diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2021-04-20 15:26:07 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2021-04-20 15:26:18 +0200 |
| commit | ccc5bccc4efaba81da501cb6d3ffaae1c14765fa (patch) | |
| tree | e3dc40635fe3cfe9436a22188f2a256073431c16 /ealg | |
| parent | 9f88e37397a9dcfd32e69a7214317d6ee2330bba (diff) | |
Algebraicas Tema 4
Diffstat (limited to 'ealg')
| -rw-r--r-- | ealg/n.lyx | 14 | ||||
| -rw-r--r-- | ealg/n2.lyx | 304 | ||||
| -rw-r--r-- | ealg/n4.lyx | 1233 |
3 files changed, 1544 insertions, 7 deletions
@@ -176,5 +176,19 @@ filename "n2.lyx" \end_layout +\begin_layout Chapter +Cuerpos de descomposición +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n4.lyx" + +\end_inset + + +\end_layout + \end_body \end_document diff --git a/ealg/n2.lyx b/ealg/n2.lyx index b2edddd..49dbf78 100644 --- a/ealg/n2.lyx +++ b/ealg/n2.lyx @@ -3728,8 +3728,210 @@ grupo de Klein \end_inset . +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{GyA} +\end_layout + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Necesario para las demostraciones comentadas. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Plain Layout +Dado un grupo +\begin_inset Formula $G$ +\end_inset + +, llamamos +\series bold +exponente +\series default + o +\series bold +periodo +\series default + de +\begin_inset Formula $G$ +\end_inset + +, +\begin_inset Formula $\text{Exp}(G)$ +\end_inset + +, al menor +\begin_inset Formula $n\in\mathbb{N}^{*}$ +\end_inset + + tal que +\begin_inset Formula $\forall g\in G,g^{n}=1$ +\end_inset + +, o a +\begin_inset Formula $\infty$ +\end_inset + + si este no existe. + [...] Si un grupo es finito tiene periodo finito [...]. +\end_layout + +\begin_layout Plain Layout +[...] Una +\series bold +descomposición primaria +\series default + o +\series bold +indescomponible +\series default + de un grupo abeliano finito +\begin_inset Formula $A$ +\end_inset + + es una expresión de la forma +\begin_inset Formula +\begin{align*} +A= & \langle a_{11}\rangle_{p_{1}^{\alpha_{11}}}\oplus\dots\oplus\langle a_{1m_{1}}\rangle_{p_{1}^{\alpha_{1m_{1}}}}\oplus\\ + & \dots\oplus\\ + & \langle a_{k1}\rangle_{p_{k}^{\alpha_{k1}}}\oplus\dots\oplus\langle a_{km_{k}}\rangle_{p_{k}^{\alpha_{km_{k}}}}, +\end{align*} + +\end_inset + +donde +\begin_inset Formula $p_{1}<\dots<p_{k}$ +\end_inset + + son los primos que dividen a +\begin_inset Formula $|A|$ +\end_inset + + y +\begin_inset Formula $\alpha_{i1}\geq\dots\geq\alpha_{im_{i}}\geq1$ +\end_inset + + para cada +\begin_inset Formula $i\in\{1,\dots,k\}$ +\end_inset + +. +\end_layout + +\begin_layout Plain Layout +Como +\series bold +teorema +\series default +, todo grupo abeliano tiene una descomposición primaria [...]. +\end_layout + +\begin_layout Plain Layout +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + Para todo grupo finito +\begin_inset Formula $G$ +\end_inset + +, +\begin_inset Formula $\text{Exp}G\mid|G|$ +\end_inset + +, y en particular, para +\begin_inset Formula $g\in G$ +\end_inset + +, +\begin_inset Formula $g^{|G|}=1$ +\end_inset + +. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +En efecto, +\begin_inset Formula $\text{Exp}G=\text{mcm}_{g\in G}|g|$ +\end_inset + +, pero como para todo +\begin_inset Formula $g\in G$ +\end_inset + +, +\begin_inset Formula $\langle g\rangle$ +\end_inset + + es un subgrupo de +\begin_inset Formula $G$ +\end_inset + +, +\begin_inset Formula $|g|\mid|G|$ +\end_inset + +, luego +\begin_inset Formula $|G|$ +\end_inset + + es múltiplo de todo +\begin_inset Formula $|g|$ +\end_inset + + y por tanto lo es de +\begin_inset Formula $\text{Exp}G$ +\end_inset + +. +\end_layout + +\end_inset + Dado un cuerpo -\begin_inset Formula $K$ +\begin_inset Formula $K\neq0$ \end_inset , todo subgrupo finito de @@ -3746,6 +3948,98 @@ grupo de Klein \end_inset es cíclico. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default +Llamando +\begin_inset Formula $m:=\text{Exp}K^{*}$ +\end_inset + +, +\begin_inset Formula $K^{*}$ +\end_inset + + está formado por raíces de +\begin_inset Formula $X^{m}-1$ +\end_inset + +, de modo que +\begin_inset Formula $|K^{*}|\leq m$ +\end_inset + + y, como +\begin_inset Formula $m\mid|K^{*}|>0$ +\end_inset + + ( +\begin_inset Formula $1\in K^{*}$ +\end_inset + +), +\begin_inset Formula $m=|K^{*}|$ +\end_inset + +. + Entonces +\begin_inset Formula $K^{*}$ +\end_inset + + tiene una descomposición primaria de la forma +\begin_inset Formula $\langle a_{1}\rangle_{p_{1}^{\alpha_{1}}}\oplus\dots\oplus\langle a_{k}\rangle_{p_{k}^{\alpha_{k}}}$ +\end_inset + + con cada +\begin_inset Formula $p_{i}$ +\end_inset + + distinto, pues si su descomposición primaria es +\begin_inset Formula $\bigoplus_{i=1}^{k}\bigoplus_{j=1}^{m_{i}}\langle a_{ij}\rangle_{p_{i}^{\alpha_{ij}}}$ +\end_inset + +, el orden es +\begin_inset Formula $\prod_{i,j}p_{i}^{\alpha_{ij}}$ +\end_inset + + y el exponente es +\begin_inset Formula $\prod_{i}p_{i}^{\alpha_{i1}}$ +\end_inset + +, dado que +\begin_inset Formula $p_{i}^{\alpha_{ij}}\mid p_{i}^{\alpha_{i1}}$ +\end_inset + + para todo +\begin_inset Formula $j$ +\end_inset + +, y para que estos coincidan debe ser cada +\begin_inset Formula $m_{i}=1$ +\end_inset + +. + Entonces el orden de +\begin_inset Formula $a:=a_{1}+\dots+a_{k}$ +\end_inset + + es +\begin_inset Formula $m$ +\end_inset + +, luego +\begin_inset Formula $\langle a\rangle=K^{*}$ +\end_inset + + es cíclico. +\end_layout + +\end_inset + + \end_layout \begin_layout Standard @@ -4244,7 +4538,7 @@ status open \begin_inset Formula $\alpha\in M$ \end_inset - y por tanto + y \begin_inset Formula $\alpha$ \end_inset @@ -4345,10 +4639,6 @@ Para \end_layout \end_deeper -\begin_layout Enumerate -Ser finitamente generada. -\end_layout - \begin_layout Standard Una propiedad relativa a extensiones es \series bold @@ -4426,7 +4716,7 @@ LM=LK(\alpha_{1},\dots,\alpha_{n})=L(\alpha_{1},\dots,\alpha_{m}), \end_inset - pues +pues \begin_inset Formula $LK(\alpha_{1},\dots,\alpha_{n})$ \end_inset diff --git a/ealg/n4.lyx b/ealg/n4.lyx new file mode 100644 index 0000000..ffcd066 --- /dev/null +++ b/ealg/n4.lyx @@ -0,0 +1,1233 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Sea +\begin_inset Formula $K\subseteq L$ +\end_inset + + una extensión de cuerpos, +\begin_inset Formula $f\in K[X]$ +\end_inset + + de grado +\begin_inset Formula $n\geq0$ +\end_inset + + se +\series bold +descompone +\series default + o +\series bold +factoriza completamente +\series default + en +\begin_inset Formula $L$ +\end_inset + + si existen +\begin_inset Formula $c\in K$ +\end_inset + + y +\begin_inset Formula $\alpha_{1},\dots,\alpha_{n}\in L$ +\end_inset + + con +\begin_inset Formula +\[ +f(X)=c\prod_{i=1}^{n}(X-\alpha_{i}). +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $K$ +\end_inset + + un cuerpo y +\begin_inset Formula ${\cal P}\subseteq K[X]\setminus0$ +\end_inset + +, un +\series bold +cuerpo de descomposición +\series default + de +\begin_inset Formula ${\cal P}$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + + es una extensión +\begin_inset Formula $L$ +\end_inset + + de +\begin_inset Formula $K$ +\end_inset + + en la que todos los polinomios de +\begin_inset Formula ${\cal P}$ +\end_inset + + se descomponen completamente y sus raíces generan +\begin_inset Formula $L$ +\end_inset + +. + Un cuerpo de descomposición de +\begin_inset Formula $f\in K[X]\setminus0$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + + es uno de +\begin_inset Formula $\{f\}$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $K\subseteq L$ +\end_inset + + una extensión de cuerpos, +\begin_inset Formula $f\in K[X]\setminus0$ +\end_inset + + de grado +\begin_inset Formula $n$ +\end_inset + + y +\begin_inset Formula ${\cal P}\subseteq K[X]\setminus0$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $f$ +\end_inset + + se descompone completamente sobre +\begin_inset Formula $L$ +\end_inset + + si y solo si lo hace el polinomio mónico +\begin_inset Formula $f/f_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $n\in\{0,1\}$ +\end_inset + +, +\begin_inset Formula $K$ +\end_inset + + es cuerpo de descomposición de +\begin_inset Formula $f$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Sean +\begin_inset Formula $f_{1},\dots,f_{n}\in K[X]\setminus0$ +\end_inset + + y +\begin_inset Formula $f:=f_{1}\cdots f_{n}$ +\end_inset + +, +\begin_inset Formula $L$ +\end_inset + + es un cuerpo de descomposición de +\begin_inset Formula $\{f_{1},\dots,f_{n}\}$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + + si y solo si lo es de +\begin_inset Formula $f$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $L$ +\end_inset + + es un cuerpo de descomposición de +\begin_inset Formula ${\cal P}$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + +, +\begin_inset Formula $K\subseteq L$ +\end_inset + + es algebraica. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $L$ +\end_inset + + es un cuerpo de descomposición de +\begin_inset Formula ${\cal P}$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + +, también lo es de +\begin_inset Formula ${\cal P}$ +\end_inset + + sobre cualquier cuerpo intermedio entre +\begin_inset Formula $K$ +\end_inset + + y +\begin_inset Formula $L$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si cada +\begin_inset Formula $f\in{\cal P}$ +\end_inset + + se descompone completamente en +\begin_inset Formula $L$ +\end_inset + + , sea +\begin_inset Formula $S\subseteq L$ +\end_inset + + el conjunto de raíces de los elementos de +\begin_inset Formula ${\cal P}$ +\end_inset + +, entonces +\begin_inset Formula $K(S)$ +\end_inset + + es un cuerpo de descomposición de +\begin_inset Formula ${\cal P}$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Así, para obtener el cuerpo de descomposición de +\begin_inset Formula ${\cal P}$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + +, basta considerar los polinomios mónicos correspondientes a los polinomios + de +\begin_inset Formula ${\cal P}$ +\end_inset + + de grado al menos 2, u opcionalmente del producto de todos ellos si hay + un número finito de ellos, luego hay que encontrar una extensión de +\begin_inset Formula $K$ +\end_inset + + en que estos polinomios tengan todas sus raíces y quedarnos con el subcuerpo + generado por las raíces sobre +\begin_inset Formula $K$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un cuerpo de descomposición de +\begin_inset Formula $X^{n}-1$ +\end_inset + + sobre +\begin_inset Formula $\mathbb{Q}$ +\end_inset + + es +\begin_inset Formula $\mathbb{Q}(\xi)$ +\end_inset + +, con +\begin_inset Formula $\xi:=e^{2\pi i/n}$ +\end_inset + +, que también es el cuerpo de descomposición de +\begin_inset Formula $X^{n-1}+\dots+X+1$ +\end_inset + + y de +\begin_inset Formula $\text{Irr}(\xi,\mathbb{Q})$ +\end_inset + +. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +En efecto, las raíces de +\begin_inset Formula $X^{n}-1$ +\end_inset + + en +\begin_inset Formula $\mathbb{C}$ +\end_inset + + son +\begin_inset Formula $\{\xi^{i}\}_{i=0}^{n-1}$ +\end_inset + + y +\begin_inset Formula $\mathbb{Q}(\{\xi^{i}\}_{i=0}^{n-1})=\mathbb{Q}(\xi)$ +\end_inset + +. + Los otros dos polinomios son divisores de +\begin_inset Formula $X^{n}-1$ +\end_inset + + y por tanto tendrán un subconjunto de sus raíces, pero una de las que tienen + es +\begin_inset Formula $\xi$ +\end_inset + + y +\begin_inset Formula $\mathbb{Q}(\xi)$ +\end_inset + + contiene al resto. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $K$ +\end_inset + + es un cuerpo y +\begin_inset Formula $f\in K[X]\setminus0$ +\end_inset + +, existe un cuerpo de descomposición +\begin_inset Formula $L$ +\end_inset + + de +\begin_inset Formula $f$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + + y +\begin_inset Formula $[L:K]\leq n!$ +\end_inset + +. + Esta cota no es mejorable +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +; por ejemplo, las raíces de +\begin_inset Formula $X^{3}-2$ +\end_inset + + en +\begin_inset Formula $\mathbb{C}$ +\end_inset + + son +\begin_inset Formula $\alpha$ +\end_inset + +, +\begin_inset Formula $\alpha\omega$ +\end_inset + + y +\begin_inset Formula $\alpha\omega^{2}$ +\end_inset + + con +\begin_inset Formula $\alpha:=\sqrt[3]{2}$ +\end_inset + + y +\begin_inset Formula $\omega:=e^{2\pi i/3}$ +\end_inset + +, luego un cuerpo de descomposición es +\begin_inset Formula $\mathbb{Q}(\alpha,\alpha\omega,\alpha\omega^{2})$ +\end_inset + +, y como +\begin_inset Formula $\omega=\frac{1}{2}\alpha^{2}(\alpha\omega)$ +\end_inset + +, esto es lo mismo que +\begin_inset Formula $\mathbb{Q}(\alpha,\omega)$ +\end_inset + +, pero como +\begin_inset Formula $\text{Irr}(\alpha,\mathbb{Q})=X^{3}-2$ +\end_inset + + e +\begin_inset Formula $\text{Irr}(\omega,\mathbb{Q}(\alpha))=X^{2}+X+1$ +\end_inset + +, +\begin_inset Formula $[\mathbb{Q}(\alpha,\omega):\mathbb{Q}]=[\mathbb{Q}(\alpha,\omega):\mathbb{Q}(\alpha)][\mathbb{Q}(\alpha):\mathbb{Q}]=2\cdot3=6$ +\end_inset + + +\end_layout + +\end_inset + +. +\end_layout + +\begin_layout Section +Grupo de Galois de un polinomio +\end_layout + +\begin_layout Standard +Dados un cuerpo +\begin_inset Formula $K$ +\end_inset + + y un +\begin_inset Formula $f\in K[X]$ +\end_inset + + con cuerpo de descomposición +\begin_inset Formula $L$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + +, el +\series bold +grupo de Galois +\series default + de +\begin_inset Formula $f$ +\end_inset + + es +\begin_inset Formula $G_{f}:=\text{Gal}(L/K)$ +\end_inset + +. + Sean +\begin_inset Formula $\alpha_{1},\dots,\alpha_{n}\in L$ +\end_inset + + las raíces distintas de +\begin_inset Formula $f$ +\end_inset + +, cada +\begin_inset Formula $\sigma\in G_{f}$ +\end_inset + + lleva raíces a raíces y por tanto +\begin_inset Formula $\sigma|_{\{\alpha_{1},\dots,\alpha_{n}\}}:\{\alpha_{1},\dots,\alpha_{n}\}\to\{\alpha_{1},\dots,\alpha_{n}\}$ +\end_inset + + es inyectiva por serlo +\begin_inset Formula $\sigma$ +\end_inset + + y por tanto biyectiva. + Sea +\begin_inset Formula $\varphi:G_{f}\to{\cal S}_{n}$ +\end_inset + + dada por +\begin_inset Formula $\varphi(\sigma)(i)=j\iff\sigma(\alpha_{i})=\alpha_{j}$ +\end_inset + +, +\begin_inset Formula $\varphi$ +\end_inset + + es un homomorfismo inyectivo y por tanto +\begin_inset Formula $G_{f}\cong\text{Im}\varphi\leq{\cal S}_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Clausura algebraica +\end_layout + +\begin_layout Standard +Un cuerpo +\begin_inset Formula $K$ +\end_inset + + es +\series bold +algebraicamente cerrado +\series default + si todo +\begin_inset Formula $f\in K[X]\setminus0$ +\end_inset + + tiene una raíz en +\begin_inset Formula $K$ +\end_inset + +. + Una extensión +\begin_inset Formula $L$ +\end_inset + + de un cuerpo +\begin_inset Formula $K$ +\end_inset + + es una +\series bold +clausura algebraica +\series default + de +\begin_inset Formula $K$ +\end_inset + + si +\begin_inset Formula $K\subseteq L$ +\end_inset + + es algebraica y +\begin_inset Formula $L$ +\end_inset + + es algebraicamente cerrado. + Todo cuerpo tiene una clausura algebraica. +\end_layout + +\begin_layout Standard +El cuerpo de descomposición sobre un cuerpo +\begin_inset Formula $K$ +\end_inset + + de un +\begin_inset Formula ${\cal P}\subseteq K[X]$ +\end_inset + + es único salvo isomorfismos. +\end_layout + +\begin_layout Section +Cuerpos finitos +\end_layout + +\begin_layout Standard +Dado un anillo +\begin_inset Formula $A$ +\end_inset + + de característica prima +\begin_inset Formula $p$ +\end_inset + +, +\begin_inset Formula $h:A\to A$ +\end_inset + + dado por +\begin_inset Formula $h(a):=a^{p}$ +\end_inset + + es un homomorfismo de anillos, el +\series bold +homomorfismo de Frobenius +\series default + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +, pues conserva el 1, +\begin_inset Formula $h(ab)=(ab)^{p}=a^{p}b^{p}$ +\end_inset + + y +\begin_inset Formula $h(a+b)=(a+b)^{p}=\sum_{k=0}^{p}\binom{p}{k}a^{p}b^{p-k}=a^{p}+b^{p}$ +\end_inset + +, usando que, para +\begin_inset Formula $k\in\{1,\dots,p-1\}$ +\end_inset + +, +\begin_inset Formula $\binom{p}{k}=\frac{p!}{(p-k)!k!}=0$ +\end_inset + + al ser un cociente de un múltiplo de +\begin_inset Formula $p$ +\end_inset + + entre algo que no es múltiplo de +\begin_inset Formula $p$ +\end_inset + + +\end_layout + +\end_inset + +. + En particular +\begin_inset Formula $h^{n}=(a\mapsto a^{p^{n}})$ +\end_inset + + es un homomorfismo. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $K$ +\end_inset + + es un cuerpo finito, existen +\begin_inset Formula $p,n\in\mathbb{Z}^{+}$ +\end_inset + + con +\begin_inset Formula $p$ +\end_inset + + primo tales que +\begin_inset Formula $\text{car}K=p$ +\end_inset + +, +\begin_inset Formula $|K|=p^{n}$ +\end_inset + + y +\begin_inset Formula $K$ +\end_inset + + es un cuerpo de descomposición sobre +\begin_inset Formula $\mathbb{Z}_{p}$ +\end_inset + + de +\begin_inset Formula $X^{p^{n}}-X$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Como +\begin_inset Formula $K$ +\end_inset + + es finito, +\begin_inset Formula $\text{car}K\neq0$ +\end_inset + + y +\begin_inset Formula $\text{car}K=p$ +\end_inset + + para cierto primo +\begin_inset Formula $p$ +\end_inset + +. + Entonces +\begin_inset Formula $K$ +\end_inset + + es una extensión finita de su subcuerpo primo +\begin_inset Formula $\mathbb{Z}_{p}$ +\end_inset + + y, tomando +\begin_inset Formula $n:=[K:\mathbb{Z}_{p}]$ +\end_inset + +, +\begin_inset Formula $|K|=p^{n}$ +\end_inset + +, luego +\begin_inset Formula $n<\infty$ +\end_inset + +. + Entonces el grupo multiplicativo +\begin_inset Formula $K^{*}$ +\end_inset + + tiene +\begin_inset Formula $p^{n}-1$ +\end_inset + + elementos, pero para +\begin_inset Formula $g\in K^{*}$ +\end_inset + +, +\begin_inset Formula $g^{|K^{*}|}=g^{p^{n}-1}=1$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + es raíz de +\begin_inset Formula $X^{p^{n}-1}-1$ +\end_inset + + y por tanto de +\begin_inset Formula $f:=X^{p^{n}}-X$ +\end_inset + +, que también es raíz del 0. + Como +\begin_inset Formula $f$ +\end_inset + + tiene a lo sumo +\begin_inset Formula $p^{n}=|K|$ +\end_inset + + raíces, +\begin_inset Formula $K$ +\end_inset + + está formado por las raíces de +\begin_inset Formula $f$ +\end_inset + + y por tanto es está generado por estas. +\end_layout + +\end_deeper +\begin_layout Enumerate +Para cada +\begin_inset Formula $p,n\in\mathbb{Z}^{+}$ +\end_inset + + con +\begin_inset Formula $p$ +\end_inset + + primo, sea +\begin_inset Formula $\overline{\mathbb{Z}_{p}}$ +\end_inset + + la clausura algebraica de +\begin_inset Formula $\mathbb{Z}_{p}$ +\end_inset + +, el cuerpo de descomposición sobre +\begin_inset Formula $\mathbb{Z}_{p}$ +\end_inset + + de +\begin_inset Formula $X^{p^{n}}-X$ +\end_inset + + tiene +\begin_inset Formula $p^{n}$ +\end_inset + + elementos y viene dado por +\begin_inset Formula $\mathbb{F}_{p^{n}}:=\{\alpha\in\overline{\mathbb{Z}_{p}}:\alpha^{p^{n}}=\alpha\}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula $S:=\{\alpha\in\overline{\mathbb{Z}_{p}}:\alpha^{p^{n}}=\alpha\}$ +\end_inset + + el conjunto de raíces de +\begin_inset Formula $f:=X^{p^{n}}-X$ +\end_inset + + en +\begin_inset Formula $\mathbb{Z}_{p}$ +\end_inset + +, el cuerpo de descomposición es +\begin_inset Formula $\mathbb{F}_{p^{n}}=\mathbb{Z}_{p}(S)$ +\end_inset + +, pero +\begin_inset Formula $S$ +\end_inset + + un cuerpo, pues +\begin_inset Formula $1\in S$ +\end_inset + + y, para +\begin_inset Formula $\alpha,\beta\in S$ +\end_inset + +, por el homomorfismo de Frobenius, +\begin_inset Formula $(\alpha-\beta)^{p^{n}}=\alpha^{p^{n}}-\beta^{p^{n}}=\alpha-\beta$ +\end_inset + +, +\begin_inset Formula $(\alpha\beta)^{p^{n}}=\alpha^{p^{n}}\beta^{p^{n}}=\alpha\beta$ +\end_inset + + y +\begin_inset Formula $(\alpha^{-1})^{p^{n}}=(\alpha^{p^{n}})^{-1}=\alpha^{-1}$ +\end_inset + +. + Además, +\begin_inset Formula $(1)=\mathbb{Z}_{p}\subseteq S$ +\end_inset + + y +\begin_inset Formula $\mathbb{Z}_{p}(S)=S$ +\end_inset + +, pero como +\begin_inset Formula $\text{mcd}\{f,f'\}=\text{mcd}\{X^{p^{n}}-X,-1\}=1$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + no tiene raíces múltiples y +\begin_inset Formula $|\mathbb{F}_{p^{n}}|=|S|=p^{n}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Para +\begin_inset Formula $p,n\in\mathbb{Z}^{+}$ +\end_inset + + con +\begin_inset Formula $p$ +\end_inset + + primo, todo cuerpo finito de tamaño +\begin_inset Formula $p^{n}$ +\end_inset + + es isomorfo a +\begin_inset Formula $\mathbb{F}_{p^{n}}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Newpage pagebreak +\end_inset + + +\end_layout + +\begin_layout Standard +Con esto: +\end_layout + +\begin_layout Enumerate +Vistos como subcuerpos de +\begin_inset Formula $\overline{\mathbb{Z}_{p}}$ +\end_inset + +, +\begin_inset Formula $\mathbb{F}_{p^{m}}\subseteq\mathbb{F}_{p^{n}}\iff m\mid n$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $\mathbb{Z}_{p}\subseteq\mathbb{F}_{p^{m}}\subseteq\mathbb{F}_{p^{n}}$ +\end_inset + +, luego +\begin_inset Formula $m=[\mathbb{F}_{p^{m}}:\mathbb{Z}_{p}]\mid[\mathbb{F}_{p^{n}}:\mathbb{Z}_{p}]=n$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $t:=\frac{n}{m}$ +\end_inset + +, para +\begin_inset Formula $\alpha$ +\end_inset + + con +\begin_inset Formula $\alpha=\alpha^{p^{m}}$ +\end_inset + + es +\begin_inset Formula $\alpha=\alpha^{p^{mt}}=\alpha^{p^{n}}$ +\end_inset + +. + En efecto, para +\begin_inset Formula $t=1$ +\end_inset + + esto es trivial, y para +\begin_inset Formula $t>1$ +\end_inset + +, supuesto esto probado para +\begin_inset Formula $t-1$ +\end_inset + +, +\begin_inset Formula $\alpha^{p^{mt}}=\alpha^{p^{m(t-1)+m}}=\alpha^{p^{m(t-1)}p^{m}}=(\alpha^{p^{m(t-1)}})^{p^{m}}=\alpha^{p^{m}}=\alpha$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $X^{p^{n}}-X$ +\end_inset + + es el producto de todos los irreducibles mónicos de +\begin_inset Formula $\mathbb{Z}_{p}[X]$ +\end_inset + + cuyo grado divide a +\begin_inset Formula $n$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Como +\begin_inset Formula $F:=X^{p^{n}}-X$ +\end_inset + + no tiene raíces múltiples, no tiene factores repetidos y es pues el producto + de todos los irreducibles mónicos que lo dividen, y queremos ver que, para + un irreducible mónico +\begin_inset Formula $f\in\mathbb{Z}_{p}[X]$ +\end_inset + + de grado +\begin_inset Formula $m$ +\end_inset + +, +\begin_inset Formula $f\mid F$ +\end_inset + + si y solo si +\begin_inset Formula $m\mid n$ +\end_inset + +. + Sea entonces una raíz +\begin_inset Formula $\alpha\in\overline{\mathbb{Z}_{p}}$ +\end_inset + + de +\begin_inset Formula $f$ +\end_inset + +, +\begin_inset Formula $f=\text{Irr}(\alpha,\mathbb{Z}_{p})$ +\end_inset + + y +\begin_inset Formula $[\mathbb{Z}_{p}(\alpha):\mathbb{Z}_{p}]=m$ +\end_inset + +, luego +\begin_inset Formula $|\mathbb{Z}_{p}(\alpha)|=p^{m}$ +\end_inset + + y por tanto +\begin_inset Formula $\mathbb{Z}_{p}(\alpha)\cong\mathbb{F}_{p^{m}}$ +\end_inset + +. + Entonces, por la caracterización de +\begin_inset Formula $\text{Irr}(\alpha,f)$ +\end_inset + +, +\begin_inset Formula $f\mid F$ +\end_inset + + si y solo si +\begin_inset Formula $\alpha$ +\end_inset + + es raíz de +\begin_inset Formula $F$ +\end_inset + +, si y solo si +\begin_inset Formula $\alpha^{p^{n}}=\alpha$ +\end_inset + +, si y solo si +\begin_inset Formula $\alpha\in\mathbb{F}_{p^{n}}$ +\end_inset + +, si y solo si +\begin_inset Formula $\mathbb{F}_{p^{m}}\cong\mathbb{Z}_{p}(\alpha)\subseteq\mathbb{F}_{p^{n}}$ +\end_inset + +, si y solo si +\begin_inset Formula $m\mid n$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Dada una extensión de cuerpos finitos +\begin_inset Formula $K\subseteq L$ +\end_inset + + de grado +\begin_inset Formula $m$ +\end_inset + +, existe +\begin_inset Formula $\alpha\in L$ +\end_inset + + tal que +\begin_inset Formula $L=K(\alpha)$ +\end_inset + +, +\begin_inset Formula $\text{Irr}(\alpha,K)$ +\end_inset + + tiene +\begin_inset Formula $m$ +\end_inset + + raíces distintas en +\begin_inset Formula $L$ +\end_inset + + y +\begin_inset Formula $|\text{Gal}(L/K)|=m$ +\end_inset + +. +\end_layout + +\end_body +\end_document |
