diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2021-04-16 22:12:48 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2021-04-19 20:26:33 +0200 |
| commit | 5af08cdebf7b16c3b3a80e40d4770b63d617766d (patch) | |
| tree | 918d5ff850a608a719a04b768c07810d469f1ebe /ealg | |
| parent | 07a1cbe13e2912a3a90698cd219729283de75c6d (diff) | |
Galois putísimo amo
Diffstat (limited to 'ealg')
| -rw-r--r-- | ealg/n2.lyx | 1288 |
1 files changed, 1286 insertions, 2 deletions
diff --git a/ealg/n2.lyx b/ealg/n2.lyx index 43616ba..dcd3a77 100644 --- a/ealg/n2.lyx +++ b/ealg/n2.lyx @@ -1304,6 +1304,46 @@ Así, dos extensiones finitas \end_layout \begin_layout Standard +Los +\begin_inset Formula $K$ +\end_inset + +-encajes llevan raíces de +\begin_inset Formula $f\in K[X]$ +\end_inset + + a raíces de +\begin_inset Formula $f$ +\end_inset + +, pues dados un +\begin_inset Formula $K$ +\end_inset + +-encaje +\begin_inset Formula $\sigma:L\to L'$ +\end_inset + + y una raíz +\begin_inset Formula $\alpha\in L$ +\end_inset + + de +\begin_inset Formula $f$ +\end_inset + +, +\begin_inset Formula +\[ +f(\sigma(\alpha))={\textstyle \sum_{i}}f_{i}\sigma(\alpha)^{i}={\textstyle \sum_{i}}\sigma(f_{i})\sigma(\alpha)^{i}=\sigma\left({\textstyle \sum_{i}}f_{i}\alpha^{i}\right)=\sigma(f(\alpha))=\sigma(0)=0. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard Un \series bold @@ -1446,6 +1486,43 @@ Sea \end_deeper \begin_layout Standard +Extensiones +\begin_inset Formula $K$ +\end_inset + +-isomorfas de +\begin_inset Formula $K$ +\end_inset + + tienen grupos de Galois isomorfos. + En efecto, sea +\begin_inset Formula $\sigma:L\to L'$ +\end_inset + + un +\begin_inset Formula $K$ +\end_inset + +-isomorfismo, +\begin_inset Formula $\hat{\sigma}:\text{Gal}(L/K)\to\text{Gal}(L'/K)$ +\end_inset + + dada por +\begin_inset Formula $\hat{\sigma}(\tau):=\sigma\circ\tau\circ\sigma^{-1}$ +\end_inset + + es un isomorfismo de grupos, dado que +\begin_inset Formula $\hat{\sigma}(1_{L})=\sigma\circ\sigma^{-1}=1_{L'}$ +\end_inset + + y +\begin_inset Formula $\hat{\sigma}(\tau)\hat{\sigma}(\rho)=\sigma\circ\tau\circ\sigma^{-1}\circ\sigma\circ\rho\circ\sigma^{-1}=\hat{\sigma}(\tau\rho)$ +\end_inset + +. +\end_layout + +\begin_layout Standard \begin_inset ERT status open @@ -1482,7 +1559,11 @@ Si \begin_inset Formula $\frac{A}{(a)}$ \end_inset - es un cuerpo + es un cuerpo, si y solo si +\begin_inset Formula $\frac{A}{(a)}$ +\end_inset + + es un dominio. \end_layout \begin_layout Standard @@ -1872,11 +1953,1214 @@ Si \end_deeper \begin_layout Enumerate +Si +\begin_inset Formula $\alpha\in K$ +\end_inset + +, +\begin_inset Formula $\alpha$ +\end_inset + + es algebraico sobre +\begin_inset Formula $K$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Es raíz de +\begin_inset Formula $X-\alpha\in K[X]$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Para +\begin_inset Formula $m\in\mathbb{Q}^{\geq0}$ +\end_inset + +, +\begin_inset Formula $\pm\sqrt{m}\in\mathbb{R}$ +\end_inset + + son algebraicos sobre +\begin_inset Formula $\mathbb{Q}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Son raíces de +\begin_inset Formula $X^{2}-p\in\mathbb{Q}[X]$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $n\in\mathbb{N}^{*}$ +\end_inset + + y +\begin_inset Formula $\omega:=e^{2\pi i/n}\in\mathbb{C}$ +\end_inset + +, +\begin_inset Formula $\omega,\omega^{2},\dots,\omega^{n}$ +\end_inset + + son algebraicos sobre +\begin_inset Formula $\mathbb{Q}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Son raíces de +\begin_inset Formula $X^{n}-1\in\mathbb{Q}[X]$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $e,\pi\in\mathbb{R}$ +\end_inset + + son trascendentes sobre +\begin_inset Formula $\mathbb{Q}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una extensión +\begin_inset Formula $K\subseteq L$ +\end_inset + + es +\series bold +algebraica +\series default + si todo elemento de +\begin_inset Formula $L$ +\end_inset + + es algebraico sobre +\begin_inset Formula $K$ +\end_inset + +, y es +\series bold +trascendente +\series default + en otro caso. +\end_layout + +\begin_layout Enumerate +Toda extensión finita es algebraica. + En particular +\begin_inset Formula $\mathbb{R}\subseteq\mathbb{C}$ +\end_inset + + es algebraica. +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula $K\subseteq L$ +\end_inset + + finita, si hubiera un +\begin_inset Formula $\alpha\in L$ +\end_inset + + trascendente, +\begin_inset Formula $\{\alpha^{n}\}_{n\in\mathbb{N}}$ +\end_inset + + sería linealmente independiente y la extensión sería infinita. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $K\subseteq K(X)$ +\end_inset + + es trascendente. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\{X^{n}\}_{n\in\mathbb{N}}$ +\end_inset + + es trascendente sobre +\begin_inset Formula $K$ +\end_inset + +, luego +\begin_inset Formula $X$ +\end_inset + + es trascendente. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\mathbb{Q}\subseteq\mathbb{R}$ +\end_inset + + es trascendente. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\pi$ +\end_inset + + es trascendente. +\end_layout + +\end_deeper +\begin_layout Section +Extensiones simples +\end_layout + +\begin_layout Standard +Una extensión +\begin_inset Formula $K\subseteq L$ +\end_inset + + es +\series bold +simple +\series default + si existe +\begin_inset Formula $\alpha\in L$ +\end_inset + + con +\begin_inset Formula $L=K(\alpha)$ +\end_inset + +. + La extensión dada por el teorema de Kronecker es simple. + En efecto, sean +\begin_inset Formula $f\in K[X]\setminus K$ +\end_inset + +, +\begin_inset Formula $L=K[X]/I$ +\end_inset + + el cuerpo dado por el teorema de Kronecker para +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $\alpha:=[X]=X+I\in L$ +\end_inset + + la raíz, para +\begin_inset Formula $[p]\in L$ +\end_inset + + es +\begin_inset Formula $p(\alpha)=p([X])=\sum_{i}p_{i}[X]^{i}=\left[\sum_{i}p_{i}X^{i}\right]=[p]$ +\end_inset + +, luego +\begin_inset Formula $L=K[\alpha]$ +\end_inset + + y, como +\begin_inset Formula $L$ +\end_inset + + es un cuerpo, +\begin_inset Formula $K[\alpha]=K(\alpha)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dados una extensión +\begin_inset Formula $K\subseteq L$ +\end_inset + + y un +\begin_inset Formula $\alpha\in L$ +\end_inset + + trascendente, entonces +\begin_inset Formula $K(\alpha)\cong K(X)$ +\end_inset + +, y en particular +\begin_inset Formula $K\subseteq K(\alpha)$ +\end_inset + + es infinita. + En efecto, como +\begin_inset Formula $K[X]\cong K[\alpha]$ +\end_inset + +, sus cuerpos de fracciones también son isomorfos. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $K\subseteq L$ +\end_inset + + una extensión y +\begin_inset Formula $\alpha\in L$ +\end_inset + + algebraico: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\alpha$ +\end_inset + + es raíz de un único polinomio mónico e irreducible en +\begin_inset Formula $f\in K[X]$ +\end_inset + +, el +\series bold +polinomio irreducible de +\begin_inset Formula $\alpha$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + + +\series default +, +\begin_inset Formula $\text{Irr}(\alpha,K)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $S_{\alpha}:K[X]\to K[\alpha]$ +\end_inset + + tiene núcleo no nulo, y como +\begin_inset Formula $K[X]$ +\end_inset + + es un DIP, existe +\begin_inset Formula $f\in K[X]\setminus0$ +\end_inset + + con +\begin_inset Formula $\ker(\varphi_{\alpha})=(f)$ +\end_inset + +, que podemos tomar mónico. + Como +\begin_inset Formula $K[X]/(f)\cong K[\alpha]$ +\end_inset + + es un dominio siendo +\begin_inset Formula $K[X]$ +\end_inset + + un DIP, +\begin_inset Formula $f$ +\end_inset + + es irreducible. + Si +\begin_inset Formula $g\in K[X]$ +\end_inset + + es un irreducible mónico con raíz +\begin_inset Formula $\alpha$ +\end_inset + +, como +\begin_inset Formula $g\in\ker(S_{\alpha})=(f)$ +\end_inset + +, +\begin_inset Formula $f\mid g$ +\end_inset + +. + Como ambos son irreducibles, son asociados, pero al ser ambos mónicos deben + ser iguales. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $K[\alpha]$ +\end_inset + + es un cuerpo. +\end_layout + +\begin_deeper +\begin_layout Standard +Como +\begin_inset Formula $K[X]$ +\end_inset + + es DIP, +\begin_inset Formula $K[X]/(f)$ +\end_inset + + es un cuerpo si y solo si es un dominio, pero +\begin_inset Formula $K[X]/(f)\cong K[\alpha]$ +\end_inset + + que es un dominio. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\forall g\in K[X],(g(\alpha)=0\iff f\mid g)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $g(\alpha)=0\iff g\in\ker(S_{\alpha})=(f)\iff f\mid g$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Sea +\begin_inset Formula $n:=\text{gr}f$ +\end_inset + +, +\begin_inset Formula $[K(\alpha):K]=n$ +\end_inset + + y +\begin_inset Formula $(\alpha^{i})_{i=0}^{n-1}$ +\end_inset + + es base de +\begin_inset Formula $K(\alpha)$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula $(\alpha^{i})_{i=0}^{n-1}$ +\end_inset + + no fuera linealmente independiente, existiría +\begin_inset Formula $(a_{0},\dots,a_{n-1})\neq0$ +\end_inset + + con +\begin_inset Formula $\sum_{i=0}^{n-1}a_{i}\alpha^{i}=0$ +\end_inset + +, pero entonces +\begin_inset Formula $g:=\sum_{i=0}^{n-1}a_{i}X^{i}\in K[X]\setminus0$ +\end_inset + + tendría a +\begin_inset Formula $\alpha$ +\end_inset + + como raíz y por tanto +\begin_inset Formula $f\mid g$ +\end_inset + +, lo que contradice que +\begin_inset Formula $\text{gr}g<\text{gr}f\#$ +\end_inset + +. + Para ver que +\begin_inset Formula $(\alpha^{i})_{i=0}^{n-1}$ +\end_inset + + es un conjunto generador, los elementos de +\begin_inset Formula $K[\alpha]$ +\end_inset + + son de la forma +\begin_inset Formula $h(\alpha)$ +\end_inset + + para +\begin_inset Formula $h\in K[X]$ +\end_inset + +, y dividiendo +\begin_inset Formula $h$ +\end_inset + + entre +\begin_inset Formula $f$ +\end_inset + + con resto tenemos +\begin_inset Formula $h=fq+r$ +\end_inset + + para ciertos +\begin_inset Formula $q,r\in K[X]$ +\end_inset + + con +\begin_inset Formula $\text{gr}r<\text{gr}f=n$ +\end_inset + +, luego +\begin_inset Formula $h(\alpha)=f(\alpha)q(\alpha)+r(\alpha)=r(\alpha)=\sum_{i=0}^{n-1}r_{i}\alpha^{i}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Ejemplos: +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $z\in\mathbb{C}$ +\end_inset + +, +\begin_inset Formula +\[ +\text{Irr}(z,\mathbb{R})=\begin{cases} +X-z, & z\in\mathbb{R};\\ +X^{2}-2\text{Re}zX+|z|^{2}, & z\notin\mathbb{R}. +\end{cases} +\] + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula $z\in\mathbb{R}$ +\end_inset + +, esto es claro. + En otro caso +\begin_inset Formula $(X-z)(X-\overline{z})=X^{2}-2\text{Re}zX+|z|^{2}$ +\end_inset + + es irreducible en +\begin_inset Formula $\mathbb{R}[X]$ +\end_inset + + (discriminante negativo), y es mónico, luego es +\begin_inset Formula $\text{Irr}(z,\mathbb{R})$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $m\in\mathbb{Q}$ +\end_inset + + no es un cuadrado de racional, +\begin_inset Formula $\text{Irr}(\sqrt{m},\mathbb{Q})=X^{2}-m$ +\end_inset + + y +\begin_inset Formula $\mathbb{Q}[\sqrt{m}]$ +\end_inset + + es un cuerpo con +\begin_inset Formula $[\mathbb{Q}[\sqrt{m}]:\mathbb{Q}]=2$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Las raíces de +\begin_inset Formula $X^{2}-m$ +\end_inset + + en +\begin_inset Formula $\mathbb{C}$ +\end_inset + + son +\begin_inset Formula $\pm\sqrt{m}\notin\mathbb{Q}$ +\end_inset + +, luego este el irreducible. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $p\in\mathbb{N}$ +\end_inset + + es primo y +\begin_inset Formula $\xi:=e^{2\pi i/p}$ +\end_inset + +, +\begin_inset Formula $\text{Irr}(\xi,\mathbb{Q})=X^{p-1}+X^{p-2}+\dots+X+1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $K\subseteq L$ +\end_inset + + una extensión, un +\begin_inset Formula $\alpha\in L$ +\end_inset + + es algebraico sobre +\begin_inset Formula $K$ +\end_inset + + si y solo si +\begin_inset Formula $K\subseteq K(\alpha)$ +\end_inset + + es finita, si y solo si +\begin_inset Formula $K[\alpha]$ +\end_inset + + es un cuerpo. +\begin_inset Note Comment +status open + +\begin_layout Description +\begin_inset Formula $1\implies2]$ +\end_inset + + +\begin_inset Formula $[K(\alpha):K]=\text{gr}\text{Irr}(\alpha,K)<\infty$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies1]$ +\end_inset + + Entonces +\begin_inset Formula $K\subseteq K(\alpha)$ +\end_inset + + es algebraica, luego en particular +\begin_inset Formula $\alpha$ +\end_inset + + es algebraico. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies3]$ +\end_inset + + Visto. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies1]$ +\end_inset + + Entonces +\begin_inset Formula $\alpha^{-1}\in K[\alpha]$ +\end_inset + + y existe +\begin_inset Formula $h\in K[X]\setminus0$ +\end_inset + + con +\begin_inset Formula $h(\alpha)=\alpha^{-1}$ +\end_inset + +, luego +\begin_inset Formula $\alpha$ +\end_inset + + es raíz de +\begin_inset Formula $h(X)X-1\in K[X]\setminus0$ +\end_inset + + y es pues algebraico. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $K$ +\end_inset + + un cuerpo y +\begin_inset Formula $f\in K[X]\setminus0$ +\end_inset + + con raíz +\begin_inset Formula $\alpha$ +\end_inset + + en alguna extensión de +\begin_inset Formula $K$ +\end_inset + +, +\begin_inset Formula $[K(\alpha):K]\leq\text{gr}f$ +\end_inset + +, con igualdad si y solo si +\begin_inset Formula $f$ +\end_inset + + es irreducible sobre +\begin_inset Formula $K$ +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +, pues como +\begin_inset Formula $\alpha$ +\end_inset + + es raíz de +\begin_inset Formula $f$ +\end_inset + +, es algebraico, y si +\begin_inset Formula $d:=\text{Irr}(\alpha,K)$ +\end_inset + +, +\begin_inset Formula $d\mid f$ +\end_inset + + y +\begin_inset Formula $[K(\alpha):K]=\text{gr}d\leq\text{gr}f$ +\end_inset + +, con igualdad si y solo si +\begin_inset Formula $f$ +\end_inset + + es irreducible sobre +\begin_inset Formula $K$ +\end_inset + + +\end_layout + +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $K$ +\end_inset + + un cuerpo, +\begin_inset Formula $f\in K[X]$ +\end_inset + + irreducible en +\begin_inset Formula $K[X]$ +\end_inset + + con una raíz +\begin_inset Formula $\alpha$ +\end_inset + +, +\begin_inset Formula $\sigma:K\to K'$ +\end_inset + + un isomorfismo de cuerpos y +\begin_inset Formula $f':=\sigma(f)$ +\end_inset + + con una raíz +\begin_inset Formula $\alpha'$ +\end_inset + +, existe un isomorfismo +\begin_inset Formula $\hat{\sigma}:K(\alpha)\to K'(\alpha')$ +\end_inset + + con +\begin_inset Formula $\hat{\sigma}|_{K}=\sigma$ +\end_inset + + y +\begin_inset Formula $\hat{\sigma}(\alpha)=\alpha'$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $r$ +\end_inset + + el coeficiente principal de +\begin_inset Formula $f$ +\end_inset + +, entonces +\begin_inset Formula $f=r\text{Irr}(\alpha,K)$ +\end_inset + + y por tanto +\begin_inset Formula $f'=\sigma(r)\text{Irr}(\alpha',K')$ +\end_inset + +. + Como +\begin_inset Formula $K(\alpha)=K[\alpha]$ +\end_inset + + por ser +\begin_inset Formula $K[\alpha]$ +\end_inset + + un cuerpo, sus elementos son de la forma +\begin_inset Formula $g(\alpha)$ +\end_inset + + con +\begin_inset Formula $g\in K[X]$ +\end_inset + +. + Sea +\begin_inset Formula $\hat{\sigma}(g(\alpha)):=\sigma(g)(\alpha')$ +\end_inset + +, +\begin_inset Formula $\hat{\sigma}$ +\end_inset + + está bien definido, pues si +\begin_inset Formula $g(\alpha)=h(\alpha)$ +\end_inset + + entonces +\begin_inset Formula $(g-h)(\alpha)=0$ +\end_inset + + y por tanto +\begin_inset Formula $f\mid r^{-1}f=\text{Irr}(\alpha,k)\mid g-h$ +\end_inset + +, luego +\begin_inset Formula $f'=\sigma(f)\mid\sigma(g-h)$ +\end_inset + + y, como +\begin_inset Formula $f'(\alpha')=0$ +\end_inset + +, +\begin_inset Formula $\sigma(g)(\alpha')-\sigma(h)(\alpha')=\sigma(g-h)(\alpha')=0$ +\end_inset + +. + Entonces para +\begin_inset Formula $r\in K$ +\end_inset + + es +\begin_inset Formula $\hat{\sigma}(r)=\sigma(r)$ +\end_inset + + y +\begin_inset Formula $\hat{\sigma}(\alpha)=\sigma(X)(\alpha')=\alpha'$ +\end_inset + +; para +\begin_inset Formula $g(\alpha),h(\alpha)\in K[\alpha]$ +\end_inset + + cualesquiera, +\begin_inset Formula +\[ +\hat{\sigma}(g(\alpha))+\hat{\sigma}(h(\alpha))=\sigma(g)(\alpha')+\sigma(h)(\alpha')=\sigma(g+h)(\alpha')=\hat{\sigma}((g+h)(\alpha))=\hat{\sigma}(g(\alpha)+h(\alpha)), +\] + +\end_inset + +y análogamente +\begin_inset Formula $\hat{\sigma}(g(\alpha))=\hat{\sigma}(h(\alpha))$ +\end_inset + +, luego +\begin_inset Formula $\hat{\sigma}$ +\end_inset + + es un homomorfismo, y es biyectivo porque +\begin_inset Formula $\hat{\sigma}^{-1}$ +\end_inset + + se construye de forma similar a partir de +\begin_inset Formula $\sigma^{-1}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $K\subseteq L$ +\end_inset + + una extensión, +\begin_inset Formula $\alpha,\beta\in L$ +\end_inset + + algebraicos sobre +\begin_inset Formula $K$ +\end_inset + + son +\series bold + +\begin_inset Formula $K$ +\end_inset + +-conjugados +\series default + si son raíces de un mismo irreducible sobre +\begin_inset Formula $K$ +\end_inset + +, si y solo si +\begin_inset Formula $\text{Irr}(\alpha,K)=\text{Irr}(\beta,K)$ +\end_inset + +, si y solo si existe un +\begin_inset Formula $K$ +\end_inset + +-isomorfismo +\begin_inset Formula $\sigma:K(\alpha)\to K(\beta)$ +\end_inset + + con +\begin_inset Formula $\sigma(\alpha)=\beta$ +\end_inset + +, si y solo si existe un +\begin_inset Formula $K$ +\end_inset + +-encaje +\begin_inset Formula $\sigma:K(\alpha)\to K(\beta)$ +\end_inset + + con +\begin_inset Formula $\sigma(\alpha)=\beta$ +\end_inset + +, y entonces +\begin_inset Formula $\text{Gal}(K(\alpha)/K)\cong\text{Gal}(K(\beta)/K)$ +\end_inset + + como grupos. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies2]$ +\end_inset + + Sea +\begin_inset Formula $f$ +\end_inset + + dicho irreducible con coeficiente principal +\begin_inset Formula $r$ +\end_inset + +, por unicidad es +\begin_inset Formula $r^{-1}f=\text{Irr}(\alpha,K)=\text{Irr}(\beta,K)$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies1]$ +\end_inset + + Obvio. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies3]$ +\end_inset + + Aplicando lo anterior a dicho irreducible y al automorfismo identidad, + existe un isomorfismo +\begin_inset Formula $\sigma:K(\alpha)\to K(\beta)$ +\end_inset + + con +\begin_inset Formula $\sigma|_{K}=1_{K}$ +\end_inset + + y +\begin_inset Formula $\sigma(\alpha)=\beta$ +\end_inset + +. + Además sabemos que extensiones de +\begin_inset Formula $K$ +\end_inset + + +\begin_inset Formula $K$ +\end_inset + +-isomorfas tienen grupos de Galois isomorfos. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies4]$ +\end_inset + + Obvio. +\end_layout + +\begin_layout Description +\begin_inset Formula $4\implies2]$ +\end_inset + + Sea +\begin_inset Formula $f:=\text{Irr}(\alpha,K)$ +\end_inset + +, sabemos que al ser +\begin_inset Formula $\alpha$ +\end_inset + + raíz de +\begin_inset Formula $f$ +\end_inset + +, también lo es +\begin_inset Formula $\sigma(\alpha)=\beta$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f\in K[X]$ +\end_inset + + es irreducible de grado +\begin_inset Formula $n$ +\end_inset + +, +\begin_inset Formula $\alpha$ +\end_inset + + es raíz de +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $f$ +\end_inset + + tiene +\begin_inset Formula $m$ +\end_inset + + raíces en +\begin_inset Formula $K(\alpha)$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $|\text{Gal}(K(\alpha)/K)|=m$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Un +\begin_inset Formula $K$ +\end_inset + +-automorfismo +\begin_inset Formula $\sigma$ +\end_inset + + en +\begin_inset Formula $K(\alpha)$ +\end_inset + + queda determinado por +\begin_inset Formula $\sigma(\alpha)$ +\end_inset + +, y sabemos que +\begin_inset Formula $\sigma(\alpha)$ +\end_inset + + debe ser raíz de +\begin_inset Formula $f$ +\end_inset + +. + Además, por lo anterior, si +\begin_inset Formula $\beta$ +\end_inset + + es otra raíz de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $K(\alpha)$ +\end_inset + +, existe un +\begin_inset Formula $K$ +\end_inset + +-isomorfismo +\begin_inset Formula $\sigma:K(\alpha)\to K(\beta)$ +\end_inset + + con +\begin_inset Formula $\sigma(\alpha)=\beta$ +\end_inset + +, pero el +\begin_inset Formula $K$ +\end_inset + +-isomorfismo implica que +\begin_inset Formula $[K(\alpha):K]=[K(\beta):K]$ +\end_inset + + y, como +\begin_inset Formula $K(\beta)\subseteq K(\alpha)$ +\end_inset + +, +\begin_inset Formula $[K(\alpha):K(\beta)]=1$ +\end_inset + + y +\begin_inset Formula $K(\beta)=K(\alpha)$ +\end_inset + +, luego este +\begin_inset Formula $\sigma\in\text{Gal}(K(\alpha)/K)$ +\end_inset + +. + Por tanto hay biyección entre +\begin_inset Formula $\text{Gal}(K(\alpha)/K)$ +\end_inset + + y las +\begin_inset Formula $m$ +\end_inset + + raíces de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $K(\alpha)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate \begin_inset Note Note status open \begin_layout Plain Layout -a1::CUARENTAYDOS +a1::46, C2.35 \end_layout \end_inset |
