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $A[X]$ +\end_inset + + [...] es un dominio si y sólo si lo es +\begin_inset Formula $A$ +\end_inset + +, en cuyo caso llamamos +\series bold +cuerpo de las funciones +\series default + [o +\series bold +fracciones +\series default +] +\series bold +racionales +\series default + sobre +\begin_inset Formula $A$ +\end_inset + + al cuerpo de fracciones de +\begin_inset Formula $A[X]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +[...] Dados +\begin_inset Formula $f\in A[X]$ +\end_inset + + y +\begin_inset Formula $a\in A$ +\end_inset + +, [...] si +\begin_inset Formula $f(a)=0$ +\end_inset + +, [...] +\begin_inset Formula $a$ +\end_inset + + es una +\series bold +raíz +\series default + de +\begin_inset Formula $f$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Propiedad universal +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{GyA} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Primer teorema de isomorfía: +\series default + Dado un homomorfismo de anillos [...] +\begin_inset Formula $f:A\to B$ +\end_inset + +, existe un único isomorfismo [...] +\begin_inset Formula $\tilde{f}:A/\ker f\to\text{Im}f$ +\end_inset + + tal que +\begin_inset Formula $i\circ\tilde{f}\circ p=f$ +\end_inset + +, donde +\begin_inset Formula $i:\text{Im}f\to B$ +\end_inset + + es la inclusión y +\begin_inset Formula $p:A\to A/\ker f$ +\end_inset + + es la proyección. + En particular, +\begin_inset Formula +\[ +A/\ker f\cong\text{Im}f. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{GyA} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Propiedad universal del anillo de polinomios +\series default + ( +\series bold +PUAP +\series default +) +\series bold +: +\series default + Sean +\begin_inset Formula $A$ +\end_inset + + un anillo y +\begin_inset Formula $u:A\to A[X]$ +\end_inset + + el homomorfismo inclusión [...] para cada homomorfismo de anillos [...] +\begin_inset Formula $f:A\to B$ +\end_inset + + y +\begin_inset Formula $b\in B$ +\end_inset + +, el único homomorfismo +\begin_inset Formula $\tilde{f}:A[X]\to B$ +\end_inset + + tal que +\begin_inset Formula $\tilde{f}(X)=b$ +\end_inset + + y +\begin_inset Formula $\tilde{f}\circ u=f$ +\end_inset + + es +\begin_inset Formula +\[ +\tilde{f}\left(\sum_{n}p_{n}X^{n}\right):=\sum_{n}f(p_{n})b^{n}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +[...] +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + es un subanillo de +\begin_inset Formula $B$ +\end_inset + + y +\begin_inset Formula $b\in B$ +\end_inset + +, el +\series bold +homomorfismo +\series default +[...] +\series bold +de evaluación +\series default + en +\begin_inset Formula $b$ +\end_inset + + es +\begin_inset Formula $S_{b}:A[X]\to B$ +\end_inset + + dado por +\begin_inset Formula +\[ +S_{b}(p):=p(b):=\sum_{n}p_{n}b^{n}, +\] + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +y su imagen es el subanillo generado por +\begin_inset Formula $A\cup\{b\}$ +\end_inset + +, llamado +\begin_inset Formula $A[b]$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Por ejemplo, +\begin_inset Formula $\mathbb{C}=\mathbb{R}[i]$ +\end_inset + +. + Entonces +\begin_inset Formula $b$ +\end_inset + + es +\series bold +trascendente +\series default + sobre +\begin_inset Formula $A$ +\end_inset + + si +\begin_inset Formula $\ker(S_{b})=0$ +\end_inset + +, es decir, si +\begin_inset Formula $b$ +\end_inset + + solo es raíz del polinomio nulo, y en otro caso +\begin_inset Formula $b$ +\end_inset + + es +\series bold +algebraico +\series default + y llamamos +\series bold +ideal de las relaciones algebraicas +\series default + de +\begin_inset Formula $b$ +\end_inset + + sobre +\begin_inset Formula $A$ +\end_inset + + a +\begin_inset Formula $\ker(S_{b})\neq0$ +\end_inset + +. + Así: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A[b]\cong A[X]/\ker(S_{b})$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Por el primer teorema de isomorfía. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $b$ +\end_inset + + es trascendente, +\begin_inset Formula $S_{b}:A[X]\to A[b]$ +\end_inset + + es un isomorfismo. +\end_layout + +\begin_deeper +\begin_layout Standard +Por el primer teorema de isomorfía, existe un isomorfismo +\begin_inset Formula $f:A[X]/0\to A[b]$ +\end_inset + + con +\begin_inset Formula $S_{b}(p)=f([p])$ +\end_inset + +, pero +\begin_inset Formula $(p\mapsto[p]):A[X]\to A[X]/0$ +\end_inset + + es un isomorfismo. +\end_layout + +\end_deeper +\begin_layout Enumerate +Todo +\begin_inset Formula $a\in A$ +\end_inset + + es algebraico sobre +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Es la raíz de +\begin_inset Formula $X-a$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\pi$ +\end_inset + + y +\begin_inset Formula $e$ +\end_inset + + son trascendentes sobre +\begin_inset Formula $\mathbb{Q}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbb{R}[i]=\mathbb{C}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +4. +\end_layout + +\end_inset + +Todo homomorfismo de anillos +\begin_inset Formula $f:A\to B$ +\end_inset + + induce un homomorfismo +\begin_inset Formula $\hat{f}:A[X]\to B[X]$ +\end_inset + + dado por +\begin_inset Formula +\[ +\hat{f}(p)=\sum_{n}f(p_{n})X^{n} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Raíces +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{GyA} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Todo DIP [(dominio de ideales principales)] es un DFU. + [...] Dado un dominio +\begin_inset Formula $D\neq0$ +\end_inset + +, una función +\begin_inset Formula $\delta:D\setminus\{0\}\to\mathbb{N}$ +\end_inset + + es +\series bold +euclídea +\series default + si cumple: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall a,b\in D\setminus\{0\},(a\mid b\implies\delta(a)\leq\delta(b))$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall a\in D,b\in D\setminus\{0\},\exists q,r\in D:(a=bq+r\land(r=0\lor\delta(r)<\delta(b)))$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un +\series bold +dominio euclídeo +\series default + es uno que admite una función euclídea. + [...] Todo dominio euclídeo es DIP. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{GyA} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $f,g\in A[X]$ +\end_inset + +, si el coeficiente principal de +\begin_inset Formula $g$ +\end_inset + + es invertible en +\begin_inset Formula $A$ +\end_inset + +, existen dos únicos polinomios +\begin_inset Formula $q,r\in A[X]$ +\end_inset + +, llamados respectivamente +\series bold +cociente +\series default + y +\series bold +resto +\series default + de la +\series bold +división +\series default + de +\begin_inset Formula $f$ +\end_inset + + entre +\begin_inset Formula $g$ +\end_inset + +, tales que +\begin_inset Formula $f=gq+r$ +\end_inset + + y +\begin_inset Formula $\text{gr}(r)<\text{gr}(g)$ +\end_inset + +, y [ +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + son el +\series bold +dividendo +\series default + y el +\series bold +divisor +\series default +.][...] En particular, el grado es una función euclídea. +\end_layout + +\begin_layout Standard + +\series bold +Teorema del resto: +\series default + Dados +\begin_inset Formula $f\in A[X]$ +\end_inset + + y +\begin_inset Formula $a\in A$ +\end_inset + +, el resto de +\begin_inset Formula $f$ +\end_inset + + entre +\begin_inset Formula $X-a$ +\end_inset + + es +\begin_inset Formula $f(a)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +[...] +\series bold +Teorema de Ruffini +\series default +, [...] +\begin_inset Formula $f$ +\end_inset + + es divisible por +\begin_inset Formula $X-a$ +\end_inset + + si y sólo si +\begin_inset Formula $f(a)=0$ +\end_inset + + [...]. +\end_layout + +\begin_layout Standard +Para +\begin_inset Formula $f\in A[X]\setminus\{0\}$ +\end_inset + + y +\begin_inset Formula $a\in A$ +\end_inset + +, existe +\begin_inset Formula $m:=\max\{k\in\mathbb{N}:(X-a)^{k}\mid f\}$ +\end_inset + +. + Llamamos a +\begin_inset Formula $m$ +\end_inset + + +\series bold +multiplicidad +\series default + de +\begin_inset Formula $a$ +\end_inset + + en +\begin_inset Formula $f$ +\end_inset + +, y +\begin_inset Formula $a$ +\end_inset + + es raíz de +\begin_inset Formula $f$ +\end_inset + + si y sólo si +\begin_inset Formula $m\geq1$ +\end_inset + +. + [...] +\begin_inset Formula $a$ +\end_inset + + es una +\series bold +raíz simple +\series default + de +\begin_inset Formula $f$ +\end_inset + + si +\begin_inset Formula $m=1$ +\end_inset + + y [...] es una +\series bold +raíz +\series default +[...][ +\series bold +múltiple +\series default +] si +\begin_inset Formula $m>1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +La multiplicidad de +\begin_inset Formula $a$ +\end_inset + + en +\begin_inset Formula $f$ +\end_inset + + es el único natural +\begin_inset Formula $m$ +\end_inset + + tal que +\begin_inset Formula $f=(X-a)^{m}g$ +\end_inset + + para algún +\begin_inset Formula $g\in A[X]$ +\end_inset + + del que +\begin_inset Formula $a$ +\end_inset + + no es raíz. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $D$ +\end_inset + + es un dominio, +\begin_inset Formula $f\in D[X]\setminus\{0\}$ +\end_inset + +, [...] la suma de las multiplicidades de las raíces de +\begin_inset Formula $f$ +\end_inset + +, y el número de raíces, no son superiores a +\begin_inset Formula $\text{gr}(f)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremeber +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +En particular, si +\begin_inset Formula $g\in D[X]$ +\end_inset + + tiene infinitas raíces en +\begin_inset Formula $D$ +\end_inset + + entonces +\begin_inset Formula $g=0$ +\end_inset + +. + Esto no tiene por qué cumplirse si +\begin_inset Formula $D$ +\end_inset + + no en un dominio, pues en +\begin_inset Formula $\mathbb{Z}\times\mathbb{Z}$ +\end_inset + + todos los elementos de +\begin_inset Formula $0\times\mathbb{Z}$ +\end_inset + + son raíces de +\begin_inset Formula $(1,0)X$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{GyA} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dado un anillo [...] +\begin_inset Formula $A$ +\end_inset + +, definimos la +\series bold +derivada +\series default + de +\begin_inset Formula $P:=\sum_{k}a_{k}X^{k}\in A[X]$ +\end_inset + + como +\begin_inset Formula $P':=[...]:=\sum_{k\geq1}ka_{k}X^{k-1}$ +\end_inset + +, y escribimos +\begin_inset Formula $P^{(0)}:=P$ +\end_inset + + y +\begin_inset Formula $P^{(n+1)}:=P^{(n)\prime}$ +\end_inset + +. + Dados +\begin_inset Formula $a,b\in A$ +\end_inset + + y +\begin_inset Formula $P,Q\in A[X]$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(aP+bQ)'=aP'+bQ'$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(PQ)'=P'Q+PQ'$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(P^{n})'=nP^{n-1}P'$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $A$ +\end_inset + + es un anillo, +\begin_inset Formula $a\in A$ +\end_inset + + es raíz múltiple de +\begin_inset Formula $p\in A[X]$ +\end_inset + + si y sólo si +\begin_inset Formula $p(a)=p'(a)=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{GyA} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si [...] +\begin_inset Formula $a=\text{mcd}S$ +\end_inset + + [...] llamamos +\series bold +identidad de Bézout +\series default + a una expresión de la forma +\begin_inset Formula $a=a_{1}s_{1}+\dots+a_{n}s_{n}$ +\end_inset + + con +\begin_inset Formula $a_{1},\dots,a_{n}\in A$ +\end_inset + + y +\begin_inset Formula $s_{1},\dots,s_{n}\in S$ +\end_inset + +, que existe [...]. +\end_layout + +\begin_layout Standard +[...] +\begin_inset Formula $A[X]$ +\end_inset + + es un dominio euclídeo si y sólo si es un DIP, si y sólo si +\begin_inset Formula $A$ +\end_inset + + es un cuerpo. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $K$ +\end_inset + + un cuerpo y +\begin_inset Formula $f\in K[X]$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\text{mcd}\{f,f'\}=1$ +\end_inset + + entonces +\begin_inset Formula $f$ +\end_inset + + no tiene raíces múltiples en +\begin_inset Formula $K$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Existen +\begin_inset Formula $p,q\in K[X]$ +\end_inset + + para los que se da la identidad de Bézout +\begin_inset Formula $pf+qf'=1$ +\end_inset + +, y si +\begin_inset Formula $f$ +\end_inset + + tuviera una raíz múltiple +\begin_inset Formula $a\in K$ +\end_inset + +, se tendría +\begin_inset Formula $f(a)=f'(a)=0$ +\end_inset + + y +\begin_inset Formula $a$ +\end_inset + + sería raíz de +\begin_inset Formula $pf+qf'\#$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $K\subseteq L$ +\end_inset + + son cuerpos y +\begin_inset Formula $f\in K[X]$ +\end_inset + + es irreducible en +\begin_inset Formula $K[X]$ +\end_inset + + con una raíz en +\begin_inset Formula $L$ +\end_inset + +, entonces +\begin_inset Formula $f$ +\end_inset + + tiene raíces múltiples en +\begin_inset Formula $L$ +\end_inset + + si y sólo si +\begin_inset Formula $f'=0$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si fuera +\begin_inset Formula $f'\neq0$ +\end_inset + +, como +\begin_inset Formula $\text{gr}f'<\text{gr}f$ +\end_inset + + y el grado es euclídeo, +\begin_inset Formula $\text{gr}(\text{mcd}\{f,f'\})<\text{gr}f$ +\end_inset + +, y como +\begin_inset Formula $f$ +\end_inset + + es irreducible, +\begin_inset Formula $\text{mcd}\{f,f'\}=1$ +\end_inset + + en +\begin_inset Formula $K[X]$ +\end_inset + +. + Ahora bien, +\begin_inset Note Note +status open + +\begin_layout Plain Layout +pasar a que lo es en +\begin_inset Formula $L[X]$ +\end_inset + + por identidades de Bézout y cosas de DIP y caracterización de mcd por ideal + principal +\end_layout + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Section +Divisibilidad +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{GyA} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $D$ +\end_inset + + un dominio y +\begin_inset Formula $p\in D$ +\end_inset + + [...] +\begin_inset Formula $p$ +\end_inset + + es irreducible en +\begin_inset Formula $D$ +\end_inset + + si y sólo si lo es en +\begin_inset Formula $D[X]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +[...] Como +\series bold +teorema +\series default +, +\begin_inset Formula $D$ +\end_inset + + es un DFU si y sólo si lo es +\begin_inset Formula $D[X]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +[...] Si +\begin_inset Formula $D$ +\end_inset + + es un DFU [...][para +\begin_inset Formula $p\in D[X]$ +\end_inset + +], +\begin_inset Formula $c(p):=\{x:x=\text{mcd}_{k\geq0}p_{k}\}$ +\end_inset + +, y [...] si +\begin_inset Formula $c(p)=aD^{*}$ +\end_inset + +, +\begin_inset Formula $a$ +\end_inset + + es el +\series bold +contenido +\series default + de +\begin_inset Formula $p$ +\end_inset + + ( +\begin_inset Formula $a=c(p)$ +\end_inset + +). + [...] +\begin_inset Formula $p$ +\end_inset + + es +\series bold +primitivo +\series default + si +\begin_inset Formula $c(p)=1$ +\end_inset + +, esto es, si [...] +\begin_inset Formula $\text{mcd}_{k}p_{k}=1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +[...] Sean +\begin_inset Formula $K$ +\end_inset + + un cuerpo y +\begin_inset Formula $f\in K[X]$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\text{gr}(f)=1$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + es irreducible en +\begin_inset Formula $K[X]$ +\end_inset + +. + [...] +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +3. +\end_layout + +\end_inset + +Si +\begin_inset Formula $\text{gr}(f)\in\{2,3\}$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + es irreducible en +\begin_inset Formula $K[X]$ +\end_inset + + si y sólo si no tiene raíces en +\begin_inset Formula $K$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $D$ +\end_inset + + es un DFU con cuerpo de fracciones +\begin_inset Formula $K$ +\end_inset + +, +\begin_inset Formula $f:=\sum_{k}a_{k}X^{k}\in D[X]$ +\end_inset + + y +\begin_inset Formula $n:=\text{gr}(f)$ +\end_inset + +, todas las raíces de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $K$ +\end_inset + + son de la forma +\begin_inset Formula $\frac{r}{s}$ +\end_inset + + con +\begin_inset Formula $r\mid a_{0}$ +\end_inset + + y +\begin_inset Formula $s\mid a_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Criterio de reducción: +\series default + [...] Si +\begin_inset Formula $p\in\mathbb{Z}$ +\end_inset + + es primo, +\begin_inset Formula $f:=\sum_{k}a_{k}X^{k}\in\mathbb{Z}[X]$ +\end_inset + + es primitivo, +\begin_inset Formula $n:=\text{gr}(f)$ +\end_inset + +, +\begin_inset Formula $p\nmid a_{n}$ +\end_inset + + y +\begin_inset Formula $f$ +\end_inset + + es irreducible en +\begin_inset Formula $\mathbb{Z}_{p}[X]$ +\end_inset + +, entonces +\begin_inset Formula $f$ +\end_inset + + es irreducible en +\begin_inset Formula $\mathbb{Z}[X]$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Criterio de Eisenstein: +\series default + Sean +\begin_inset Formula $D$ +\end_inset + + un DFU, +\begin_inset Formula $f:=\sum_{k}a_{k}X^{k}\in D[X]$ +\end_inset + + primitivo y +\begin_inset Formula $n:=\text{gr}f$ +\end_inset + +, si existe un irreducible +\begin_inset Formula $p\in D$ +\end_inset + + tal que +\begin_inset Formula $\forall k\in\{0,\dots,n-1\},p\mid a_{k}$ +\end_inset + + y +\begin_inset Formula $p^{2}\nmid a_{0}$ +\end_inset + +, entonces +\begin_inset Formula $f$ +\end_inset + + es irreducible en +\begin_inset Formula $D[X]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Note Note +status open + +\begin_layout Plain Layout +1.24,1.25 +\end_layout + +\end_inset + + +\end_layout + +\end_body +\end_document |
