diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2021-06-11 11:07:35 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2021-06-11 11:07:35 +0200 |
| commit | d1ae38a2f4b54fba47284c8f130bad5447d5f23e (patch) | |
| tree | da9ba6f047f69d603987b9f4ff5340d0dbba3d36 /ealg | |
| parent | b01bada353e42059d8c17caac88decee78860410 (diff) | |
Variado
Diffstat (limited to 'ealg')
| -rw-r--r-- | ealg/n.lyx | 14 | ||||
| -rw-r--r-- | ealg/n1.lyx | 4 | ||||
| -rw-r--r-- | ealg/n6.lyx | 1793 |
3 files changed, 1811 insertions, 0 deletions
@@ -204,5 +204,19 @@ filename "n5.lyx" \end_layout +\begin_layout Chapter +Extensiones normales y separables +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n6.lyx" + +\end_inset + + +\end_layout + \end_body \end_document diff --git a/ealg/n1.lyx b/ealg/n1.lyx index 2828fde..0f5e52b 100644 --- a/ealg/n1.lyx +++ b/ealg/n1.lyx @@ -1628,6 +1628,10 @@ Si \begin_inset Formula $K[X]$ \end_inset + con alguna raíz en +\begin_inset Formula $L$ +\end_inset + , \begin_inset Formula $f$ \end_inset diff --git a/ealg/n6.lyx b/ealg/n6.lyx new file mode 100644 index 0000000..d517fda --- /dev/null +++ b/ealg/n6.lyx @@ -0,0 +1,1793 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Extensiones normales +\end_layout + +\begin_layout Standard +Una extensión +\begin_inset Formula $K\subseteq L$ +\end_inset + + es +\series bold +normal +\series default +, o +\series bold + +\begin_inset Formula $L$ +\end_inset + + es normal sobre +\begin_inset Formula $K$ +\end_inset + + +\series default +, si es algebraica y todo irreducible de +\begin_inset Formula $K[X]$ +\end_inset + + con una raíz en +\begin_inset Formula $L$ +\end_inset + + tiene todas sus raíces en +\begin_inset Formula $L$ +\end_inset + +. + Basta considerar los irreducibles mónicos de grado al menos 3, pues los + de grado 1 tienen su raíz en +\begin_inset Formula $K$ +\end_inset + + y, si +\begin_inset Formula $f=X^{2}+aX+b$ +\end_inset + + tiene raíces +\begin_inset Formula $\alpha_{1}$ +\end_inset + + y +\begin_inset Formula $\alpha_{2}$ +\end_inset + +, +\begin_inset Formula $\alpha_{1}+\alpha_{2}=-a$ +\end_inset + + y, si +\begin_inset Formula $\alpha_{1}\in L$ +\end_inset + +, +\begin_inset Formula $\alpha_{2}=-\alpha_{1}-a\in L$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Ejemplos: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $K\subseteq\overline{K}$ +\end_inset + + es normal. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $[L:K]=2$ +\end_inset + +, +\begin_inset Formula $K\subseteq L$ +\end_inset + + es normal. +\end_layout + +\begin_deeper +\begin_layout Standard +Los irreducibles en +\begin_inset Formula $K$ +\end_inset + + con una raíz +\begin_inset Formula $\alpha\in L$ +\end_inset + + tiene grado +\begin_inset Formula $\text{gr}\text{Irr}(\alpha,K)\leq2$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Si +\begin_inset Formula $K\subseteq L$ +\end_inset + + es algebraica, todo +\begin_inset Formula $K$ +\end_inset + +-encaje +\begin_inset Formula $\sigma:L\to L$ +\end_inset + + es un +\begin_inset Formula $K$ +\end_inset + +-automorfismo. + +\series bold +Demostración: +\series default + Para +\begin_inset Formula $\alpha\in L$ +\end_inset + +, sean +\begin_inset Formula $f:=\text{Irr}(\alpha,K)$ +\end_inset + + y +\begin_inset Formula $R:=\{\alpha_{1}:=\alpha,\dots,\alpha_{m}\}$ +\end_inset + + el conjunto de las raíces de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $L$ +\end_inset + +, entonces +\begin_inset Formula $f=\text{Irr}(\alpha_{i},K)$ +\end_inset + + para cada +\begin_inset Formula $i$ +\end_inset + + y, como +\begin_inset Formula $\sigma$ +\end_inset + + lleva raíces a raíces, +\begin_inset Formula $\sigma(R)\subseteq R$ +\end_inset + +, pero +\begin_inset Formula $\sigma$ +\end_inset + + es inyectiva, luego +\begin_inset Formula $\sigma|_{R}:R\to R$ +\end_inset + + es biyectiva y +\begin_inset Formula $\alpha\in R=\sigma(R)\subseteq\sigma(L)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, una extensión algebraica +\begin_inset Formula $K\subseteq L$ +\end_inset + + es normal si y sólo si +\begin_inset Formula $L$ +\end_inset + + es el cuerpo de descomposición sobre +\begin_inset Formula $K$ +\end_inset + + de un cierto +\begin_inset Formula ${\cal P}\subseteq K[X]\setminus0$ +\end_inset + +, si y sólo si para cada clausura algebraica +\begin_inset Formula $\overline{L}$ +\end_inset + + de +\begin_inset Formula $L$ +\end_inset + + y todo +\begin_inset Formula $K$ +\end_inset + +-encaje +\begin_inset Formula $\sigma:L\to\overline{L}$ +\end_inset + + es +\begin_inset Formula $\sigma(L)=L$ +\end_inset + +, si y sólo si existe una clausura algebraica +\begin_inset Formula $\overline{L}$ +\end_inset + + de +\begin_inset Formula $L$ +\end_inset + + para la que todo +\begin_inset Formula $K$ +\end_inset + +-encaje +\begin_inset Formula $\sigma:L\to\overline{L}$ +\end_inset + + cumple +\begin_inset Formula $\sigma(L)=L$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies2]$ +\end_inset + + Sean +\begin_inset Formula ${\cal P}:=\{f_{\alpha}:=\text{Irr}(\alpha,K)\}_{\alpha\in L}\subseteq K[X]\setminus0$ +\end_inset + + y +\begin_inset Formula $S$ +\end_inset + + el conjunto de todas las raíces de los polinomios de +\begin_inset Formula ${\cal P}$ +\end_inset + + en una clausura +\begin_inset Formula $\overline{L}$ +\end_inset + + de +\begin_inset Formula $L$ +\end_inset + +, cada +\begin_inset Formula $\alpha\in L$ +\end_inset + + está en +\begin_inset Formula $S$ +\end_inset + + por ser raíz de +\begin_inset Formula $f_{\alpha}$ +\end_inset + + y cada +\begin_inset Formula $\beta\in S$ +\end_inset + + está en +\begin_inset Formula $L$ +\end_inset + + ya que es raíz de un irreducible +\begin_inset Formula $f_{\alpha}\in K[X]$ +\end_inset + + que ya tiene una raíz +\begin_inset Formula $\alpha$ +\end_inset + + en +\begin_inset Formula $L$ +\end_inset + + y por tanto las tiene todas, luego +\begin_inset Formula $L=S$ +\end_inset + + es el cuerpo de descomposición de +\begin_inset Formula ${\cal P}$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies3]$ +\end_inset + + Para +\begin_inset Formula $f\in{\cal P}$ +\end_inset + + y +\begin_inset Formula $\alpha\in L$ +\end_inset + + raíz de +\begin_inset Formula $f$ +\end_inset + +, como los +\begin_inset Formula $K$ +\end_inset + +-encajes llevan raíces a raíces, +\begin_inset Formula $\sigma(\alpha)$ +\end_inset + + es raíz de +\begin_inset Formula $f$ +\end_inset + + y está en +\begin_inset Formula $L$ +\end_inset + +, y como +\begin_inset Formula $L$ +\end_inset + + está generado por las raíces de los +\begin_inset Formula $f\in{\cal P}$ +\end_inset + +, +\begin_inset Formula $\sigma(L)\subseteq L$ +\end_inset + +, luego por la proposición anterior +\begin_inset Formula $\sigma$ +\end_inset + + es un +\begin_inset Formula $K$ +\end_inset + +-automorfismo y +\begin_inset Formula $\sigma(L)=L$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies4]$ +\end_inset + + Por la existencia de clausura algebraica. +\end_layout + +\begin_layout Description +\begin_inset Formula $4\implies1]$ +\end_inset + + Sean +\begin_inset Formula $f\in K[X]$ +\end_inset + + irreducible con una raíz +\begin_inset Formula $\alpha\in L$ +\end_inset + + y +\begin_inset Formula $\beta\in\overline{L}$ +\end_inset + + otra raíz de +\begin_inset Formula $f$ +\end_inset + +, existe un +\begin_inset Formula $K$ +\end_inset + +-isomorfismo +\begin_inset Formula $\sigma':K(\alpha)\to K(\beta)$ +\end_inset + + con +\begin_inset Formula $\sigma'(\alpha)=\beta$ +\end_inset + +, pero como +\begin_inset Formula $K(\beta)\subseteq L$ +\end_inset + +, podemos ver +\begin_inset Formula $\sigma':K(\alpha)\to\overline{L}$ +\end_inset + + y, como +\begin_inset Formula $K(\alpha)\subseteq L$ +\end_inset + + es algebraica por serlo +\begin_inset Formula $K\subseteq L$ +\end_inset + +, +\begin_inset Formula $\sigma'$ +\end_inset + + se extiende a un +\begin_inset Formula $K$ +\end_inset + +-homomorfismo +\begin_inset Formula $\sigma:L\to\overline{L}$ +\end_inset + +, pero por hipótesis +\begin_inset Formula $\sigma(L)=L$ +\end_inset + +, luego +\begin_inset Formula $\beta=\sigma'(\alpha)=\sigma(\alpha)\in L$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una extensión finita +\begin_inset Formula $K\subseteq L$ +\end_inset + + es normal si y sólo si +\begin_inset Formula $L$ +\end_inset + + es el cuerpo de descomposición sobre +\begin_inset Formula $K$ +\end_inset + + de un polinomio de +\begin_inset Formula $K[X]$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $L=K(\alpha_{1},\dots,\alpha_{n})$ +\end_inset + +, sean +\begin_inset Formula $f_{\alpha}:=\text{Irr}(\alpha,K)$ +\end_inset + + para +\begin_inset Formula $\alpha\in L$ +\end_inset + + y +\begin_inset Formula $S$ +\end_inset + + el conjunto de las raíces de +\begin_inset Formula $f_{\alpha_{1}},\dots,f_{\alpha_{n}}$ +\end_inset + +, cada +\begin_inset Formula $\beta\in S$ +\end_inset + + está en +\begin_inset Formula $L$ +\end_inset + + por ser raíz de un +\begin_inset Formula $f_{\alpha_{i}}\in K[X]$ +\end_inset + + teniendo +\begin_inset Formula $f_{\alpha_{i}}$ +\end_inset + + una raíz en +\begin_inset Formula $L$ +\end_inset + + y siendo +\begin_inset Formula $K\subseteq L$ +\end_inset + + normal, luego +\begin_inset Formula $S\subseteq L$ +\end_inset + + y +\begin_inset Formula $K(S)\subseteq L$ +\end_inset + +, pero +\begin_inset Formula $\{\alpha_{1},\dots,\alpha_{n}\}\subseteq S$ +\end_inset + + y por tanto +\begin_inset Formula $L=K(\alpha_{1},\dots,\alpha_{n})\subseteq K(S)$ +\end_inset + +, luego +\begin_inset Formula $L=K(S)$ +\end_inset + + es el cuerpo de descomposición sobre +\begin_inset Formula $K$ +\end_inset + + de +\begin_inset Formula $\{f_{\alpha_{1}},\dots,f_{\alpha_{n}}\}$ +\end_inset + + y por tanto de +\begin_inset Formula $f_{\alpha_{1}}\cdots f_{\alpha_{n}}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Por el teorema. +\end_layout + +\begin_layout Standard +Dada una torre +\begin_inset Formula $K\subseteq E\subseteq L$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $K\subseteq L$ +\end_inset + + es normal, +\begin_inset Formula $E\subseteq L$ +\end_inset + + también. +\end_layout + +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula $L$ +\end_inset + + es cuerpo de descomposición de un +\begin_inset Formula ${\cal P}\subseteq K[X]\setminus0$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + +, también lo es sobre +\begin_inset Formula $E$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Que +\begin_inset Formula $K\subseteq L$ +\end_inset + + sea normal no implica que +\begin_inset Formula $K\subseteq E$ +\end_inset + + lo sea. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\mathbb{Q}\subseteq\mathbb{Q}(\sqrt[3]{2},e^{2\pi i/3})$ +\end_inset + + es normal por ser el cuerpo de descomposición de +\begin_inset Formula $X^{3}-2$ +\end_inset + +, pero +\begin_inset Formula $\mathbb{Q}\subseteq\mathbb{Q}(\sqrt[3]{2})$ +\end_inset + + no lo es ya que solo una raíz del irreducible +\begin_inset Formula $X^{3}-2$ +\end_inset + + está en +\begin_inset Formula $\mathbb{Q}(\sqrt[3]{2})$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Que +\begin_inset Formula $K\subseteq E$ +\end_inset + + y +\begin_inset Formula $E\subseteq L$ +\end_inset + + sean normales no implica que +\begin_inset Formula $K\subseteq L$ +\end_inset + + lo sea. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\mathbb{Q}\subseteq\mathbb{Q}(\sqrt{2})$ +\end_inset + + y +\begin_inset Formula $\mathbb{Q}(\sqrt{2})\subseteq\mathbb{Q}(\sqrt[4]{2})$ +\end_inset + + son normales por tener grado 2, pero +\begin_inset Formula $\mathbb{Q}\subseteq\mathbb{Q}(\sqrt[4]{2})$ +\end_inset + + no lo es ya que dos de las raíces del irreducible +\begin_inset Formula $X^{4}-2$ +\end_inset + + no están en +\begin_inset Formula $\mathbb{Q}(\sqrt[4]{2})$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Sean +\begin_inset Formula $K\subseteq L$ +\end_inset + + y +\begin_inset Formula $K\subseteq M$ +\end_inset + + extensiones admisibles, si +\begin_inset Formula $L$ +\end_inset + + es el cuerpo de descomposición sobre +\begin_inset Formula $K$ +\end_inset + + de un +\begin_inset Formula ${\cal P}\subseteq K[X]\setminus0$ +\end_inset + + entonces +\begin_inset Formula $LM$ +\end_inset + + es el cuerpo de descomposición sobre +\begin_inset Formula $M$ +\end_inset + + de +\begin_inset Formula ${\cal P}$ +\end_inset + +. + En efecto, sean +\begin_inset Formula $S$ +\end_inset + + el conjunto de raíces de los polinomios de +\begin_inset Formula ${\cal P}$ +\end_inset + + en +\begin_inset Formula $L$ +\end_inset + +, como +\begin_inset Formula $L=K(S)$ +\end_inset + +, +\begin_inset Formula $LM=ML=MK(S)=M(S)$ +\end_inset + +. + Ser normal es estable por levantamientos, pues lo es ser algebraica y ser + cuerpo de descomposición de un +\begin_inset Formula ${\cal P}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $K\subseteq L$ +\end_inset + + y +\begin_inset Formula $K\subseteq M$ +\end_inset + + son normales y admisibles, +\begin_inset Formula $K\subseteq LM$ +\end_inset + + es normal. + En efecto, +\begin_inset Formula $L$ +\end_inset + + es el cuerpo de descomposición sobre +\begin_inset Formula $K$ +\end_inset + + de un +\begin_inset Formula ${\cal P}\subseteq K[X]\setminus0$ +\end_inset + + y +\begin_inset Formula $M$ +\end_inset + + el de un +\begin_inset Formula ${\cal Q}\subseteq K[X]\setminus0$ +\end_inset + +, luego si +\begin_inset Formula $S$ +\end_inset + + el conjunto de las raíces de polinomios de +\begin_inset Formula ${\cal P}$ +\end_inset + + y +\begin_inset Formula $T$ +\end_inset + + es el de las raíces de polinomios de +\begin_inset Formula $Q$ +\end_inset + +, +\begin_inset Formula $LM=K(S)K(T)=K(S\cup T)$ +\end_inset + + es el cuerpo de descomposición sobre +\begin_inset Formula $K$ +\end_inset + + de +\begin_inset Formula ${\cal P}\cup{\cal Q}$ +\end_inset + + y por tanto es normal. +\end_layout + +\begin_layout Section +Clausura normal +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\{L_{i}\}_{i\in I}$ +\end_inset + + es una familia de extensiones admisibles de +\begin_inset Formula $K$ +\end_inset + + y cada +\begin_inset Formula $K\subseteq L_{i}$ +\end_inset + + es normal, también lo es +\begin_inset Formula $K\subseteq\bigcap_{i\in I}L_{i}$ +\end_inset + +. + En efecto, si +\begin_inset Formula $f\in K[X]$ +\end_inset + + es irreducible con una raíz en +\begin_inset Formula $\bigcap_{i\in I}L_{i}$ +\end_inset + +, entonces tiene todas sus raíces en todos los +\begin_inset Formula $L_{i}$ +\end_inset + + y por tanto en +\begin_inset Formula $\bigcap_{i\in I}L_{i}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $K\subseteq L$ +\end_inset + + algebraica y +\begin_inset Formula $\overline{L}$ +\end_inset + + una clausura normal de +\begin_inset Formula $L$ +\end_inset + +, la +\series bold +clausura normal +\series default + de +\begin_inset Formula $K\subseteq L$ +\end_inset + + en +\begin_inset Formula $\overline{L}$ +\end_inset + + es la menor extensión normal de +\begin_inset Formula $K$ +\end_inset + + entre +\begin_inset Formula $L$ +\end_inset + + y +\begin_inset Formula $\overline{L}$ +\end_inset + +, y viene dada por +\begin_inset Formula +\[ +N:=\bigcap\{E\text{ intermedio en }L\subseteq\overline{L}:K\subseteq E\text{ normal}\}. +\] + +\end_inset + +Como +\series bold +teorema +\series default +: +\end_layout + +\begin_layout Enumerate +Sean +\begin_inset Formula $S\subseteq L$ +\end_inset + + con +\begin_inset Formula $L=K(S)$ +\end_inset + + y +\begin_inset Formula ${\cal P}:=\{\text{Irr}(\alpha,K)\}_{\alpha\in S}$ +\end_inset + +, entonces +\begin_inset Formula $N$ +\end_inset + + es el único cuerpo de descomposición de +\begin_inset Formula ${\cal P}$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + + en +\begin_inset Formula $\overline{L}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula $R$ +\end_inset + + el conjunto de raíces en +\begin_inset Formula $\overline{L}$ +\end_inset + + de los polinomios de +\begin_inset Formula ${\cal P}$ +\end_inset + +, queremos ver que +\begin_inset Formula $N=K(R)$ +\end_inset + +. + Como +\begin_inset Formula $S\subseteq R\subseteq L$ +\end_inset + +, +\begin_inset Formula $L=K(S)\subseteq K(R)\subseteq\overline{L}$ +\end_inset + + y +\begin_inset Formula $K\subseteq K(R)$ +\end_inset + + es normal, se tiene +\begin_inset Formula $N\subseteq K(R)$ +\end_inset + +, y como +\begin_inset Formula $K\subseteq N$ +\end_inset + + es normal y cada +\begin_inset Formula $\alpha\in L\subseteq N$ +\end_inset + +, todas las raíces de los +\begin_inset Formula $\text{Irr}(\alpha,K)$ +\end_inset + + están en +\begin_inset Formula $N$ +\end_inset + + y por tanto +\begin_inset Formula $R\subseteq N$ +\end_inset + + y +\begin_inset Formula $K(R)\subseteq N$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $K\subseteq L$ +\end_inset + + es finita si y sólo si lo es +\begin_inset Formula $K\subseteq N$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $L=:K(\alpha_{1},\dots,\alpha_{n})$ +\end_inset + + y +\begin_inset Formula $S:=\{\alpha_{1},\dots,\alpha_{n}\}$ +\end_inset + +, el conjunto +\begin_inset Formula $R$ +\end_inset + + de raíces de los polinomios +\begin_inset Formula $\text{Irr}(\alpha,K)$ +\end_inset + + con +\begin_inset Formula $\alpha\in S$ +\end_inset + + es finito y, por el punto anterior, +\begin_inset Formula $N=K(R)$ +\end_inset + +, luego +\begin_inset Formula $K\subseteq N$ +\end_inset + + es algebraica y finitamente generada y por tanto finita. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $K\subseteq L\subseteq N$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Dos clausuras normales de +\begin_inset Formula $K\subseteq L$ +\end_inset + + en distintas clausuras algebraicas de +\begin_inset Formula $L$ +\end_inset + + son +\begin_inset Formula $L$ +\end_inset + +-isomorfas. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $L=K(L)$ +\end_inset + +, +\begin_inset Formula $N$ +\end_inset + + es un cuerpo de descomposición de +\begin_inset Formula $\{\text{Irr}(\alpha,K)\}_{\alpha\in L}$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + + y por tanto sobre +\begin_inset Formula $L$ +\end_inset + + y todos los cuerpos tales son +\begin_inset Formula $L$ +\end_inset + +-isomorfos. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $K\subseteq L$ +\end_inset + + es finita, existen +\begin_inset Formula $E_{1},\dots,E_{r}\subseteq\overline{L}$ +\end_inset + + +\begin_inset Formula $K$ +\end_inset + +-isomorfos a +\begin_inset Formula $L$ +\end_inset + + con +\begin_inset Formula $N=E_{1}\cdots E_{r}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $L=:K(\alpha_{1},\dots,\alpha_{n})$ +\end_inset + + y +\begin_inset Formula $R=\{\beta_{1},\dots,\beta_{r}\}$ +\end_inset + + el conjunto de raíces de los +\begin_inset Formula $f_{i}:=\text{Irr}(\alpha_{i},K)$ +\end_inset + + en +\begin_inset Formula $\overline{L}$ +\end_inset + +, cada +\begin_inset Formula $\beta_{j}$ +\end_inset + + es conjugado con un +\begin_inset Formula $\alpha_{i}$ +\end_inset + +, luego existe un +\begin_inset Formula $K$ +\end_inset + +-isomorfismo +\begin_inset Formula $\sigma_{j}:K(\alpha_{i})\to K(\beta_{j})$ +\end_inset + + con +\begin_inset Formula $\sigma_{j}(\alpha_{i})=\beta_{j}$ +\end_inset + +. + Como +\begin_inset Formula $N$ +\end_inset + + es el cuerpo de descomposición de +\begin_inset Formula $\{f_{1},\dots,f_{n}\}$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + +, lo es sobre +\begin_inset Formula $K(\alpha_{i})$ +\end_inset + + y sobre +\begin_inset Formula $K(\beta_{j})$ +\end_inset + +, luego +\begin_inset Formula $\sigma_{j}$ +\end_inset + + se extiende a un +\begin_inset Formula $K$ +\end_inset + +-automorfismo +\begin_inset Formula $\overline{\sigma}_{j}:N\to N$ +\end_inset + +, con lo que +\begin_inset Formula $E_{j}:=\overline{\sigma}_{j}(L)$ +\end_inset + + es un subcuerpo de +\begin_inset Formula $N$ +\end_inset + + +\begin_inset Formula $K$ +\end_inset + +-isomorfo a +\begin_inset Formula $L$ +\end_inset + + con +\begin_inset Formula $\beta_{j}=\sigma_{j}(\alpha_{i})=\overline{\sigma}_{j}(\alpha_{i})\in\overline{\sigma}_{j}(L)=E_{j}$ +\end_inset + + y por tanto +\begin_inset Formula $N=K(\beta_{1},\dots,\beta_{r})=K(\beta_{1})\cdots K(\beta_{r})\subseteq E_{1}\cdots E_{r}\subseteq N$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Section +Extensiones separables +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $K$ +\end_inset + + un cuerpo, +\begin_inset Formula $f\in K[X]$ +\end_inset + + es +\series bold +separable +\series default + si no tiene raíces múltiples en un cuerpo de descomposición de +\begin_inset Formula $f$ +\end_inset + + sobre +\begin_inset Formula $K$ +\end_inset + +. + Dada una extensión +\begin_inset Formula $L$ +\end_inset + + de +\begin_inset Formula $K$ +\end_inset + +, +\begin_inset Formula $\alpha\in L$ +\end_inset + + es +\series bold +separable +\series default + sobre +\begin_inset Formula $K$ +\end_inset + + si es algebraico sobre +\begin_inset Formula $K$ +\end_inset + + e +\begin_inset Formula $\text{Irr}(\alpha,K)$ +\end_inset + + es separable. + Entonces +\begin_inset Formula $K\subseteq L$ +\end_inset + + es +\series bold +separable +\series default + si cada +\begin_inset Formula $\alpha\in L$ +\end_inset + + es separable sobre +\begin_inset Formula $K$ +\end_inset + +. + +\begin_inset Formula $K$ +\end_inset + + es +\series bold +perfecto +\series default + si todo irreducible en +\begin_inset Formula $K[X]$ +\end_inset + + es separable, si y sólo si toda extensión algebraica de +\begin_inset Formula $K$ +\end_inset + + es separable sobre +\begin_inset Formula $K$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dado un cuerpo +\begin_inset Formula $K$ +\end_inset + + y un +\begin_inset Formula $f\in K[X]$ +\end_inset + + irreducible: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\text{car}K=0$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + es separable. +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula $L$ +\end_inset + + el cuerpo de descomposición, como +\begin_inset Formula $\text{car}K=0$ +\end_inset + + y +\begin_inset Formula $f$ +\end_inset + + es irreducible en +\begin_inset Formula $K[X]$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + no tiene raíces múltiples en +\begin_inset Formula $L$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $p:=\text{car}K\neq0$ +\end_inset + + y +\begin_inset Formula $f\in K[X]$ +\end_inset + + es irreducible, +\begin_inset Formula $f$ +\end_inset + + es no separable si y sólo si +\begin_inset Formula $f\in K[X^{p}]$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Para +\begin_inset Formula $K\subseteq L$ +\end_inset + +, como +\begin_inset Formula $f$ +\end_inset + + es irreducible en +\begin_inset Formula $K[X]$ +\end_inset + + con alguna raíz en +\begin_inset Formula $L$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + tiene raíces múltiples en +\begin_inset Formula $L$ +\end_inset + + si y solo si +\begin_inset Formula $f\in K[X^{p}]$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $K$ +\end_inset + + es de característica 0, finito o algebraicamente cerrado, +\begin_inset Formula $K$ +\end_inset + + es perfecto. +\end_layout + +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula $\text{car}K=0$ +\end_inset + + ya lo hemos visto. + Si +\begin_inset Formula $K$ +\end_inset + + es finito y +\begin_inset Formula $f\in K[X]$ +\end_inset + + es irreducible, existe una raíz +\begin_inset Formula $\alpha$ +\end_inset + + de +\begin_inset Formula $f$ +\end_inset + + en un cierto +\begin_inset Formula $K(\alpha)$ +\end_inset + +, que es finito y por tanto está formado por las raíces de +\begin_inset Formula $X^{|K(\alpha)|}-X$ +\end_inset + +, que no tiene raíces múltiples, pero como +\begin_inset Formula $f=\text{Irr}(\alpha,K)$ +\end_inset + +, +\begin_inset Formula $f\mid X^{|K(\alpha)|}\mid X$ +\end_inset + + y +\begin_inset Formula $f$ +\end_inset + + no tiene raíces múltiples. + Si +\begin_inset Formula $K$ +\end_inset + + es algebraicamente cerrado, los únicos irreducibles son de la forma +\begin_inset Formula $X-a$ +\end_inset + + y no tienen raíces múltiples. +\end_layout + +\end_deeper +\begin_layout Standard +Además: +\end_layout + +\begin_layout Enumerate +No todos los polinomios irreducibles son separables. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $K:=\mathbb{Z}_{p}(T)$ +\end_inset + + y +\begin_inset Formula $f(X):=X^{p}-T\in K[X]$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + es irreducible por Eisenstein al ser +\begin_inset Formula $T$ +\end_inset + + irreducible en +\begin_inset Formula $\mathbb{Z}_{p}[T]$ +\end_inset + +, pero si +\begin_inset Formula $\alpha$ +\end_inset + + es una raíz de +\begin_inset Formula $f$ +\end_inset + + en una extensión de +\begin_inset Formula $K$ +\end_inset + +, entonces +\begin_inset Formula $\alpha^{p}=T$ +\end_inset + + y, en +\begin_inset Formula $K(\alpha)[X]$ +\end_inset + +, +\begin_inset Formula $f(X)=X^{p}-\alpha^{p}=(X-\alpha)^{p}$ +\end_inset + +, con lo que +\begin_inset Formula $\alpha$ +\end_inset + + es raíz múltiple. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $K\subseteq L$ +\end_inset + + y +\begin_inset Formula $K\subseteq F$ +\end_inset + + son admisibles y +\begin_inset Formula $\alpha\in L$ +\end_inset + + es separable sobre +\begin_inset Formula $K$ +\end_inset + +, lo es sobre +\begin_inset Formula $F$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $f:=\text{Irr}(\alpha,K)$ +\end_inset + + y +\begin_inset Formula $g:=\text{Irr}(\alpha,F)$ +\end_inset + +, como +\begin_inset Formula $\alpha$ +\end_inset + + es raíz de +\begin_inset Formula $f\in F[X]$ +\end_inset + +, +\begin_inset Formula $g\mid f$ +\end_inset + +, y como +\begin_inset Formula $f$ +\end_inset + + no tiene raíces múltiples, tampoco las tiene +\begin_inset Formula $g$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Dada la torre +\begin_inset Formula $K\subseteq F\subseteq L$ +\end_inset + +, si +\begin_inset Formula $K\subseteq L$ +\end_inset + + es separable, también lo son +\begin_inset Formula $K\subseteq F$ +\end_inset + + y +\begin_inset Formula $F\subseteq L$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Todo +\begin_inset Formula $\alpha\in L$ +\end_inset + + es separable sobre +\begin_inset Formula $K$ +\end_inset + + y, por lo anterior, sobre +\begin_inset Formula $F$ +\end_inset + +, luego +\begin_inset Formula $F\subseteq L$ +\end_inset + + es separable. + +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\end_layout + +\end_inset + + +\end_layout + +\end_deeper +\end_body +\end_document |
