diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-24 11:22:00 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-24 11:22:00 +0100 |
| commit | 79e1a51eb55d0df43323c0fe77a7d55b2c2bd17d (patch) | |
| tree | 89bd93a329f9deb72efce8fed205b69918c3d9b9 /fvv2/n1.lyx | |
| parent | 1f7f9bcc7660fba0827a62c3068d5c7082f025d7 (diff) | |
POO
Diffstat (limited to 'fvv2/n1.lyx')
| -rw-r--r-- | fvv2/n1.lyx | 3333 |
1 files changed, 3333 insertions, 0 deletions
diff --git a/fvv2/n1.lyx b/fvv2/n1.lyx new file mode 100644 index 0000000..0537932 --- /dev/null +++ b/fvv2/n1.lyx @@ -0,0 +1,3333 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 0 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{FUVR2} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Una +\series bold +partición +\series default + de +\begin_inset Formula $[a,b]$ +\end_inset + + es una colección de puntos +\begin_inset Formula $a=t_{0}<t_{1}<\dots<t_{n}=b$ +\end_inset + + [...]. + [...] +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $f\in{\cal R}[a,b]$ +\end_inset + +, llamamos +\series bold +integral indefinida +\series default + de +\begin_inset Formula $f$ +\end_inset + + a la función +\begin_inset Formula $F:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $F(x):=\int_{a}^{x}f$ +\end_inset + +. + El +\series bold +TEOREMA FUNDAMENTAL DEL CÁLCULO +\series default + afirma que, si +\begin_inset Formula $f\in{\cal R}[a,b]$ +\end_inset + + y +\begin_inset Formula $F$ +\end_inset + + es su integral indefinida, entonces +\begin_inset Formula $F$ +\end_inset + + es continua en +\begin_inset Formula $[a,b]$ +\end_inset + + y si +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $c\in(a,b)$ +\end_inset + + entonces +\begin_inset Formula $F$ +\end_inset + + es derivable en +\begin_inset Formula $c$ +\end_inset + + y +\begin_inset Formula $F'(c)=f(c)$ +\end_inset + +, y esto también ocurre con los extremos del intervalo y las correspondientes + derivadas laterales. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Integral de Riemann para funciones de varias variables +\end_layout + +\begin_layout Standard +Llamamos +\series bold +gráfica +\series default + de una función +\begin_inset Formula $f:[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\rightarrow\mathbb{R}$ +\end_inset + + a +\begin_inset Formula +\[ +\text{graf}(f):=\{(x_{1},\dots,x_{n},y)\in\mathbb{R}^{n+1}:(x_{1},\dots,x_{n})\in[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\land y=f(x_{1},\dots,x_{n})\} +\] + +\end_inset + +y +\series bold +subgrafo +\series default + a +\begin_inset Formula +\begin{multline*} +\text{subgraf}(f):=\\ +\{(x_{1},\dots,x_{n},y)\in\mathbb{R}^{n+1}:(x_{1},\dots,x_{n})\in[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\land0\leq y\leq f(x_{1},\dots,x_{n})\} +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Standard +El +\series bold +volumen +\series default + del +\series bold +rectángulo +\series default + +\begin_inset Formula $n$ +\end_inset + +-dimensional +\begin_inset Formula $R:=[a_{1},b_{1}]\times\dots\times[a_{n},b_{n}]\subset\mathbb{R}^{n}$ +\end_inset + + se define como +\begin_inset Formula $v(R)=(b_{1}-a_{1})\cdots(b_{n}-a_{n})$ +\end_inset + +. + Si +\begin_inset Formula $n=1$ +\end_inset + +, +\begin_inset Formula $R$ +\end_inset + + es un intervalo y +\begin_inset Formula $v(R)$ +\end_inset + + es su +\series bold +longitud +\series default +; si +\begin_inset Formula $n=2$ +\end_inset + +, +\begin_inset Formula $R$ +\end_inset + + es un rectángulo y +\begin_inset Formula $v(R)$ +\end_inset + + es su +\series bold +área +\series default +, y si +\begin_inset Formula $n=3$ +\end_inset + +, +\begin_inset Formula $R$ +\end_inset + + es un paralelepípedo recto y +\begin_inset Formula $v(R)$ +\end_inset + + es su +\series bold +volumen +\series default + tridimensional. +\end_layout + +\begin_layout Standard +Una +\series bold +partición +\series default + sobre este rectángulo es una lista +\begin_inset Formula $P:=(P_{1},\dots,P_{n})$ +\end_inset + + en la que cada +\begin_inset Formula $P_{i}$ +\end_inset + + es una partición de +\begin_inset Formula $[a_{i},b_{i}]$ +\end_inset + +. + Si cada +\begin_inset Formula $P_{i}$ +\end_inset + + divide el intervalo +\begin_inset Formula $[a_{i},b_{i}]$ +\end_inset + + en +\begin_inset Formula $k_{i}$ +\end_inset + + subintervalos, los +\begin_inset Formula $k_{1}\cdots k_{n}$ +\end_inset + + rectángulos en los que +\begin_inset Formula $P$ +\end_inset + + divide a +\begin_inset Formula $R$ +\end_inset + + son los +\series bold +subrectángulos +\series default + de la partición +\begin_inset Formula $P$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f:R\rightarrow\mathbb{R}$ +\end_inset + + es acotada y +\begin_inset Formula $P:=(P_{i})_{i=1}^{n}$ +\end_inset + + es una partición de +\begin_inset Formula $R$ +\end_inset + + que lo divide en una cantidad finita de subrectángulos +\begin_inset Formula $\{S_{i}\}_{i=1}^{N}$ +\end_inset + +, si para cada +\begin_inset Formula $S_{h}$ +\end_inset + + denotamos +\begin_inset Formula $m_{S_{h}}(f):=\inf\{f(x)\}_{x\in S_{h}}$ +\end_inset + + y +\begin_inset Formula $M_{S_{h}}(f)=\sup\{f(x)\}_{x\in S_{h}}$ +\end_inset + +, y definimos las +\series bold +sumas inferior +\series default + y +\series bold +superior +\series default + de +\begin_inset Formula $f$ +\end_inset + + correspondientes a la partición +\begin_inset Formula $P$ +\end_inset + +, respectivamente, como +\begin_inset Formula +\begin{eqnarray*} +s(f,P):=\sum_{h=1}^{N}m_{S_{h}}(f)v(S_{h}) & \text{y} & S(f,P):=\sum_{h=1}^{N}M_{S_{h}}(f)v(S_{h}) +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $P$ +\end_inset + + y +\begin_inset Formula $P'$ +\end_inset + + dos particiones del rectángulo +\begin_inset Formula $n$ +\end_inset + +-dimensional +\begin_inset Formula $R$ +\end_inset + + tales que +\begin_inset Formula $P'\succeq P$ +\end_inset + + ( +\begin_inset Formula $\forall i\in\{1,\dots,n\},P'_{i}\succeq P_{i}$ +\end_inset + + o, equivalentemente, cada subrectángulo de +\begin_inset Formula $P'$ +\end_inset + + está contenido en uno de +\begin_inset Formula $P$ +\end_inset + +) y +\begin_inset Formula $f:R\rightarrow\mathbb{R}$ +\end_inset + +, entonces +\begin_inset Formula +\[ +s(f,P)\leq s(f,P')\leq S(f,P')\leq S(f,P) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Obviamente +\begin_inset Formula $s(f,P')\leq S(f,P')$ +\end_inset + +. + Si +\begin_inset Formula $P$ +\end_inset + + se divide en los subrectángulos +\begin_inset Formula $\{S_{i},\dots,S_{N}\}$ +\end_inset + + y +\begin_inset Formula $P'$ +\end_inset + + en +\begin_inset Formula $\{S'_{1},\dots,S'_{M}\}$ +\end_inset + +, dado un subrectángulo +\begin_inset Formula $S_{i}$ +\end_inset + + de +\begin_inset Formula $P$ +\end_inset + + que se expresa como unión de subrectángulos +\begin_inset Formula $S_{i1},\dots,S_{ik_{i}}$ +\end_inset + + de +\begin_inset Formula $P'$ +\end_inset + +, es claro que para +\begin_inset Formula $j\in\{1,\dots,k_{i}\}$ +\end_inset + +, +\begin_inset Formula $m_{S}(f)=\inf\{f(x)\}_{x\in S_{i}}\leq m_{S_{ij}}(f)=\inf\{f(x)\}_{x\in S_{ij}}$ +\end_inset + +. + Por otro lado, +\begin_inset Formula $v(S_{i})=\sum_{j=1}^{k_{i}}v(S_{ij})$ +\end_inset + +, con lo que +\begin_inset Formula $m_{S_{i}}(f)v(S_{i})=m_{S_{i}}(f)\sum_{j=1}^{k_{i}}v(S_{ij})=\sum_{j=1}^{k_{i}}m_{S_{i}}(f)v(S_{ij})\leq\sum_{j=1}^{k_{i}}m_{S_{ij}}(f)v(S_{ij})$ +\end_inset + + y entonces +\begin_inset Formula $s(f,P)=\sum_{i=1}^{N}m_{S_{i}}(f)v(S_{i})\leq\sum_{i=1}^{N}\sum_{j=1}^{k_{i}}m_{S_{ij}}(f)v(S_{ij})=\sum_{i=1}^{M}m_{S'_{i}}(f)v(S'_{i})=s(f,P')$ +\end_inset + +. + La prueba de que +\begin_inset Formula $S(f,P')\leq S(f,P)$ +\end_inset + + se hace de forma análoga. +\end_layout + +\begin_layout Standard +Definimos las +\series bold +integrales superior e inferior de Riemann +\series default + de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $R$ +\end_inset + +, respectivamente, como +\begin_inset Formula +\begin{eqnarray*} +\overline{\int_{R}}f(x_{1},\dots,x_{n})dx_{1}\dots dx_{n} & := & \inf\{S(f,P)\}_{P\text{ partición de }R}\\ +\underline{\int_{R}}f(x_{1},\dots,x_{n})dx_{1}\dots dx_{n} & := & \sup\{s(f,P)\}_{P\text{ partición de }R} +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Por lo anterior, es claro que la integral inferior es siempre menor o igual + a la su +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +pe +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +rior. + Si son iguales decimos que +\begin_inset Formula $f$ +\end_inset + + es +\series bold +integrable Riemann +\series default + en +\begin_inset Formula $R$ +\end_inset + + ( +\begin_inset Formula $f\in{\cal R}(R)$ +\end_inset + +) con +\series bold +integral +\series default + +\begin_inset Formula $\int_{R}f(x_{1},\dots,x_{n})dx_{1}\dots dx_{n}$ +\end_inset + + igual a estas dos. +\end_layout + +\begin_layout Standard +\begin_inset Formula $f\in{\cal R}(R)\iff\forall\varepsilon>0,\exists P_{\varepsilon}:S(f,P_{\varepsilon})-s(f,P_{\varepsilon})\leq\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{sloppypar} +\end_layout + +\end_inset + +Basta tomar +\begin_inset Formula $P$ +\end_inset + + y +\begin_inset Formula $P'$ +\end_inset + + con +\begin_inset Formula $S(f,P)\leq\int_{R}f(x_{1},\dots,x_{n})dx_{1}\dots dx_{n}+\frac{\varepsilon}{2}$ +\end_inset + + y +\begin_inset Formula $s(f,P')\geq\int_{R}f(x_{1},\dots,x_{n})dx_{1}\dots dx_{n}-\frac{\varepsilon}{2}$ +\end_inset + + y quedarnos con la partición +\begin_inset Formula $P\lor P'$ +\end_inset + + ( +\begin_inset Formula $\{P_{i}\lor P'_{i}\}_{i=1}^{n}$ +\end_inset + +). +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{sloppypar} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si se cumple +\begin_inset Formula $0\leq\overline{\int_{R}}f(x_{1},\dots,x_{n})dx_{1}\dots dx_{n}-\underline{\int_{R}}f(x_{1},\dots,x_{n})dx_{1}\dots dx_{n}\leq S(f,P_{\varepsilon})-s(f,P_{\varepsilon})\leq\varepsilon$ +\end_inset + + para todo +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, haciendo tender +\begin_inset Formula $\varepsilon$ +\end_inset + + a 0 obtenemos la igualdad de las integrales superior e inferior. +\end_layout + +\begin_layout Standard +La integral es un operador lineal: sean +\begin_inset Formula $f,g\in{\cal R}(R)$ +\end_inset + + y +\begin_inset Formula $c\in\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $f+g\in{\cal R}(R)$ +\end_inset + + con +\begin_inset Formula $\int_{R}(f+g)(x_{1},\dots,x_{n})dx_{1}\dots dx_{n}=\int_{R}f(x_{1},\dots,x_{n})dx_{1}\dots dx_{n}+\int_{R}g(x_{1},\dots,x_{n})dx_{1}\dots dx_{n}$ +\end_inset + +, y +\begin_inset Formula $cf\in{\cal R}(R)$ +\end_inset + + con +\begin_inset Formula $\int_{R}(cf)(x_{1},\dots,x_{n})dx_{1}\dots dx_{n}=c\int_{R}f(x_{1},\dots,x_{n})dx_{1}\dots dx_{n}$ +\end_inset + +. + +\series bold +Demostración: +\series default + Se deriva de que para +\begin_inset Formula $S\subseteq R$ +\end_inset + +, +\begin_inset Formula $m_{S}(f)+m_{S}(g)\leq m_{S}(f+g)$ +\end_inset + +, +\begin_inset Formula $M_{S}(f+g)\leq M_{S}(f)+M_{S}(g)$ +\end_inset + + y +\begin_inset Formula $M_{S}(cf)=cM_{S}(f)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Newpage newpage +\end_inset + + +\end_layout + +\begin_layout Standard +También es un operador positivo. + Sean +\begin_inset Formula $f,g\in{\cal R}(R)$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall(x_{1},\dots,x_{n})\in R,f(x_{1},\dots,x_{n})\geq0\implies\int_{R}(x_{1},\dots,x_{n})dx_{1}\dots dx_{n}\geq0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall(x_{1},\dots,x_{n})\in R,f(x_{1},\dots,x_{n})\geq g(x_{1},\dots,x_{n})\implies\int_{R}f(x_{1},\dots,x_{n})dx_{1}\dots dx_{n}\geq\int_{R}g(x_{1},\dots,x_{n})dx_{1}\dots dx_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $|f|\in{\cal R}(R)$ +\end_inset + + y +\begin_inset Formula $\left|\int_{R}f(x_{1},\dots,x_{n})dx_{1}\dots dx_{n}\right|\leq\int_{R}|f(x_{1},\dots,x_{n})|dx_{1}\dots dx_{n}$ +\end_inset + + (desigualdad triangular). +\end_layout + +\begin_layout Standard +Definimos la +\series bold +oscilación +\series default + de +\begin_inset Formula $f:R\rightarrow\mathbb{R}$ +\end_inset + + en +\begin_inset Formula $S\subseteq R$ +\end_inset + + como +\begin_inset Formula +\[ +\text{osc}(f,S):=M_{S}(f)-m_{S}(f)=\sup\{|f(x)-f(y)|\}_{x,y\in S} +\] + +\end_inset + + y la oscilación de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $x\in R$ +\end_inset + + como +\begin_inset Formula +\[ +\text{osc}(f,x):=\inf\{\text{osc}(f,S\cap T)\}_{T\text{ rectángulo abierto centrado en }S} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Vemos que +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $x$ +\end_inset + + si y sólo si +\begin_inset Formula $\text{osc}(f,x)=0$ +\end_inset + +, y que para cada +\begin_inset Formula $\varepsilon>0$ +\end_inset + + y cada +\begin_inset Formula $x$ +\end_inset + + donde +\begin_inset Formula $f$ +\end_inset + + es continua existe un cubo abierto +\begin_inset Formula $C_{x}(d_{x})$ +\end_inset + + centrado en +\begin_inset Formula $x$ +\end_inset + + con diámetro +\begin_inset Formula $d_{x}$ +\end_inset + + donde la oscilación de +\begin_inset Formula $f$ +\end_inset + + es menor que +\begin_inset Formula $\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{TEM} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Toda +\begin_inset Formula $f:(X,d)\rightarrow(Y,d')$ +\end_inset + + continua, siendo +\begin_inset Formula $(X,{\cal T}_{d})$ +\end_inset + + compacto, es uniformemente continua. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, toda +\begin_inset Formula $f:R\rightarrow\mathbb{R}$ +\end_inset + + continua definida en un rectángulo cerrado +\begin_inset Formula $n$ +\end_inset + +-dimensional +\begin_inset Formula $R$ +\end_inset + + es integrable Riemann en +\begin_inset Formula $R$ +\end_inset + +. +\end_layout + +\begin_layout Section +Conjuntos de contenido y de medida nula +\end_layout + +\begin_layout Standard +Un subconjunto +\begin_inset Formula $S\subseteq\mathbb{R}^{n}$ +\end_inset + + tiene +\series bold +medida +\series default + ( +\begin_inset Formula $n$ +\end_inset + +-dimensional) +\series bold +nula +\series default + si para cada +\begin_inset Formula $\varepsilon>0$ +\end_inset + + existe una sucesión +\begin_inset Formula $(R_{k})_{k}$ +\end_inset + + de rectángulos +\begin_inset Formula $n$ +\end_inset + +-dimensionales cerrados tal que +\begin_inset Formula $S\subseteq\bigcup_{j=1}^{\infty}R_{j}$ +\end_inset + + y +\begin_inset Formula $\sum_{j=1}^{\infty}v(R_{j})<\varepsilon$ +\end_inset + +. + Sustituyendo los rectángulos cerrados por rectángulos abiertos obtenemos + el mismo concepto. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, sea +\begin_inset Formula $(R_{k})_{k}$ +\end_inset + + la sucesión de cerrados que cumple las propiedades y +\begin_inset Formula $0<d<\varepsilon-\sum_{j=1}^{\infty}v(R_{j})$ +\end_inset + +. + Para cada rectángulo +\begin_inset Formula $R_{k}$ +\end_inset + +, tomamos un rectángulo abierto +\begin_inset Formula $R'_{k}\supseteq R_{k}$ +\end_inset + + tal que +\begin_inset Formula $v(R'_{k})\leq R_{k}+\frac{d}{2^{k+1}}$ +\end_inset + +, y vemos que, en efecto, +\begin_inset Formula $\sum_{j=1}^{\infty}v(R'_{j})\leq\sum_{j=1}^{\infty}v(R_{j})+\sum_{j=1}^{\infty}\frac{d}{2^{k+1}}<\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Fijado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, sea +\begin_inset Formula $(R_{k})_{k\in\mathbb{N}}$ +\end_inset + + una sucesión de rectángulos abiertos que cumple las propiedades, vemos + que +\begin_inset Formula $N\subseteq\bigcup_{k\in\mathbb{N}}R_{k}\subseteq\bigcup_{k\in\mathbb{N}}\overline{R_{k}}$ +\end_inset + + y que +\begin_inset Formula $\sum_{j=1}^{\infty}v(\overline{R_{j}})=\sum_{j=1}^{\infty}v(R_{j})<\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, la unión numerable de conjuntos de medida nula tiene medida nula. + +\series bold +Demostración: +\series default + Consideremos +\begin_inset Formula $\bigcup_{i=1}^{\infty}S_{i}$ +\end_inset + +. + Fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, para cada +\begin_inset Formula $i\in\mathbb{N}$ +\end_inset + + utilizamos que +\begin_inset Formula $S_{i}$ +\end_inset + + es de medida nula para recubrirlo con una sucesión +\begin_inset Formula $\{R_{ij}\}_{j\in\mathbb{N}}$ +\end_inset + + cuyos volúmenes suman menos que +\begin_inset Formula $\frac{\varepsilon}{2^{i}}$ +\end_inset + +. + Vemos que +\begin_inset Formula $\{R_{ij}\}_{i,j\in\mathbb{N}}$ +\end_inset + + es numerable y podemos describirlo como una sucesión que recubre +\begin_inset Formula $N$ +\end_inset + + y cuyos volúmenes suman menos que +\begin_inset Formula $\varepsilon$ +\end_inset + +, pues +\begin_inset Formula $\sum_{i,j=1}^{\infty}v(R_{ij})=\sum_{i=1}^{\infty}(\sum_{j=1}^{\infty}v(R_{ij}))<\sum_{i=1}^{\infty}\frac{\varepsilon}{2^{i}}=\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un subconjunto +\begin_inset Formula $S\subseteq\mathbb{R}^{n}$ +\end_inset + + tiene +\series bold +contenido +\series default + ( +\begin_inset Formula $n$ +\end_inset + +-dimensional) +\series bold +nulo +\series default + si para cada +\begin_inset Formula $\varepsilon>0$ +\end_inset + + existe una familia finita de rectángulos +\begin_inset Formula $n$ +\end_inset + +-dimensionales cerrados que cumplen las mismas condiciones que los de la + definición de medida nula. + Es claro que todo conjunto de contenido nulo tiene medida nula. + Como +\series bold +teorema +\series default +, todo compacto en +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + + de medida nula es de contenido nulo; basta usar un cubrimiento con rectángulos + abiertos en la definición de medida nula y extraer un subrecubrimiento + finito por compacidad. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f:R\subseteq\mathbb{R}^{m}\rightarrow\mathbb{R}$ +\end_inset + + es integrable Riemann en el rectángulo cerrado +\begin_inset Formula $R$ +\end_inset + +, entonces +\begin_inset Formula $\text{graf}(f)$ +\end_inset + + tiene contenido +\begin_inset Formula $(m+1)$ +\end_inset + +-dimensional nulo. +\end_layout + +\begin_layout Subsection +El conjunto de Cantor +\end_layout + +\begin_layout Standard +Consideremos el intervalo +\begin_inset Formula $[0,1]$ +\end_inset + +, que dividimos en 3 subintervalos y eliminamos el subintervalo abierto + central, +\begin_inset Formula $(\frac{1}{3},\frac{2}{3})$ +\end_inset + +. + A continuación, de cada subintervalo cerrado restante, eliminamos el subinterva +lo abierto central de longitud la tercera parte del subintervalo original. + Repitiendo este proceso indefinidamente lo que nos queda es el +\series bold +conjunto de Cantor +\series default +, +\begin_inset Formula $C$ +\end_inset + +. + Observamos que un número está en el conjunto de Cantor si y sólo si su + representación en base 3, +\begin_inset Formula $0.c_{1}c_{2}c_{3}\cdots c_{n}\cdots$ +\end_inset + +, contiene sólo los dígitos 0 y 2, teniendo en cuenta que el número puede + también acabar por una secuencia infinita de doses. + Teoremas: +\end_layout + +\begin_layout Itemize +\begin_inset Formula $C$ +\end_inset + + es incontable, con igual cardinalidad que +\begin_inset Formula $[0,1]$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +La función +\begin_inset Formula $f:C\rightarrow[0,1]$ +\end_inset + + dada por +\begin_inset Formula $f(0.c_{1}c_{2}\cdots c_{n}\cdots_{(3)}):=0.\frac{c_{1}}{2}\frac{c_{2}}{2}\cdots\frac{c_{n}}{2}\cdots_{(2)}$ +\end_inset + + es suprayectiva, luego +\begin_inset Formula $|C|\geq|[0,1]|$ +\end_inset + +, pero es claro que +\begin_inset Formula $|C|\leq|[0,1]|$ +\end_inset + +, luego +\begin_inset Formula $|C|=|[0,1]|$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $C$ +\end_inset + + es de medida nula. +\begin_inset Newline newline +\end_inset + +Al principio +\begin_inset Formula $[0,1]$ +\end_inset + + tiene longitud 1, y es fácil ver que si en un +\begin_inset Quotes fld +\end_inset + +paso +\begin_inset Quotes frd +\end_inset + + de la construcción el conjunto resultante tiene longitud +\begin_inset Formula $n$ +\end_inset + +, en el siguiente tendrá longitud +\begin_inset Formula $\frac{2}{3}n$ +\end_inset + +. + Por tanto la longitud de +\begin_inset Formula $C$ +\end_inset + + es +\begin_inset Formula $\lim_{n}\left(\frac{2}{3}\right)^{n}=0$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $C$ +\end_inset + + no tiene puntos interiores. +\begin_inset Newline newline +\end_inset + +Como es de medida nula no contiene puntos de acumulación, pues para ello + debería contener intervalos, de medida no nula. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $C$ +\end_inset + + está acotado. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $C$ +\end_inset + + es cerrado. +\begin_inset Newline newline +\end_inset + +Es el resultado de quitar a un cerrado ( +\begin_inset Formula $[0,1]$ +\end_inset + +) un abierto (la unión de los abiertos eliminados en su construcción). +\end_layout + +\begin_layout Itemize +\begin_inset Formula $C$ +\end_inset + + no tiene puntos aislados. +\begin_inset Newline newline +\end_inset + +Dado +\begin_inset Formula $x\in C$ +\end_inset + + y +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, sea +\begin_inset Formula $n$ +\end_inset + + tal que +\begin_inset Formula $\frac{2}{3^{n}}<\varepsilon$ +\end_inset + +, existe un punto, el resultado de cambiar la cifra +\begin_inset Formula $n$ +\end_inset + +-ésima de +\begin_inset Formula $x$ +\end_inset + + por un 2 si era un 0 o viceversa, cuya distancia a +\begin_inset Formula $x$ +\end_inset + + es menor que +\begin_inset Formula $\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +Dados +\begin_inset Formula $a,b\in C$ +\end_inset + + distintos, existe una partición +\begin_inset Formula $\{A,B\}$ +\end_inset + + de +\begin_inset Formula $C$ +\end_inset + + con +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $B$ +\end_inset + + cerrados, +\begin_inset Formula $a\in A$ +\end_inset + + y +\begin_inset Formula $b\in B$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Sea +\begin_inset Formula $n$ +\end_inset + + la posición de una cifra (en base 3) en la que +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + difieren, basta hacer la partición según el valor de dicha cifra. +\end_layout + +\begin_layout Subsection +Caracterización +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $A\subseteq\mathbb{R}^{n}$ +\end_inset + + cerrado, si +\begin_inset Formula $f:A\rightarrow\mathbb{R}$ +\end_inset + + es acotada y +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, +\begin_inset Formula $B:=\{x\in A:\text{osc}(f,x)\geq\varepsilon\}$ +\end_inset + + es cerrado. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $x\in\mathbb{R}^{n}\backslash B$ +\end_inset + +. + Si +\begin_inset Formula $x\notin A$ +\end_inset + +, existe una bola de centro +\begin_inset Formula $x$ +\end_inset + + que no interseca con +\begin_inset Formula $A$ +\end_inset + +. + Si +\begin_inset Formula $x\in A$ +\end_inset + +, existe un rectángulo abierto +\begin_inset Formula $C\ni x$ +\end_inset + + con +\begin_inset Formula $\text{osc}(f,c)<\varepsilon$ +\end_inset + +, y para +\begin_inset Formula $y\in C$ +\end_inset + + existe +\begin_inset Formula $\delta_{y}$ +\end_inset + + tal que si +\begin_inset Formula $\Vert z-y\Vert<\delta_{y}$ +\end_inset + + entonces +\begin_inset Formula $\Vert x-z\Vert<\delta$ +\end_inset + +, con lo que +\begin_inset Formula $\text{osc}(f,y)<\varepsilon$ +\end_inset + + y +\begin_inset Formula $C\subseteq\mathbb{R}^{n}\backslash B$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El +\series bold +teorema de Lebesgue de caracterización de las funciones integrables +\series default + afirma que si +\begin_inset Formula $R$ +\end_inset + + es un rectángulo +\begin_inset Formula $n$ +\end_inset + +-dimensional cerrado y +\begin_inset Formula $f:R\rightarrow\mathbb{R}$ +\end_inset + + es acotada, entonces +\begin_inset Formula $f\in{\cal R}(R)$ +\end_inset + + si y sólo si +\begin_inset Formula $B:=\{x\in R:f\text{ no es continua en }x\}$ +\end_inset + + tiene medida nula. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $B_{k}:=\{x\in R:o(f,x)\geq\frac{1}{k}\}$ +\end_inset + +, basta probar que cada +\begin_inset Formula $B_{k}$ +\end_inset + + tiene medida nula dado que +\begin_inset Formula $B=\bigcup_{k\in\mathbb{N}}B_{k}$ +\end_inset + +. + Dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, sean +\begin_inset Formula $P$ +\end_inset + + una partición de +\begin_inset Formula $R$ +\end_inset + + con +\begin_inset Formula $S(f,P)-s(f,P)<\frac{\varepsilon}{k}$ +\end_inset + + y +\begin_inset Formula ${\cal S}$ +\end_inset + + el conjunto de subrectángulos de +\begin_inset Formula $P$ +\end_inset + + que cortan a +\begin_inset Formula $B_{k}$ +\end_inset + + , entonces para +\begin_inset Formula $S\in{\cal S}$ +\end_inset + + se tiene +\begin_inset Formula $M_{S}(f)-m_{S}(f)\geq\frac{1}{k}$ +\end_inset + + y +\begin_inset Formula +\[ +\frac{1}{k}\sum_{S\in{\cal S}}v(S)\leq\sum_{S\in{\cal S}}(M_{S}(f)-m_{S}(f))v(S)\leq S(f,P)-s(f,P)<\frac{\varepsilon}{k} +\] + +\end_inset + +con lo que +\begin_inset Formula $\sum_{S\in{\cal S}}v(S)<\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Fijado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, sea +\begin_inset Formula $K$ +\end_inset + + tal que +\begin_inset Formula $|f(x)|\leq K\forall x\in R$ +\end_inset + +, y tenemos que +\begin_inset Formula $M_{N}(f)-m_{N}(f)\leq2K\forall N\subseteq R$ +\end_inset + +. + Consideramos el conjunto de puntos donde +\begin_inset Formula $\text{osc}(f,x)\geq\frac{\varepsilon}{2v(R)}$ +\end_inset + +, un cerrado de medida nula y por tanto un compacto de contenido nulo, que + podemos cubrir con una cantidad finita de abiertos +\begin_inset Formula $N_{k}$ +\end_inset + + tales que +\begin_inset Formula $\sum_{k}v(N_{k})<\frac{\varepsilon}{4K}$ +\end_inset + +, y por tanto +\begin_inset Formula $\sum_{k}\text{osc}(N_{k},f)v(N_{k})<2K\cdot\frac{\varepsilon}{4K}=\frac{\varepsilon}{2}$ +\end_inset + +. + Es claro que +\begin_inset Formula $C:=R\backslash\bigcup_{k}N_{k}$ +\end_inset + + es compacto, y como para cada +\begin_inset Formula $x\in C$ +\end_inset + + podemos tomar un +\begin_inset Formula $S_{x}$ +\end_inset + + abierto tal que +\begin_inset Formula $\text{osc}(f,S_{x})<\frac{\varepsilon}{2v(R)}$ +\end_inset + +, existe un subrecubrimiento finito +\begin_inset Formula $S_{x_{i}}$ +\end_inset + + a partir de este, de modo que +\begin_inset Formula $\sum_{i}\text{osc}(f,S_{x_{i}})v(S_{x_{i}})<\frac{\varepsilon}{2v(R)}\cdot v(R)=\frac{\varepsilon}{2}$ +\end_inset + + La partición +\begin_inset Formula $P$ +\end_inset + + cuyos subintervalos están contenidos bien en un rectángulo +\begin_inset Formula $S_{x_{i}}$ +\end_inset + + o +\begin_inset Formula $N_{k}$ +\end_inset + + cumple que +\begin_inset Formula $S(f,P)-s(f,P)\leq\sum_{k}\text{osc}(f,N_{k})v(N_{k})+\sum_{i}\text{osc}(f,S_{x_{i}})v(S_{x_{i}})<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Conjuntos medibles Jordan +\end_layout + +\begin_layout Standard +\begin_inset Formula $A\subseteq\mathbb{R}^{n}$ +\end_inset + + acotado es +\series bold +medible Jordan +\series default + si su +\series bold +función característica +\series default +, +\begin_inset Formula +\[ +\chi_{A}(x):=\begin{cases} +1 & \text{si }x\in A\\ +0 & \text{si }x\notin A +\end{cases} +\] + +\end_inset + + es integrable Riemann en un rectángulo cerrado +\begin_inset Formula $R\supseteq A$ +\end_inset + +, y se define el +\series bold +volumen +\series default + +\begin_inset Formula $n$ +\end_inset + +-dimensional de +\begin_inset Formula $A$ +\end_inset + + como +\begin_inset Formula +\[ +v(A):=\int_{R}\chi_{A}(x_{1},\dots,x_{n})dx_{1}\cdots dx_{n} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Equivalentemente, +\begin_inset Formula $A$ +\end_inset + + es medible Jordan si y sólo si su frontera, +\begin_inset Formula $\partial A=\overline{A}\backslash\mathring{A}$ +\end_inset + +, tiene medida nula. + Se dice que una función acotada +\begin_inset Formula $f:A\rightarrow\mathbb{R}$ +\end_inset + + es integrable Riemann en +\begin_inset Formula $A$ +\end_inset + + si +\begin_inset Formula $f\chi_{A}\in{\cal R}(R)$ +\end_inset + +. + Por ejemplo, si +\begin_inset Formula $N$ +\end_inset + + tiene contenido nulo y +\begin_inset Formula $f:N\rightarrow\mathbb{R}$ +\end_inset + + es acotada, entonces +\begin_inset Formula $f$ +\end_inset + + es integrable Riemann en +\begin_inset Formula $N$ +\end_inset + + y +\begin_inset Formula $\int_{N}f(x)dx=0$ +\end_inset + +. +\end_layout + +\begin_layout Section +Teorema de Fubini +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{sloppypar} +\end_layout + +\end_inset + +Sean +\begin_inset Formula $R_{1}\subseteq\mathbb{R}^{n}$ +\end_inset + + y +\begin_inset Formula $R_{2}\subseteq\mathbb{R}^{m}$ +\end_inset + + rectángulos cerrados de dimensiones respectivas +\begin_inset Formula $n$ +\end_inset + + y +\begin_inset Formula $m$ +\end_inset + +, +\begin_inset Formula $R=R_{1}\times R_{2}\subseteq\mathbb{R}^{n+m}$ +\end_inset + + un rectángulo cerrado +\begin_inset Formula $(n+m)$ +\end_inset + +-dimensional y +\begin_inset Formula $f:R\rightarrow\mathbb{R}$ +\end_inset + + una función acotada. + Para cada +\begin_inset Formula $x\in R_{1}$ +\end_inset + + definimos +\begin_inset Formula $lf_{x}:R_{2}\rightarrow\mathbb{R}$ +\end_inset + + como +\begin_inset Formula $lf_{x}(y):=f(x,y)$ +\end_inset + +, +\begin_inset Formula $s_{lf}(x):=\underline{\int_{R_{2}}}lf_{x}(y_{1},\dots,y_{m})dy_{1}\cdots dy_{m}$ +\end_inset + + y +\begin_inset Formula $S_{lf}(x):=\overline{\int_{R_{2}}}lf_{x}(y_{1},\dots,y_{m})dy_{1}\cdots dy_{m}$ +\end_inset + +, y para cada +\begin_inset Formula $y\in R_{2}$ +\end_inset + + definimos +\begin_inset Formula $rf_{y}(x):=f(x,y)$ +\end_inset + +, +\begin_inset Formula $s_{rf}(y):=\int_{R_{1}}rf_{y}(x_{1},\dots,x_{n})dx_{1}\cdots dx_{m}$ +\end_inset + + y +\begin_inset Formula $S_{rf}(y):=\overline{\int_{R_{1}}}rf_{y}(x_{1},\dots,x_{n})dx_{1}\cdots dx_{m}$ +\end_inset + +. + Si +\begin_inset Formula $f\in{\cal R}(R)$ +\end_inset + + entonces +\begin_inset Formula $s_{lf},S_{lf}\in{\cal R}(R_{1})$ +\end_inset + +, +\begin_inset Formula $s_{rf},S_{rf}\in{\cal R}(R_{2})$ +\end_inset + + y +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{sloppypar} +\end_layout + +\end_inset + + +\begin_inset Formula +\begin{multline*} +\int_{R}f(x_{1},\dots,x_{n},y_{1},\dots,y_{m})dx_{1}\cdots dx_{n}dy_{1}\cdots dy_{m}=\\ +=\int_{R_{1}}s_{lf}(x_{1},\dots,x_{n})dx_{1}\cdots dx_{n}=\int_{R_{1}}S_{lf}(x_{1},\dots,x_{n})dx_{1}\cdots dx_{n}=\\ +=\int_{R_{2}}s_{rf}(y_{1},\dots,y_{m})dy_{1}\cdots dy_{m}=\int_{R_{2}}S_{rf}(y_{1},\dots,y_{m})dy_{1}\cdots dy_{m} +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Standard +En la práctica esto significa que +\begin_inset Formula +\[ +\int_{R}f(\vec{x},\vec{y})d\vec{x}d\vec{y}=\int_{R_{1}}\left(\int_{R_{2}}f(\vec{x},\vec{y})d\vec{y}\right)d\vec{x}=\int_{R_{2}}\left(\int_{R_{1}}f(\vec{x},\vec{y})d\vec{x}\right)d\vec{y} +\] + +\end_inset + +donde +\begin_inset Formula $d\vec{x}:=dx_{1}\cdots dx_{n}$ +\end_inset + + y +\begin_inset Formula $d\vec{y}:=dy_{1}\cdots dy_{m}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{FUVR2} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Cálculo de primitivas +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int u^{n}u'\,dx=\frac{u^{n+1}}{n+1}+C\forall n\neq-1$ +\end_inset + +; +\begin_inset Formula $\int\frac{u'}{u}dx=\ln|u|+C\forall u\neq0$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int e^{u}u'\,dx=e^{u}+C$ +\end_inset + +; +\begin_inset Formula $\int a^{u}u'\,dx=\frac{a^{u}}{\ln a}+C\forall a>0,a\neq1$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\cos u\,u'\,dx=\sin u+C$ +\end_inset + +; +\begin_inset Formula $\int\sin u\,u'\,dx=-\cos u+C$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\cosh u\,u'\,dx=\sinh u+C$ +\end_inset + +; +\begin_inset Formula $\int\sinh u\,u'\,dx=\cosh u+C$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\frac{u'}{\sin^{2}u}dx=\int\frac{u'}{\sinh^{2}u}dx=-\cot u+C$ +\end_inset + +; +\begin_inset Formula $\int\frac{u'}{\cos^{2}u}dx=\int\frac{u'}{\cosh^{2}u}dx=\tan u+C$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\frac{u'}{1+u^{2}}dx=\arctan u+C$ +\end_inset + +; +\begin_inset Formula $\int\frac{u'}{1-u^{2}}dx=\arg\tanh u+C$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\frac{u'}{\sqrt{1-u^{2}}}dx=\arcsin u+C=-\arccos u+C'$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\frac{u'}{\sqrt{u^{2}+1}}dx=\arg\sinh u+C$ +\end_inset + +; +\begin_inset Formula $\int\frac{u'}{\sqrt{u^{2}-1}}dx=\arg\cosh u+C$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\backslash +sremember{FUVR2} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{eqnarray*} +\cosh(x)=\frac{e^{x}+e^{-x}}{2} & & \arg\cosh(x)=\ln(x+\sqrt{x^{2}-1})\\ +\sinh(x)=\frac{e^{x}-e^{-x}}{2} & & \arg\sinh(x)=\ln(x+\sqrt{x^{2}+1})\\ +\cosh^{2}(x)-\sinh^{2}(x)=1 & & \arg\tanh(x)=\frac{1}{2}\ln\frac{1+x}{1-x} +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Subsection +Integración por partes +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $f,g\in{\cal R}[a,b]$ +\end_inset + + con primitivas respectivas +\begin_inset Formula $F$ +\end_inset + + y +\begin_inset Formula $G$ +\end_inset + +, +\begin_inset Formula +\[ +\int_{a}^{b}Fg=F(b)G(b)-F(a)G(a)-\int_{a}^{b}fG +\] + +\end_inset + +lo que suele escribirse como +\begin_inset Formula $\int u\,dv=uv-\int v\,du$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Cambio de variable +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, sea +\begin_inset Formula $\varphi:[c,d]\rightarrow[a,b]\in{\cal C}^{1}[c,d]$ +\end_inset + + con +\begin_inset Formula $\varphi(c)=a$ +\end_inset + + y +\begin_inset Formula $\varphi(d)=b$ +\end_inset + +, sea +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + continua, entonces +\begin_inset Formula +\[ +\int_{a}^{b}f=\int_{c}^{d}(f\circ\varphi)\varphi' +\] + +\end_inset + + +\end_layout + +\begin_layout Subsection +Funciones racionales +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $P(x)$ +\end_inset + + y +\begin_inset Formula $Q(x)$ +\end_inset + + polinomios y queremos resolver +\begin_inset Formula $\int_{a}^{b}\frac{P(x)}{Q(x)}dx$ +\end_inset + +. + Si el grado de +\begin_inset Formula $P(x)$ +\end_inset + + es mayor o igual que el de +\begin_inset Formula $Q(x)$ +\end_inset + + hacemos +\begin_inset Formula $\int_{a}^{b}\frac{P(x)}{Q(x)}dx=\int C(x)dx+\int\frac{R(x)}{Q(x)}dx$ +\end_inset + + para que el grado del numerador sea menor que el del denominador. + Entonces descomponemos en fracciones simples. +\end_layout + +\begin_layout Standard +Descomponemos +\begin_inset Formula $Q(x)$ +\end_inset + + como +\begin_inset Formula $Q(x)=\prod_{i=1}^{r}(x-a_{i})^{m_{i}}\prod_{i=1}^{s}(x^{2}+p_{i}x+q_{i})^{n_{i}}$ +\end_inset + +, donde +\begin_inset Formula $q_{i}>\frac{p_{i}^{2}}{4}$ +\end_inset + + para que los factores sean irreducibles. + Entonces (si el grado de +\begin_inset Formula $P(x)$ +\end_inset + + es menor que el de +\begin_inset Formula $Q(x)$ +\end_inset + +) podemos expresar la fracción como +\begin_inset Formula +\[ +\frac{P(x)}{Q(x)}=\sum_{i=1}^{r}\sum_{j=1}^{m_{i}}\frac{A_{ij}}{(x-a_{i})^{j}}+\sum_{i=1}^{M}\sum_{j=1}^{n_{i}}\frac{M_{ij}x+N_{ij}}{(x^{2}+p_{i}x+q_{i})^{j}} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Resolvemos los +\begin_inset Formula $A_{k,i}$ +\end_inset + +, +\begin_inset Formula $M_{k,i}$ +\end_inset + +, +\begin_inset Formula $N_{k,i}$ +\end_inset + + y nos queda hallar la integral de cada sumando como sigue: +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\frac{A}{x-a}dx=A\ln|x-a|+C$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\frac{A}{(x-a)^{n}}dx=-\frac{A}{(n-1)(x-a)^{n-1}}+C$ +\end_inset + +, donde +\begin_inset Formula $n\in2,3,\dots$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\backslash +sremember{FUVR2} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\int\frac{Mx+N}{x^{2}+px+q}dx=\frac{M}{2}\ln\left(\left(x+\frac{p}{2}\right)^{2}+c^{2}\right)+\frac{N-\frac{Mp}{2}}{c}\arctan\left(\frac{x+\frac{p}{2}}{c}\right)+C$ +\end_inset + +, donde +\begin_inset Formula $c=\frac{\sqrt{4q-p^{2}}}{2}$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Funciones que contienen +\begin_inset Formula $\cos x$ +\end_inset + + y +\begin_inset Formula $\sin x$ +\end_inset + + +\end_layout + +\begin_layout Standard +En general, haremos +\begin_inset Formula $t=\tan\frac{x}{2}$ +\end_inset + + y entonces +\begin_inset Formula +\begin{eqnarray*} +\cos x=\frac{\cos(2\frac{x}{2})}{\sin^{2}\frac{x}{2}+\cos^{2}\frac{x}{2}}=\frac{\cos^{2}\frac{x}{2}-\sin^{2}\frac{x}{2}}{\sin^{2}\frac{x}{2}+\cos^{2}\frac{x}{2}} & \overset{\text{div. }\cos^{2}\frac{x}{2}}{=} & \frac{1-\tan^{2}\frac{x}{2}}{\tan^{2}\frac{x}{2}+1}=\frac{1-t^{2}}{1+t^{2}}\\ +\sin x=\frac{\sin(2\frac{x}{2})}{\sin^{2}\frac{x}{2}+\cos^{2}\frac{x}{2}}=\frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{\sin^{2}\frac{x}{2}+\cos^{2}\frac{x}{2}} & \overset{\text{div. }\cos^{2}\frac{x}{2}}{=} & \frac{2\tan\frac{x}{2}}{\tan^{2}\frac{x}{2}+1}=\frac{2t}{1+t^{2}}\\ +x=2\arctan t & \text{ y } & dx=\frac{2}{1+t^{2}}dt +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Si la función es de la forma +\begin_inset Formula $f(x)=g(\sin x)\cos x$ +\end_inset + +, siendo +\begin_inset Formula $g$ +\end_inset + + una función racional, hacemos +\begin_inset Formula $t=\sin x$ +\end_inset + +, y si es +\begin_inset Formula $f(x)=g(\cos x)\sin x$ +\end_inset + + hacemos +\begin_inset Formula $t=\cos x$ +\end_inset + +. + Si es +\begin_inset Formula $f(x)=g(\tan x)$ +\end_inset + + hacemos +\begin_inset Formula $\tan x=t$ +\end_inset + +, y podemos llegar a esta situación cuando al sustituir +\begin_inset Formula $\sin x$ +\end_inset + + por +\begin_inset Formula $\cos x\tan x$ +\end_inset + + quedan solo potencias pares de +\begin_inset Formula $\cos x$ +\end_inset + +, y hacemos +\begin_inset Formula $\cos^{2}x=\frac{1}{1+\tan^{2}x}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +En el caso +\begin_inset Formula $f(x)=\cos^{n}x\sin^{m}x$ +\end_inset + +, si +\begin_inset Formula $n$ +\end_inset + + es impar hacemos +\begin_inset Formula $t=\sin x$ +\end_inset + +, si +\begin_inset Formula $m$ +\end_inset + + es impar, +\begin_inset Formula $t=\cos x$ +\end_inset + +, y si ambos son pares, usamos +\begin_inset Formula $\cos^{2}x=\frac{1+\cos(2x)}{2}$ +\end_inset + + y +\begin_inset Formula $\sin^{2}x=\frac{1-\cos(2x)}{2}$ +\end_inset + + para +\begin_inset Quotes cld +\end_inset + +reducir el grado +\begin_inset Quotes crd +\end_inset + +. +\end_layout + +\begin_layout Subsection +Funciones de la forma +\begin_inset Formula $f(e^{x})$ +\end_inset + + +\end_layout + +\begin_layout Standard +Hacemos el cambio +\begin_inset Formula $t=e^{x}$ +\end_inset + + y +\begin_inset Formula $dt=e^{x}dx$ +\end_inset + +, y esto también sirve para el coseno y seno hiperbólicos ( +\begin_inset Formula $\cosh$ +\end_inset + + y +\begin_inset Formula $\sinh$ +\end_inset + +). +\end_layout + +\begin_layout Subsection +Funciones que contienen +\begin_inset Formula $\sqrt{ax^{2}+2bx+c}$ +\end_inset + + +\end_layout + +\begin_layout Standard +Llamamos +\begin_inset Formula $d:=\frac{ac-b^{2}}{a}$ +\end_inset + + y se tiene +\begin_inset Formula $ax^{2}+2bx+c=a\left(x+\frac{b}{a}\right)^{2}+d$ +\end_inset + +. + Hacemos entonces el cambio de variable +\begin_inset Formula $t=x+\frac{b}{a}$ +\end_inset + + y a continuación: +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $a>0$ +\end_inset + + y +\begin_inset Formula $d>0$ +\end_inset + + hacemos +\begin_inset Formula $at^{2}=d\tan^{2}u$ +\end_inset + + y entonces +\begin_inset Formula $\sqrt{at^{2}+d}=[...]\sqrt{d}\sec u$ +\end_inset + + y +\begin_inset Formula $dt=\sqrt{\frac{d}{a}}\sec^{2}u\,du$ +\end_inset + +. + También podemos hacer +\begin_inset Formula $at^{2}=d\sinh^{2}u$ +\end_inset + + y entonces +\begin_inset Formula $\sqrt{at^{2}+d}=[...]\sqrt{d}\cosh u$ +\end_inset + + y +\begin_inset Formula $dt=\sqrt{\frac{d}{a}}\cosh u\,du$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $a>0$ +\end_inset + + y +\begin_inset Formula $d<0$ +\end_inset + + hacemos +\begin_inset Formula $at^{2}=-d\sec^{2}u$ +\end_inset + + y entonces +\begin_inset Formula $\sqrt{at^{2}+d}=[...]\sqrt{-d}\tan u$ +\end_inset + + y +\begin_inset Formula $dt=\sqrt{-\frac{d}{a}}\sec u\tan u\,du$ +\end_inset + +. + También podemos hacer +\begin_inset Formula $at^{2}=-d\cosh^{2}u$ +\end_inset + + y entonces +\begin_inset Formula $\sqrt{at^{2}+d}=[...]\sqrt{-d}\sinh u$ +\end_inset + + y +\begin_inset Formula $dt=\sqrt{-\frac{d}{a}}\sinh u\,du$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\backslash +sremember{FUVR2} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $a<0$ +\end_inset + + y +\begin_inset Formula $d>0$ +\end_inset + + hacemos +\begin_inset Formula $at^{2}=-d\sin^{2}u$ +\end_inset + + y entonces +\begin_inset Formula $\sqrt{at^{2}+d}=[..]\sqrt{d}\cos u$ +\end_inset + + y +\begin_inset Formula $dt=\sqrt{-\frac{d}{a}}\cos u\,du$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Cambio de variable +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $\Omega$ +\end_inset + + un abierto y +\begin_inset Formula $T:\Omega\subseteq\mathbb{R}^{n}\rightarrow\mathbb{R}^{n}$ +\end_inset + +, llamamos +\series bold +jacobiano +\series default + de +\begin_inset Formula $T$ +\end_inset + + en +\begin_inset Formula $a\in\Omega$ +\end_inset + + a la matriz cuadrada asociada a +\begin_inset Formula $dT(a)$ +\end_inset + +, +\begin_inset Formula $\left(\frac{\partial T_{i}}{\partial x_{j}}(a)\right)_{ij}$ +\end_inset + +. + El +\series bold +teorema de cambio de variable +\series default + afirma que si +\begin_inset Formula $\Omega\subseteq\mathbb{R}^{n}$ +\end_inset + + es un abierto medible Jordan y +\begin_inset Formula $T:\Omega\rightarrow\mathbb{R}^{n}$ +\end_inset + + es una función inyectiva diferenciable con derivadas parciales continuas + tal que +\begin_inset Formula $\forall x\in\Omega,\det(dg(x))\neq0$ +\end_inset + +, si +\begin_inset Formula $f:T(\Omega)\rightarrow\mathbb{R}$ +\end_inset + + es integrable Riemann en +\begin_inset Formula $T(\Omega)$ +\end_inset + + entonces +\begin_inset Formula $f\circ T$ +\end_inset + + es integrable Riemann en +\begin_inset Formula $\Omega$ +\end_inset + + y +\begin_inset Formula +\[ +\int_{g(A)}f(\vec{x})d\vec{x}=\int f(T(\vec{y}))|\det(dg(\vec{y}))|d\vec{y} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Algunos cambios de variable importantes: +\end_layout + +\begin_layout Itemize + +\series bold +Coordenadas polares +\series default + en +\begin_inset Formula $\mathbb{R}^{2}$ +\end_inset + +: Los puntos vienen dados por la distancia al origen, y el ángulo entre + el eje OX y el vector desde el origen al punto. + La función de cambio de variable es +\begin_inset Formula $T(\rho,\theta)=(\rho\cos\theta,\rho\sin\theta)$ +\end_inset + +, inyectiva en cualquier banda de la forma +\begin_inset Formula $(0,+\infty)\times(a,b)$ +\end_inset + + con +\begin_inset Formula $b-a\leq2\pi$ +\end_inset + +, y +\begin_inset Formula +\[ +|dT(\rho,\theta)|=\left|\begin{array}{cc} +\cos\theta & -\rho\sin\theta\\ +\sin\theta & \rho\cos\theta +\end{array}\right|=\rho +\] + +\end_inset + + +\end_layout + +\begin_layout Itemize + +\series bold +Coordenadas cilíndricas +\series default + en +\begin_inset Formula $\mathbb{R}^{3}$ +\end_inset + +: Los puntos vienen dados por las coordenadas de +\begin_inset Formula $(x,y)$ +\end_inset + + en polares y la coordenada +\begin_inset Formula $z$ +\end_inset + +. + La función de cambio es +\begin_inset Formula $T(\rho,\theta,z)=(\rho\cos\theta,\rho\sin\theta,z)$ +\end_inset + +, inyectiva en cualquier banda de la forma +\begin_inset Formula $(0,+\infty)\times(a,b)\times\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $b-a\leq2\pi$ +\end_inset + +, y +\begin_inset Formula +\[ +|dT(\rho,\theta,z)|=\left|\begin{array}{ccc} +\cos\theta & -\rho\sin\theta & 0\\ +\sin\theta & \rho\cos\theta & 0\\ +0 & 0 & 1 +\end{array}\right|=\rho +\] + +\end_inset + + +\end_layout + +\begin_layout Itemize + +\series bold +Coordenadas esféricas +\series default + o +\series bold +polares +\series default + en +\begin_inset Formula $\mathbb{R}^{3}$ +\end_inset + +: Los puntos vienen dados por la distancia al origen; el ángulo entre el + eje OX y la proyección en el plano XY del vector del origen al punto, y + el ángulo entre el eje OZ y el vector del origen al punto. + La función de cambio es +\begin_inset Formula $T(\rho,\theta,\varphi)=(\rho\cos\theta\sin\varphi,\rho\sin\theta\sin\varphi,\rho,\rho\cos\varphi)$ +\end_inset + +, inyectiva en cualquier banda de la forma +\begin_inset Formula $(0,+\infty)\times(a,b)\times(0,\pi)$ +\end_inset + + con +\begin_inset Formula $b-a\leq2\pi$ +\end_inset + +, y +\begin_inset Formula +\[ +|dT(\rho,\theta,\varphi)|=\left|\begin{array}{ccc} +\cos\theta\sin\varphi & -\rho\sin\theta\sin\varphi & \rho\cos\theta\cos\varphi\\ +\sin\theta\sin\varphi & \rho\cos\theta\sin\varphi & \rho\sin\theta\cos\varphi\\ +\cos\varphi & 0 & -\rho\sin\varphi +\end{array}\right|=\rho^{2}\sin\varphi +\] + +\end_inset + + +\end_layout + +\begin_layout Section +La integral de Riemann-Stieltjes +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $f,\varphi:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $P=\{a=t_{0}<\dots<t_{n}=b\}$ +\end_inset + + una partición del intervalo, llamamos +\series bold +suma de Riemann-Stieltjes +\series default + de +\begin_inset Formula $f$ +\end_inset + + con respecto a +\begin_inset Formula $\varphi$ +\end_inset + + asociada a la partición +\begin_inset Formula $P$ +\end_inset + + a cualquier suma de la forma +\begin_inset Formula +\[ +R(f,\varphi,P,\{\xi_{i}\})=\sum_{i=1}^{n}f(\xi_{i})(\varphi(t_{i})-\varphi(t_{i-1})) +\] + +\end_inset + +donde +\begin_inset Formula $\xi_{i}\in[t_{i-1},t_{i}]\forall i\in\{1,\dots,n\}$ +\end_inset + +. + Si existe el límite de estas sumas cuando +\begin_inset Formula $|P|:=\sup\{t_{i}-t_{i-1}\}_{i=1}^{n}$ +\end_inset + + tiende a 0 se dice que +\begin_inset Formula $f$ +\end_inset + + es +\series bold +integrable en el sentido de Riemann-Stieltjes +\series default + con respecto a +\begin_inset Formula $\varphi$ +\end_inset + + en el intervalo +\begin_inset Formula $[a,b]$ +\end_inset + +, y a este límite lo llamamos +\series bold +integral de Riemann-Stieltjes +\series default + de +\begin_inset Formula $f$ +\end_inset + + con respecto a +\begin_inset Formula $\varphi$ +\end_inset + + en +\begin_inset Formula $[a,b]$ +\end_inset + +, denotado como +\begin_inset Formula +\[ +\int_{a}^{b}f(x)d\varphi(x)=\int_{a}^{b}f\,d\varphi +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Vemos que si +\begin_inset Formula $\varphi$ +\end_inset + + es la identidad entonces la integral es exactamente la de Riemann. + Denotamos +\begin_inset Formula $\lambda_{\varphi}([a,b]):=\varphi(b)-\varphi(a)$ +\end_inset + +. + Para que esta medida sea positiva es necesario que +\begin_inset Formula $\varphi$ +\end_inset + + sea creciente. + Una función +\begin_inset Formula $\varphi:D\subseteq\mathbb{R}\rightarrow\mathbb{R}$ +\end_inset + + es +\series bold +continua por la derecha +\series default + en +\begin_inset Formula $c\in D$ +\end_inset + + si +\begin_inset Formula $\lim_{x\rightarrow c^{+}}\varphi(x)=\varphi(c)$ +\end_inset + +. + Si se quiere que +\begin_inset Formula $\lambda_{\varphi}$ +\end_inset + + se comporte bien al hacer uniones crecientes o intersecciones decrecientes + de intervalos, es necesario que +\begin_inset Formula $\varphi$ +\end_inset + + sea continua por la derecha. +\end_layout + +\begin_layout Standard +\begin_inset Formula $f$ +\end_inset + + es integrable Riemann-Stieltjes con respecto a +\begin_inset Formula $\varphi$ +\end_inset + + en +\begin_inset Formula $[a,b]$ +\end_inset + + si y sólo si +\begin_inset Formula $\forall\varepsilon>0,\exists\delta>0:\forall P,Q\in[a,b],(|P|,|Q|<\delta\implies|R(f,\varphi,P)-R(f,\varphi,Q)|<\varepsilon)$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, existe +\begin_inset Formula $\delta>0$ +\end_inset + + tal que si +\begin_inset Formula $|P|<\delta$ +\end_inset + + entonces +\begin_inset Formula $\left|R(f,\varphi,P)-\int_{a}^{b}f\,d\varphi\right|<\frac{\varepsilon}{2}$ +\end_inset + +, pero si +\begin_inset Formula $P$ +\end_inset + + y +\begin_inset Formula $Q$ +\end_inset + + son son particiones de +\begin_inset Formula $[a,b]$ +\end_inset + + con +\begin_inset Formula $|P|,|Q|<\delta$ +\end_inset + +, entonces +\begin_inset Formula +\[ +|R(f,\varphi,P)-R(f,\varphi,Q)|\leq\left|R(f,\varphi,P)-\int_{a}^{b}f\,d\varphi\right|+\left|\int_{a}^{b}f\,d\varphi-R(f,\varphi,Q)\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon +\] + +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Dada una sucesión de particiones +\begin_inset Formula $(P_{k})_{k}$ +\end_inset + + de +\begin_inset Formula $[a,b]$ +\end_inset + + con +\begin_inset Formula $|P_{k}|\rightarrow0$ +\end_inset + +, por la condición se tiene que +\begin_inset Formula $(R(f,\varphi,P_{k}))_{k}$ +\end_inset + + es de Cauchy y por tanto converge hacia un +\begin_inset Formula $I\in\mathbb{R}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $[a,b]$ +\end_inset + + y +\begin_inset Formula $\varphi$ +\end_inset + + es monótona creciente definida en +\begin_inset Formula $[a,b]$ +\end_inset + +, entonces +\begin_inset Formula $f$ +\end_inset + + es integrable Riemann-Stieltjes respecto a +\begin_inset Formula $\varphi$ +\end_inset + + en +\begin_inset Formula $[a,b]$ +\end_inset + +. + +\series bold +Demostración: +\series default + Al ser +\begin_inset Formula $f$ +\end_inset + + continua en un compacto, es uniformemente continua, luego para +\begin_inset Formula $\varepsilon>0$ +\end_inset + + existe +\begin_inset Formula $\delta>0$ +\end_inset + + tal que si +\begin_inset Formula $|x-y|<\delta$ +\end_inset + + entonces +\begin_inset Formula $|f(x)-f(y)|<\frac{\varepsilon}{\varphi(b)-\varphi(a)}$ +\end_inset + +. + Sean +\begin_inset Formula $P:=\{a=x_{0}<\dots<x_{n}=b\}$ +\end_inset + + y +\begin_inset Formula $Q:=\{a=y_{0}<\dots<y_{m}=b\}$ +\end_inset + + particiones con +\begin_inset Formula $|P|,|Q|<\frac{\delta}{2}$ +\end_inset + + y +\begin_inset Formula $P\lor Q=:\{a=t_{0}<\dots<t_{p}=b\}$ +\end_inset + +, podemos escribir las sumas de Riemann-Stieltjes asociadas a +\begin_inset Formula $P$ +\end_inset + + y +\begin_inset Formula $Q$ +\end_inset + + como +\begin_inset Formula $R(f,\varphi,P)=\sum_{i=1}^{n}f(\chi_{i})(\varphi(x_{i})-\varphi(x_{i-1}))=\sum_{j=1}^{p}f(\chi_{j}^{*})(\varphi(t_{j})-\varphi(t_{j-1}))$ +\end_inset + + y +\begin_inset Formula $R(f,\varphi,Q)=\sum_{k=1}^{m}f(\eta_{i})(\varphi(y_{k})-\varphi(y_{k-1}))=\sum_{j=1}^{p}f(\eta_{j}^{*})(\varphi(t_{j})-\varphi(t_{j-1}))$ +\end_inset + +, respectivamente, donde +\begin_inset Formula $\chi_{j}^{*}=\chi_{i}$ +\end_inset + + si +\begin_inset Formula $[t_{j-1},t_{j}]\subseteq[x_{i-1},x_{i}]$ +\end_inset + + y +\begin_inset Formula $\eta_{j}^{*}=\eta_{k}$ +\end_inset + + si +\begin_inset Formula $[t_{j-1},t_{j}]\subseteq[y_{k-1},y_{k}]$ +\end_inset + +. + De aquí, +\begin_inset Formula $|\chi_{j}^{*}-\eta_{j}^{*}|\leq|\chi_{j}^{*}-t_{j}|+|t_{j}-\eta_{j}^{*}|<\frac{\delta}{2}+\frac{\delta}{2}=\delta$ +\end_inset + +, y con esto +\begin_inset Formula +\begin{multline*} +|R(f,\varphi,P)-R(f,\varphi,Q)|\leq\sum_{j=1}^{p}|f(\chi_{j}^{*})-f(\eta_{j}^{*})|(\varphi(t_{j})-\varphi(t_{j-1}))<\\ +<\sum_{j=1}^{p}\frac{\varepsilon}{\varphi(b)-\varphi(a)}(\varphi(t_{j})-\varphi(t_{j-1}))=\frac{\varepsilon}{\varphi(b)-\varphi(a)}(\varphi(b)-\varphi(a))=\varepsilon +\end{multline*} + +\end_inset + +Por tanto si +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $[a,b]$ +\end_inset + + y +\begin_inset Formula $\varphi$ +\end_inset + + es una función creciente de clase +\begin_inset Formula ${\cal C}^{1}$ +\end_inset + + en +\begin_inset Formula $[a,b]$ +\end_inset + +, se cumple que +\begin_inset Formula +\[ +\int_{a}^{b}f(x)d\varphi(x)=\int_{a}^{b}f(x)\varphi'(x)dx +\] + +\end_inset + + Propiedades: Dadas +\begin_inset Formula $f,g:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + integrables Riemann-Stieltjes en +\begin_inset Formula $[a,b]$ +\end_inset + + respecto a +\begin_inset Formula $\varphi,\psi:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $\lambda\in\mathbb{R}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\int_{a}^{b}(\lambda f)d\varphi=\int_{a}^{b}f\,d(\lambda\varphi)=\lambda\int_{a}^{b}f\,d\varphi$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\int_{a}^{b}(f+g)d\varphi=\int_{a}^{b}f\,d\varphi+\int_{a}^{b}g\,d\varphi$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $f(t)\geq g(t)\forall t\in[a,b]$ +\end_inset + + y +\begin_inset Formula $\varphi$ +\end_inset + + es monótona creciente, +\begin_inset Formula $\int_{a}^{b}f\,d\varphi\geq\int_{a}^{b}g\,d\varphi$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\int_{a}^{b}f\,d(\varphi+\psi)=\int_{a}^{b}f\,d\varphi+\int_{a}^{b}f\,d\psi$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $c\in(a,b)$ +\end_inset + +, +\begin_inset Formula $\int_{a}^{c}f\,d\varphi+\int_{c}^{b}f\,d\varphi=\int_{a}^{b}f\,d\varphi$ +\end_inset + +. +\end_layout + +\begin_layout Standard +La +\series bold +integración por partes +\series default + en Riemann-Stieltjes se basa en que, si existe +\begin_inset Formula $\int_{a}^{b}f\,d\varphi$ +\end_inset + + entonces también existe +\begin_inset Formula $\int_{a}^{b}\varphi\,df$ +\end_inset + + y +\begin_inset Formula +\[ +\int_{a}^{b}\varphi\,df=(f(b)\varphi(b)-f(a)\varphi(a))-\int_{a}^{b}f\,d\varphi +\] + +\end_inset + + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $P=\{a=t_{0}<\dots<t_{n}=b\}$ +\end_inset + + una partición de +\begin_inset Formula $[a,b]$ +\end_inset + + y +\begin_inset Formula $\xi_{i}\in[t_{i-1},t_{i}]\forall i\in\{1,\dots,n\}$ +\end_inset + +. + Sea +\begin_inset Formula $Q=\{a=\xi_{0}<\dots<\xi_{n}<\xi_{n+1}=b\}$ +\end_inset + +, +\begin_inset Formula $x_{1}:=t_{0}=a\in[\xi_{0},\xi_{1}]$ +\end_inset + +, +\begin_inset Formula $x_{i}:=t_{i-1}\in[\xi_{i-1},\xi_{i}]\forall i\in\{1,\dots,n\}$ +\end_inset + + y +\begin_inset Formula $x_{n+1}:=t_{n}=b\in[\xi_{n},\xi_{n+1}]$ +\end_inset + +. + Entonces +\begin_inset Formula +\begin{multline*} +R(\varphi,f,P,\{\xi_{i}\})=\sum_{i=1}^{n}\varphi(\xi_{i})(f(t_{i})-f(t_{i-1}))=\sum_{i=1}^{n}f(t_{i})\varphi(\xi_{i})-\sum_{i=1}^{n}f(t_{i-1})\varphi(\xi_{i})=\\ +=\sum_{i=1}^{n-1}f(t_{i})\varphi(\xi_{i})+f(b)\varphi(b)-f(a)\varphi(\xi_{1})-\sum_{i=2}^{n}f(t_{i-1})\varphi(\xi_{i})=\\ +=f(b)\varphi(b)-f(a)\varphi(a)-f(a)(\varphi(\xi_{1})-\varphi(a))+\sum_{i=2}^{n}f(x_{i})\varphi(\xi_{i-1})-\sum_{i=2}^{n}f(x_{i})\varphi(\xi_{i})=\\ +=f(b)\varphi(b)-f(a)\varphi(a)-\sum_{i=1}^{n}f(x_{i})(\varphi(\xi_{i})-\varphi(\xi_{i-1}))=f(b)\varphi(b)-f(a)\varphi(a)-R(f,\varphi,Q,\{x_{i}\}) +\end{multline*} + +\end_inset + +Basta pues tomar límites en esta última expresión cuando +\begin_inset Formula $|Q|\leq2|P|\rightarrow0$ +\end_inset + +. +\end_layout + +\end_body +\end_document |
