diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 | 
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 | 
| commit | c34b47089a133e58032fe4ea52f61efacaf5f548 (patch) | |
| tree | 4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /fvc/n3.lyx | |
| parent | 214b20d1614b09cd5c18e111df0f0d392af2e721 (diff) | |
Oops
Diffstat (limited to 'fvc/n3.lyx')
| -rw-r--r-- | fvc/n3.lyx | 10 | 
1 files changed, 5 insertions, 5 deletions
| @@ -87,7 +87,7 @@ Sean  \end_inset   y  -\begin_inset Formula $Z(f):=\{z\in\Omega\mid f(z)=0\}$ +\begin_inset Formula $Z(f)\coloneqq \{z\in\Omega\mid f(z)=0\}$  \end_inset  ,  @@ -139,7 +139,7 @@ f(z)=\sum_{n=0}^{\infty}c_{n}(z-a)^{n}  \end_inset  para  -\begin_inset Formula $c_{n}:=\frac{f^{(n)}(a)}{n!}$ +\begin_inset Formula $c_{n}\coloneqq \frac{f^{(n)}(a)}{n!}$  \end_inset  , y queremos ver que todos los  @@ -169,7 +169,7 @@ para  \end_inset  Sea  -\begin_inset Formula $g_{k}(z):=\sum_{n=k+1}^{\infty}c_{n}(z-a)^{n-k}$ +\begin_inset Formula $g_{k}(z)\coloneqq \sum_{n=k+1}^{\infty}c_{n}(z-a)^{n-k}$  \end_inset   una función holomorfa en  @@ -210,7 +210,7 @@ status open  \end_inset   Sea  -\begin_inset Formula $A:=\{z\in\Omega\mid \forall k\in\mathbb{N},f^{(k)}(z)=0\}\neq\emptyset$ +\begin_inset Formula $A\coloneqq \{z\in\Omega\mid \forall k\in\mathbb{N},f^{(k)}(z)=0\}\neq\emptyset$  \end_inset  , pues  @@ -337,7 +337,7 @@ principio de identidad para funciones holomorfas  \end_inset   no es idénticamente nula, entonces todo punto de  -\begin_inset Formula $Z(f):=\{z\in\Omega\mid f(z)=0\}$ +\begin_inset Formula $Z(f)\coloneqq \{z\in\Omega\mid f(z)=0\}$  \end_inset   es aislado y  | 
