diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2021-06-12 15:02:48 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2021-06-12 15:02:48 +0200 |
| commit | 3eaf9ae717fbd737411df4a6b3aa2e63c4470f1c (patch) | |
| tree | 4f6a549fa9149b1b4ead1fce3c8418f5ff53f2e8 /ealg/n2.lyx | |
| parent | 505cbda8d9f9bed2000495f578bdbf2eedabd66f (diff) | |
x
Diffstat (limited to 'ealg/n2.lyx')
| -rw-r--r-- | ealg/n2.lyx | 391 |
1 files changed, 367 insertions, 24 deletions
diff --git a/ealg/n2.lyx b/ealg/n2.lyx index 49dbf78..3d07f3b 100644 --- a/ealg/n2.lyx +++ b/ealg/n2.lyx @@ -237,6 +237,54 @@ Algunas extensiones son \end_inset . + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hbox{ +\backslash +vline +\backslash +vbox{ +\end_layout + +\end_inset + +Dados +\begin_inset Formula $c,d\in\mathbb{Z}$ +\end_inset + + no cuadrados, +\begin_inset Formula $\mathbb{Q}(\sqrt{c})=\mathbb{Q}(\sqrt{d})$ +\end_inset + + si y sólo si +\begin_inset Formula $cd$ +\end_inset + + es un cuadrado en +\begin_inset Formula $\mathbb{Z}$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + +}} +\end_layout + +\end_inset + + \end_layout \begin_layout Standard @@ -1184,6 +1232,69 @@ Dadas \end_layout \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hbox{ +\backslash +vline +\backslash +vbox{ +\end_layout + +\end_inset + +Dado un homomorfismo de cuerpos +\begin_inset Formula $f:K\to L$ +\end_inset + +, +\begin_inset Formula $K$ +\end_inset + + y +\begin_inset Formula $L$ +\end_inset + + tienen un mismo subcuerpo primo +\begin_inset Formula $P$ +\end_inset + + ( +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + o +\begin_inset Formula $\mathbb{Z}_{p}$ +\end_inset + +) y +\begin_inset Formula $f$ +\end_inset + + es un +\begin_inset Formula $P$ +\end_inset + +-encaje. +\begin_inset ERT +status open + +\begin_layout Plain Layout + +}} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard Si \begin_inset Formula $K\subseteq L$ \end_inset @@ -2539,6 +2650,116 @@ Si \end_layout \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +vspace{-1ex} +\backslash +hbox{ +\backslash +vline +\backslash +vbox{ +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +4. +\end_layout + +\end_inset + +Si +\begin_inset Formula $f\in K[X]$ +\end_inset + + es irreducible de grado al menos 2, +\begin_inset Formula $f$ +\end_inset + + no tiene raíces en ninguna extensión finita +\begin_inset Formula $L$ +\end_inset + + de +\begin_inset Formula $K$ +\end_inset + + con +\begin_inset Formula $[L:K]$ +\end_inset + + coprimo con +\begin_inset Formula $\text{gr}f$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +5. +\end_layout + +\end_inset + +Sean +\begin_inset Formula $X^{n}-a\in K[X]$ +\end_inset + + es irreducible, +\begin_inset Formula $\beta$ +\end_inset + + una raíz de +\begin_inset Formula $X^{n}-a$ +\end_inset + + en una extensión de +\begin_inset Formula $K$ +\end_inset + + y +\begin_inset Formula $m\mid n$ +\end_inset + +, +\begin_inset Formula $[K(\beta^{m}):K]=n/m$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + +}} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard Sea \begin_inset Formula $K\subseteq L$ \end_inset @@ -3559,33 +3780,20 @@ Dada una familia [...] con el producto componente a componente. \end_layout -\begin_layout Enumerate -\begin_inset Argument item:1 +\begin_layout Standard +\begin_inset ERT status open \begin_layout Plain Layout -4. -\end_layout -\end_inset -Llamamos -\series bold -grupo cíclico -\series default - de orden -\begin_inset Formula $n\in\mathbb{N}^{*}$ -\end_inset +\backslash +eremember +\end_layout - a -\begin_inset Formula $C_{n}:=\{1,a,a^{2},\dots,a^{n-1}\}$ \end_inset - con [...] -\begin_inset Formula $a^{i}a^{j}:=a^{[i+j]_{n}}$ -\end_inset - [...]. \end_layout \begin_layout Standard @@ -3596,7 +3804,7 @@ status open \backslash -eremember +sremember{GyA} \end_layout \end_inset @@ -3604,20 +3812,33 @@ eremember \end_layout -\begin_layout Standard -\begin_inset ERT +\begin_layout Enumerate +\begin_inset Argument item:1 status open \begin_layout Plain Layout +4. +\end_layout +\end_inset -\backslash -sremember{GyA} -\end_layout +Llamamos +\series bold +grupo cíclico +\series default + de orden +\begin_inset Formula $n\in\mathbb{N}^{*}$ +\end_inset + a +\begin_inset Formula $C_{n}:=\{1,a,a^{2},\dots,a^{n-1}\}$ \end_inset + con [...] +\begin_inset Formula $a^{i}a^{j}:=a^{[i+j]_{n}}$ +\end_inset + [...]. \end_layout \begin_layout Enumerate @@ -4738,5 +4959,127 @@ Equivale a ser algebraica y finitamente generada. \end_layout \end_deeper +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hbox{ +\backslash +vline +\backslash +vbox{ +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Además, dada una extensión +\begin_inset Formula $K\subseteq F$ +\end_inset + + con cuerpos intermedios +\begin_inset Formula $L$ +\end_inset + + y +\begin_inset Formula $M$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $[LM:K]$ +\end_inset + + es finito si y sólo si lo son +\begin_inset Formula $[L:K]$ +\end_inset + + y +\begin_inset Formula $[M:K]$ +\end_inset + +, en cuyo caso +\begin_inset Formula $[L:K],[M:K]\mid[LM:K]$ +\end_inset + + y +\begin_inset Formula $[LM:K]\leq[L:K][M:K]$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $L$ +\end_inset + + y +\begin_inset Formula $M$ +\end_inset + + son extensiones algebraicas de +\begin_inset Formula $K$ +\end_inset + +, también lo es +\begin_inset Formula $LM$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $[LM:K]=[L:K][M:K]$ +\end_inset + +, entonces +\begin_inset Formula $L\cap M=K$ +\end_inset + +. + El recíproco no se cumple. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $[L:K]\leq2$ +\end_inset + + y +\begin_inset Formula $L\cap M=K$ +\end_inset + +, entonces +\begin_inset Formula $[LM:K]=[L:K][M:K]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + +}} +\end_layout + +\end_inset + + +\end_layout + \end_body \end_document |
