diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2021-06-14 00:39:19 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2021-06-14 00:39:19 +0200 |
| commit | 6ec63727b831a49824c0d1705af9db68ac3fb596 (patch) | |
| tree | a1f840fb99253351cfd5ec0c0f9efce03aa461e8 /ealg | |
| parent | 1ec9e61c032ba31dbe15d6dff19c2b68a04f02c2 (diff) | |
Errata + proposiciones de ejercicios
Diffstat (limited to 'ealg')
| -rw-r--r-- | ealg/n5.lyx | 352 | ||||
| -rw-r--r-- | ealg/n6.lyx | 202 | ||||
| -rw-r--r-- | ealg/n7.lyx | 54 |
3 files changed, 546 insertions, 62 deletions
diff --git a/ealg/n5.lyx b/ealg/n5.lyx index c3f6450..fcaa366 100644 --- a/ealg/n5.lyx +++ b/ealg/n5.lyx @@ -578,6 +578,59 @@ Toda raíz \end_layout \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +vspace{-0.8em} +\backslash +hbox{ +\backslash +vline +\backslash +vbox{ +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +6. +\end_layout + +\end_inset + +Una extensión finita de +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + tiene solo un número finito de raíces de uno. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + +}} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard Dados un cuerpo \begin_inset Formula $K$ \end_inset @@ -1043,10 +1096,10 @@ Si \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $X^{q}-1=\prod_{d\mid q}\Phi_{d}(X)=(X-1)\Phi_{q}(X)$ \end_inset @@ -1057,7 +1110,11 @@ Si . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Si \begin_inset Formula $n\geq3$ @@ -1068,10 +1125,10 @@ Si \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout Como \begin_inset Formula $\text{mcd}(n,2)=1$ \end_inset @@ -1182,7 +1239,11 @@ Como . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Si \begin_inset Formula $p$ @@ -1197,10 +1258,10 @@ Si \end_inset . -\end_layout +\begin_inset Note Comment +status open -\begin_deeper -\begin_layout Standard +\begin_layout Plain Layout \begin_inset Formula $\text{gr\ensuremath{\Phi_{p_{k}}=}}\phi(p^{k})=(p-1)p^{k-1}$ \end_inset @@ -1244,7 +1305,11 @@ Si . \end_layout -\end_deeper +\end_inset + + +\end_layout + \begin_layout Enumerate Si \begin_inset Formula $n=p_{1}^{r_{1}}\cdots p_{s}^{r_{s}}$ @@ -1259,6 +1324,93 @@ Si \end_inset . +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Para empezar, +\begin_inset Formula $\text{gr}(\Phi_{n}(X))=\phi(n)=\phi(p_{1}^{r_{1}}\cdots p_{s}^{r_{s}})=(p_{1}-1)\cdots(p_{s}-1)p_{1}^{r_{1}-1}\cdots p_{s}^{r_{s}-1}$ +\end_inset + + y +\begin_inset Formula $\Phi_{p_{1}\cdots p_{s}}(X^{p_{1}^{r_{1}-1}\cdots p_{s}^{r_{s}-1}})=p_{1}^{r_{1}-1}\cdots p_{s}^{r_{s}-1}\phi(p_{1}\cdots p_{s})=(p_{1}-1)\cdots(p_{s}-1)p_{1}^{r_{1}-1}\cdots p_{s}^{r_{s}-1}$ +\end_inset + +. + Sea ahora +\begin_inset Formula $\xi$ +\end_inset + + una raíz de +\begin_inset Formula $\Phi_{n}(X)$ +\end_inset + +, entonces +\begin_inset Formula $\xi$ +\end_inset + + es una raíz +\begin_inset Formula $n$ +\end_inset + +-ésima primitiva de uno, de modo que +\begin_inset Formula $\xi^{p_{1}^{r_{1}}\cdots p_{s}^{r_{s}}}=1$ +\end_inset + +, pero +\begin_inset Formula $\xi^{p_{1}^{r_{1}}\cdots p_{s}^{r_{s}}}=(\xi^{p_{1}^{r_{1}-1}\cdots p_{s}^{r_{s}-1}})^{p_{1}\cdots p_{s}}$ +\end_inset + +, luego +\begin_inset Formula $\xi^{p_{1}^{r_{1}-1}\cdots p_{s}^{r_{s}-1}}$ +\end_inset + + es raíz +\begin_inset Formula $(p_{1}\cdots p_{s})$ +\end_inset + +-ésima primitiva de uno (si fuera una raíz +\begin_inset Formula $k$ +\end_inset + +-ésima de uno para +\begin_inset Formula $k<p_{1}\cdots p_{s}$ +\end_inset + +, +\begin_inset Formula $\xi$ +\end_inset + + sería una raíz +\begin_inset Formula $(p_{1}^{r_{1}-1}\cdots p_{s}^{r_{s}-1}k<n)$ +\end_inset + +-ésima de uno +\begin_inset Formula $\#$ +\end_inset + +), luego +\begin_inset Formula $\xi^{p_{1}^{r_{1}-1}\cdots p_{s}^{r_{s}-1}}$ +\end_inset + + es raíz de +\begin_inset Formula $\Phi_{p_{1}\cdots p_{s}}$ +\end_inset + + y +\begin_inset Formula $\xi$ +\end_inset + + es raíz de +\begin_inset Formula $\Phi_{p_{1}\cdots p_{s}}(X^{p_{1}^{r_{1}-1}\cdots p_{s}^{r_{s}-1}})$ +\end_inset + +. +\end_layout + +\end_inset + + \end_layout \begin_layout Enumerate @@ -1275,6 +1427,104 @@ Si \end_inset . +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Como +\begin_inset Formula $\text{gr}(\Phi_{n}\Phi_{pn})=\text{gr}n+\text{gr}pn=\phi(n)+(p-1)\phi(n)=p\phi(n)$ +\end_inset + + y +\begin_inset Formula $\text{gr}(\Phi_{n}(X^{p}))=p\text{gr}\Phi_{n}=p\phi(n)$ +\end_inset + +, y ninguno de los dos tiene raíces múltiples, basta ver que toda raíz +\begin_inset Formula $\xi$ +\end_inset + + de +\begin_inset Formula $\Phi_{n}\Phi_{pn}$ +\end_inset + + lo es de +\begin_inset Formula $\Phi_{n}(X^{p})$ +\end_inset + +. + Si +\begin_inset Formula $\xi$ +\end_inset + + es raíz de +\begin_inset Formula $\Phi_{n}$ +\end_inset + +, es raíz +\begin_inset Formula $n$ +\end_inset + +-ésima primitiva del uno y por tanto +\begin_inset Formula $\xi^{p}$ +\end_inset + + también lo es, ya que +\begin_inset Formula $o(\xi^{p})=\frac{o(\xi)}{\text{mcd}\{o(\xi),p\}}=\frac{n}{\text{mcd}\{n,p\}}=n$ +\end_inset + +. + Por tanto +\begin_inset Formula $\xi^{p}$ +\end_inset + + es raíz de +\begin_inset Formula $\Phi_{n}$ +\end_inset + +. + Si +\begin_inset Formula $\xi$ +\end_inset + + es raíz de +\begin_inset Formula $\Phi_{pn}$ +\end_inset + +, es raíz +\begin_inset Formula $pn$ +\end_inset + +-ésima primitiva de uno, y como +\begin_inset Formula $o(\xi^{p})=\frac{o(\xi)}{\text{mcd}\{o(\xi),p\}}=\frac{pn}{\text{mcd}\{pn,p\}}=n$ +\end_inset + +, +\begin_inset Formula $\xi^{p}$ +\end_inset + + es una raíz +\begin_inset Formula $n$ +\end_inset + +-ésima primitiva de 1 y es raíz de +\begin_inset Formula $\Phi_{n}$ +\end_inset + +. + En ambos casos +\begin_inset Formula $\xi$ +\end_inset + + es raíz de +\begin_inset Formula $\Phi_{n}(X^{p})$ +\end_inset + +. +\end_layout + +\end_inset + + \end_layout \begin_layout Enumerate @@ -1300,19 +1550,6 @@ end{samepage} \end_layout -\begin_layout Standard -En general los polinomios ciclotómicos no son irreducibles, pues por ejemplo - en -\begin_inset Formula $\mathbb{Z}_{7}$ -\end_inset - - las raíces terceras primitivas son 2 y 4 y -\begin_inset Formula $\Phi_{3}(X)=(X-2)(X-4)$ -\end_inset - -. -\end_layout - \begin_layout Section Extensiones ciclotómicas \end_layout @@ -1377,10 +1614,7 @@ cuerpo ciclotómico . Cada cuerpo tiene una extensión ciclotómica de cada orden, única salvo isomorfismos. -\end_layout - -\begin_layout Standard -Ejemplos: + Ejemplos: \end_layout \begin_layout Enumerate @@ -1444,16 +1678,8 @@ La extensión ciclotómica de orden \begin_inset Formula $\mathbb{F}_{p^{m}}$ \end_inset -, siendo -\begin_inset Formula $m$ -\end_inset - - el orden de -\begin_inset Formula $p$ -\end_inset - - en -\begin_inset Formula $\mathbb{Z}_{n}^{*}$ +, con +\begin_inset Formula $m:=o_{\mathbb{Z}_{n}^{*}}(p)$ \end_inset . @@ -1787,23 +2013,17 @@ Si \end_deeper \begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -end{samepage} -\end_layout - +En general los polinomios ciclotómicos no son irreducibles en el cuerpo + primo, pues por ejemplo en +\begin_inset Formula $\mathbb{Z}_{7}$ \end_inset + las raíces terceras primitivas son 2 y 4 y +\begin_inset Formula $\Phi_{3}(X)=(X-2)(X-4)$ +\end_inset -\end_layout - -\begin_layout Standard -Como +. + Sin embargo, como \series bold teorema \series default @@ -1823,9 +2043,8 @@ teorema \begin_inset Formula $\Phi_{n}(X)=\text{Irr}(\xi,\mathbb{Q})$ \end_inset -. - Así, si -\begin_inset Formula $\xi=e^{2\pi i/n}$ +, luego si +\begin_inset Formula $\xi:=e^{2\pi i/n}$ \end_inset , @@ -1837,10 +2056,7 @@ teorema \end_inset . -\end_layout - -\begin_layout Standard -Si + Si \begin_inset Formula $n,m\in\mathbb{Z}^{+}$ \end_inset @@ -1867,5 +2083,21 @@ Si . \end_layout +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{samepage} +\end_layout + +\end_inset + + +\end_layout + \end_body \end_document diff --git a/ealg/n6.lyx b/ealg/n6.lyx index 50e4d95..da24dc8 100644 --- a/ealg/n6.lyx +++ b/ealg/n6.lyx @@ -162,6 +162,27 @@ Ejemplos: \end_layout \begin_layout Enumerate +\begin_inset Formula $K\subseteq K$ +\end_inset + + es normal. +\end_layout + +\begin_deeper +\begin_layout Standard +Los irreducibles en +\begin_inset Formula $K$ +\end_inset + + con una raíz en +\begin_inset Formula $K$ +\end_inset + + son de grado 1. +\end_layout + +\end_deeper +\begin_layout Enumerate Si \begin_inset Formula $[L:K]=2$ \end_inset @@ -183,7 +204,7 @@ Los irreducibles en \begin_inset Formula $\alpha\in L$ \end_inset - tiene grado + tienen grado \begin_inset Formula $\text{gr}\text{Irr}(\alpha,K)\leq2$ \end_inset @@ -785,6 +806,103 @@ Que \end_deeper \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hbox{ +\backslash +vline +\backslash +hspace{2pt} +\backslash +vbox{ +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $K\subseteq L$ +\end_inset + + es normal, +\begin_inset Formula $K\subseteq E$ +\end_inset + + lo es si y sólo si +\begin_inset Formula $E$ +\end_inset + + es +\series bold +estable +\series default + en +\begin_inset Formula $K\subseteq L$ +\end_inset + +, es decir, si +\begin_inset Formula $\forall\sigma\in\text{Gal}(L/K),\sigma(E)=E$ +\end_inset + +. + Una extensión +\begin_inset Formula $K\subseteq L$ +\end_inset + + es normal si y sólo si existe una extensión +\begin_inset Formula $L\subseteq N$ +\end_inset + + con +\begin_inset Formula $K\subseteq N$ +\end_inset + + normal y tal que todo +\begin_inset Formula $K$ +\end_inset + +-encaje de +\begin_inset Formula $L$ +\end_inset + + en +\begin_inset Formula $N$ +\end_inset + + es un +\begin_inset Formula $K$ +\end_inset + +-automorfismo de +\begin_inset Formula $L$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + +}} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard Sean \begin_inset Formula $K\subseteq L$ \end_inset @@ -1617,6 +1735,88 @@ Si \end_deeper \begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +vspace{-0.8em}{ +\backslash +hbox{ +\backslash +vline +\backslash +vbox{ +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +4. +\end_layout + +\end_inset + +Si +\begin_inset Formula $p:=\text{car}K\neq0$ +\end_inset + +, +\begin_inset Formula $K$ +\end_inset + + es perfecto si y sólo si todo +\begin_inset Formula $a\in K$ +\end_inset + + tiene una raíz +\begin_inset Formula $p$ +\end_inset + +-ésima en +\begin_inset Formula $K$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +5. +\end_layout + +\end_inset + +Una extensión algebraica de un cuerpo perfecto es perfecta. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + +}} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard Además: \end_layout diff --git a/ealg/n7.lyx b/ealg/n7.lyx index 9e463a3..88407e4 100644 --- a/ealg/n7.lyx +++ b/ealg/n7.lyx @@ -128,7 +128,7 @@ correspondencia \series bold conexión de Galois \series default - asicada a + asociada a \begin_inset Formula $K\subseteq L$ \end_inset @@ -1614,5 +1614,57 @@ Sean \end_layout +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hbox{ +\backslash +vline +\backslash +hspace{2pt} +\backslash +vbox{ +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $K\subseteq L$ +\end_inset + + tiene grado 2 y +\begin_inset Formula $\text{car}K\neq2$ +\end_inset + +, +\begin_inset Formula $\text{Gal}(L/K)\cong C_{2}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + +}} +\end_layout + +\end_inset + + +\end_layout + \end_body \end_document |
