aboutsummaryrefslogtreecommitdiff
path: root/ealg
diff options
context:
space:
mode:
authorJuan Marín Noguera <juan.marinn@um.es>2021-06-14 00:39:19 +0200
committerJuan Marín Noguera <juan.marinn@um.es>2021-06-14 00:39:19 +0200
commit6ec63727b831a49824c0d1705af9db68ac3fb596 (patch)
treea1f840fb99253351cfd5ec0c0f9efce03aa461e8 /ealg
parent1ec9e61c032ba31dbe15d6dff19c2b68a04f02c2 (diff)
Errata + proposiciones de ejercicios
Diffstat (limited to 'ealg')
-rw-r--r--ealg/n5.lyx352
-rw-r--r--ealg/n6.lyx202
-rw-r--r--ealg/n7.lyx54
3 files changed, 546 insertions, 62 deletions
diff --git a/ealg/n5.lyx b/ealg/n5.lyx
index c3f6450..fcaa366 100644
--- a/ealg/n5.lyx
+++ b/ealg/n5.lyx
@@ -578,6 +578,59 @@ Toda raíz
\end_layout
\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+vspace{-0.8em}
+\backslash
+hbox{
+\backslash
+vline
+\backslash
+vbox{
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+6.
+\end_layout
+
+\end_inset
+
+Una extensión finita de
+\begin_inset Formula $\mathbb{Q}$
+\end_inset
+
+ tiene solo un número finito de raíces de uno.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+}}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
Dados un cuerpo
\begin_inset Formula $K$
\end_inset
@@ -1043,10 +1096,10 @@ Si
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
\begin_inset Formula $X^{q}-1=\prod_{d\mid q}\Phi_{d}(X)=(X-1)\Phi_{q}(X)$
\end_inset
@@ -1057,7 +1110,11 @@ Si
.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
Si
\begin_inset Formula $n\geq3$
@@ -1068,10 +1125,10 @@ Si
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
Como
\begin_inset Formula $\text{mcd}(n,2)=1$
\end_inset
@@ -1182,7 +1239,11 @@ Como
.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
Si
\begin_inset Formula $p$
@@ -1197,10 +1258,10 @@ Si
\end_inset
.
-\end_layout
+\begin_inset Note Comment
+status open
-\begin_deeper
-\begin_layout Standard
+\begin_layout Plain Layout
\begin_inset Formula $\text{gr\ensuremath{\Phi_{p_{k}}=}}\phi(p^{k})=(p-1)p^{k-1}$
\end_inset
@@ -1244,7 +1305,11 @@ Si
.
\end_layout
-\end_deeper
+\end_inset
+
+
+\end_layout
+
\begin_layout Enumerate
Si
\begin_inset Formula $n=p_{1}^{r_{1}}\cdots p_{s}^{r_{s}}$
@@ -1259,6 +1324,93 @@ Si
\end_inset
.
+\begin_inset Note Comment
+status open
+
+\begin_layout Plain Layout
+Para empezar,
+\begin_inset Formula $\text{gr}(\Phi_{n}(X))=\phi(n)=\phi(p_{1}^{r_{1}}\cdots p_{s}^{r_{s}})=(p_{1}-1)\cdots(p_{s}-1)p_{1}^{r_{1}-1}\cdots p_{s}^{r_{s}-1}$
+\end_inset
+
+ y
+\begin_inset Formula $\Phi_{p_{1}\cdots p_{s}}(X^{p_{1}^{r_{1}-1}\cdots p_{s}^{r_{s}-1}})=p_{1}^{r_{1}-1}\cdots p_{s}^{r_{s}-1}\phi(p_{1}\cdots p_{s})=(p_{1}-1)\cdots(p_{s}-1)p_{1}^{r_{1}-1}\cdots p_{s}^{r_{s}-1}$
+\end_inset
+
+.
+ Sea ahora
+\begin_inset Formula $\xi$
+\end_inset
+
+ una raíz de
+\begin_inset Formula $\Phi_{n}(X)$
+\end_inset
+
+, entonces
+\begin_inset Formula $\xi$
+\end_inset
+
+ es una raíz
+\begin_inset Formula $n$
+\end_inset
+
+-ésima primitiva de uno, de modo que
+\begin_inset Formula $\xi^{p_{1}^{r_{1}}\cdots p_{s}^{r_{s}}}=1$
+\end_inset
+
+, pero
+\begin_inset Formula $\xi^{p_{1}^{r_{1}}\cdots p_{s}^{r_{s}}}=(\xi^{p_{1}^{r_{1}-1}\cdots p_{s}^{r_{s}-1}})^{p_{1}\cdots p_{s}}$
+\end_inset
+
+, luego
+\begin_inset Formula $\xi^{p_{1}^{r_{1}-1}\cdots p_{s}^{r_{s}-1}}$
+\end_inset
+
+ es raíz
+\begin_inset Formula $(p_{1}\cdots p_{s})$
+\end_inset
+
+-ésima primitiva de uno (si fuera una raíz
+\begin_inset Formula $k$
+\end_inset
+
+-ésima de uno para
+\begin_inset Formula $k<p_{1}\cdots p_{s}$
+\end_inset
+
+,
+\begin_inset Formula $\xi$
+\end_inset
+
+ sería una raíz
+\begin_inset Formula $(p_{1}^{r_{1}-1}\cdots p_{s}^{r_{s}-1}k<n)$
+\end_inset
+
+-ésima de uno
+\begin_inset Formula $\#$
+\end_inset
+
+), luego
+\begin_inset Formula $\xi^{p_{1}^{r_{1}-1}\cdots p_{s}^{r_{s}-1}}$
+\end_inset
+
+ es raíz de
+\begin_inset Formula $\Phi_{p_{1}\cdots p_{s}}$
+\end_inset
+
+ y
+\begin_inset Formula $\xi$
+\end_inset
+
+ es raíz de
+\begin_inset Formula $\Phi_{p_{1}\cdots p_{s}}(X^{p_{1}^{r_{1}-1}\cdots p_{s}^{r_{s}-1}})$
+\end_inset
+
+.
+\end_layout
+
+\end_inset
+
+
\end_layout
\begin_layout Enumerate
@@ -1275,6 +1427,104 @@ Si
\end_inset
.
+\begin_inset Note Comment
+status open
+
+\begin_layout Plain Layout
+Como
+\begin_inset Formula $\text{gr}(\Phi_{n}\Phi_{pn})=\text{gr}n+\text{gr}pn=\phi(n)+(p-1)\phi(n)=p\phi(n)$
+\end_inset
+
+ y
+\begin_inset Formula $\text{gr}(\Phi_{n}(X^{p}))=p\text{gr}\Phi_{n}=p\phi(n)$
+\end_inset
+
+, y ninguno de los dos tiene raíces múltiples, basta ver que toda raíz
+\begin_inset Formula $\xi$
+\end_inset
+
+ de
+\begin_inset Formula $\Phi_{n}\Phi_{pn}$
+\end_inset
+
+ lo es de
+\begin_inset Formula $\Phi_{n}(X^{p})$
+\end_inset
+
+.
+ Si
+\begin_inset Formula $\xi$
+\end_inset
+
+ es raíz de
+\begin_inset Formula $\Phi_{n}$
+\end_inset
+
+, es raíz
+\begin_inset Formula $n$
+\end_inset
+
+-ésima primitiva del uno y por tanto
+\begin_inset Formula $\xi^{p}$
+\end_inset
+
+ también lo es, ya que
+\begin_inset Formula $o(\xi^{p})=\frac{o(\xi)}{\text{mcd}\{o(\xi),p\}}=\frac{n}{\text{mcd}\{n,p\}}=n$
+\end_inset
+
+.
+ Por tanto
+\begin_inset Formula $\xi^{p}$
+\end_inset
+
+ es raíz de
+\begin_inset Formula $\Phi_{n}$
+\end_inset
+
+.
+ Si
+\begin_inset Formula $\xi$
+\end_inset
+
+ es raíz de
+\begin_inset Formula $\Phi_{pn}$
+\end_inset
+
+, es raíz
+\begin_inset Formula $pn$
+\end_inset
+
+-ésima primitiva de uno, y como
+\begin_inset Formula $o(\xi^{p})=\frac{o(\xi)}{\text{mcd}\{o(\xi),p\}}=\frac{pn}{\text{mcd}\{pn,p\}}=n$
+\end_inset
+
+,
+\begin_inset Formula $\xi^{p}$
+\end_inset
+
+ es una raíz
+\begin_inset Formula $n$
+\end_inset
+
+-ésima primitiva de 1 y es raíz de
+\begin_inset Formula $\Phi_{n}$
+\end_inset
+
+.
+ En ambos casos
+\begin_inset Formula $\xi$
+\end_inset
+
+ es raíz de
+\begin_inset Formula $\Phi_{n}(X^{p})$
+\end_inset
+
+.
+\end_layout
+
+\end_inset
+
+
\end_layout
\begin_layout Enumerate
@@ -1300,19 +1550,6 @@ end{samepage}
\end_layout
-\begin_layout Standard
-En general los polinomios ciclotómicos no son irreducibles, pues por ejemplo
- en
-\begin_inset Formula $\mathbb{Z}_{7}$
-\end_inset
-
- las raíces terceras primitivas son 2 y 4 y
-\begin_inset Formula $\Phi_{3}(X)=(X-2)(X-4)$
-\end_inset
-
-.
-\end_layout
-
\begin_layout Section
Extensiones ciclotómicas
\end_layout
@@ -1377,10 +1614,7 @@ cuerpo ciclotómico
.
Cada cuerpo tiene una extensión ciclotómica de cada orden, única salvo
isomorfismos.
-\end_layout
-
-\begin_layout Standard
-Ejemplos:
+ Ejemplos:
\end_layout
\begin_layout Enumerate
@@ -1444,16 +1678,8 @@ La extensión ciclotómica de orden
\begin_inset Formula $\mathbb{F}_{p^{m}}$
\end_inset
-, siendo
-\begin_inset Formula $m$
-\end_inset
-
- el orden de
-\begin_inset Formula $p$
-\end_inset
-
- en
-\begin_inset Formula $\mathbb{Z}_{n}^{*}$
+, con
+\begin_inset Formula $m:=o_{\mathbb{Z}_{n}^{*}}(p)$
\end_inset
.
@@ -1787,23 +2013,17 @@ Si
\end_deeper
\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-end{samepage}
-\end_layout
-
+En general los polinomios ciclotómicos no son irreducibles en el cuerpo
+ primo, pues por ejemplo en
+\begin_inset Formula $\mathbb{Z}_{7}$
\end_inset
+ las raíces terceras primitivas son 2 y 4 y
+\begin_inset Formula $\Phi_{3}(X)=(X-2)(X-4)$
+\end_inset
-\end_layout
-
-\begin_layout Standard
-Como
+.
+ Sin embargo, como
\series bold
teorema
\series default
@@ -1823,9 +2043,8 @@ teorema
\begin_inset Formula $\Phi_{n}(X)=\text{Irr}(\xi,\mathbb{Q})$
\end_inset
-.
- Así, si
-\begin_inset Formula $\xi=e^{2\pi i/n}$
+, luego si
+\begin_inset Formula $\xi:=e^{2\pi i/n}$
\end_inset
,
@@ -1837,10 +2056,7 @@ teorema
\end_inset
.
-\end_layout
-
-\begin_layout Standard
-Si
+ Si
\begin_inset Formula $n,m\in\mathbb{Z}^{+}$
\end_inset
@@ -1867,5 +2083,21 @@ Si
.
\end_layout
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+end{samepage}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
\end_body
\end_document
diff --git a/ealg/n6.lyx b/ealg/n6.lyx
index 50e4d95..da24dc8 100644
--- a/ealg/n6.lyx
+++ b/ealg/n6.lyx
@@ -162,6 +162,27 @@ Ejemplos:
\end_layout
\begin_layout Enumerate
+\begin_inset Formula $K\subseteq K$
+\end_inset
+
+ es normal.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Los irreducibles en
+\begin_inset Formula $K$
+\end_inset
+
+ con una raíz en
+\begin_inset Formula $K$
+\end_inset
+
+ son de grado 1.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
Si
\begin_inset Formula $[L:K]=2$
\end_inset
@@ -183,7 +204,7 @@ Los irreducibles en
\begin_inset Formula $\alpha\in L$
\end_inset
- tiene grado
+ tienen grado
\begin_inset Formula $\text{gr}\text{Irr}(\alpha,K)\leq2$
\end_inset
@@ -785,6 +806,103 @@ Que
\end_deeper
\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+hbox{
+\backslash
+vline
+\backslash
+hspace{2pt}
+\backslash
+vbox{
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Si
+\begin_inset Formula $K\subseteq L$
+\end_inset
+
+ es normal,
+\begin_inset Formula $K\subseteq E$
+\end_inset
+
+ lo es si y sólo si
+\begin_inset Formula $E$
+\end_inset
+
+ es
+\series bold
+estable
+\series default
+ en
+\begin_inset Formula $K\subseteq L$
+\end_inset
+
+, es decir, si
+\begin_inset Formula $\forall\sigma\in\text{Gal}(L/K),\sigma(E)=E$
+\end_inset
+
+.
+ Una extensión
+\begin_inset Formula $K\subseteq L$
+\end_inset
+
+ es normal si y sólo si existe una extensión
+\begin_inset Formula $L\subseteq N$
+\end_inset
+
+ con
+\begin_inset Formula $K\subseteq N$
+\end_inset
+
+ normal y tal que todo
+\begin_inset Formula $K$
+\end_inset
+
+-encaje de
+\begin_inset Formula $L$
+\end_inset
+
+ en
+\begin_inset Formula $N$
+\end_inset
+
+ es un
+\begin_inset Formula $K$
+\end_inset
+
+-automorfismo de
+\begin_inset Formula $L$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+}}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
Sean
\begin_inset Formula $K\subseteq L$
\end_inset
@@ -1617,6 +1735,88 @@ Si
\end_deeper
\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+vspace{-0.8em}{
+\backslash
+hbox{
+\backslash
+vline
+\backslash
+vbox{
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+4.
+\end_layout
+
+\end_inset
+
+Si
+\begin_inset Formula $p:=\text{car}K\neq0$
+\end_inset
+
+,
+\begin_inset Formula $K$
+\end_inset
+
+ es perfecto si y sólo si todo
+\begin_inset Formula $a\in K$
+\end_inset
+
+ tiene una raíz
+\begin_inset Formula $p$
+\end_inset
+
+-ésima en
+\begin_inset Formula $K$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+5.
+\end_layout
+
+\end_inset
+
+Una extensión algebraica de un cuerpo perfecto es perfecta.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+}}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
Además:
\end_layout
diff --git a/ealg/n7.lyx b/ealg/n7.lyx
index 9e463a3..88407e4 100644
--- a/ealg/n7.lyx
+++ b/ealg/n7.lyx
@@ -128,7 +128,7 @@ correspondencia
\series bold
conexión de Galois
\series default
- asicada a
+ asociada a
\begin_inset Formula $K\subseteq L$
\end_inset
@@ -1614,5 +1614,57 @@ Sean
\end_layout
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+hbox{
+\backslash
+vline
+\backslash
+hspace{2pt}
+\backslash
+vbox{
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Si
+\begin_inset Formula $K\subseteq L$
+\end_inset
+
+ tiene grado 2 y
+\begin_inset Formula $\text{car}K\neq2$
+\end_inset
+
+,
+\begin_inset Formula $\text{Gal}(L/K)\cong C_{2}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+}}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
\end_body
\end_document