diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-24 11:22:00 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-24 11:22:00 +0100 |
| commit | 79e1a51eb55d0df43323c0fe77a7d55b2c2bd17d (patch) | |
| tree | 89bd93a329f9deb72efce8fed205b69918c3d9b9 /fvv2/n3.lyx | |
| parent | 1f7f9bcc7660fba0827a62c3068d5c7082f025d7 (diff) | |
POO
Diffstat (limited to 'fvv2/n3.lyx')
| -rw-r--r-- | fvv2/n3.lyx | 3763 |
1 files changed, 3763 insertions, 0 deletions
diff --git a/fvv2/n3.lyx b/fvv2/n3.lyx new file mode 100644 index 0000000..a35f67f --- /dev/null +++ b/fvv2/n3.lyx @@ -0,0 +1,3763 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 0 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Funciones medibles +\end_layout + +\begin_layout Standard +Una aplicación +\begin_inset Formula $f:\Omega\rightarrow\Omega'$ +\end_inset + + es +\series bold + +\begin_inset Formula $(\Sigma,\Sigma')$ +\end_inset + +-medible +\series default + si +\begin_inset Formula $\forall E'\in\Sigma',f^{-1}(E')\in\Sigma$ +\end_inset + +. + Cuando +\begin_inset Formula $\Omega'$ +\end_inset + + es un espacio topológico, decimos que +\begin_inset Formula $f$ +\end_inset + + es +\series bold + +\begin_inset Formula $\Sigma$ +\end_inset + +-medible +\series default + si es +\begin_inset Formula $(\Sigma,{\cal B}(\Omega'))$ +\end_inset + +-medible. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\Sigma'=:\sigma({\cal D})$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + es +\begin_inset Formula $(\Sigma,\Sigma')$ +\end_inset + +-medible si y sólo si +\begin_inset Formula $\forall D\in{\cal D},f^{-1}(D)\in\Sigma$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Obvio. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula ${\cal A}:=\{E\in\Sigma':f^{-1}(E)\in\Sigma\}$ +\end_inset + +, vemos que +\begin_inset Formula ${\cal A}$ +\end_inset + + es una +\begin_inset Formula $\sigma$ +\end_inset + +-álgebra que contiene a +\begin_inset Formula ${\cal D}$ +\end_inset + +, pues +\begin_inset Formula $f^{-1}(E^{\complement})=\Omega\backslash f^{-1}(E)$ +\end_inset + + y +\begin_inset Formula $f^{-1}(\bigcup_{k=1}^{\infty}E_{k})=\bigcup_{k=1}^{\infty}f^{-1}(E_{k})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $T:=(X,{\cal T})$ +\end_inset + + y +\begin_inset Formula $T':=(X,{\cal T}')$ +\end_inset + + espacios topológicos, toda función +\begin_inset Formula $f:T\rightarrow T'$ +\end_inset + + continua es +\begin_inset Formula $({\cal B}(T),{\cal B}(T'))$ +\end_inset + +-medible, pues +\begin_inset Formula ${\cal B}(T')=\sigma({\cal T}')$ +\end_inset + + y la continuidad asegura que +\begin_inset Formula $\forall A\in{\cal T}',f^{-1}(A)\in{\cal T}\subseteq{\cal B}(T)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Composición de medibles: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $f:\Omega\rightarrow\Omega'$ +\end_inset + + y +\begin_inset Formula $g:f(\Omega)\rightarrow\Omega''$ +\end_inset + + son medibles, +\begin_inset Formula $g\circ f$ +\end_inset + + también lo es. + En particular, si +\begin_inset Formula $T$ +\end_inset + + y +\begin_inset Formula $T'$ +\end_inset + + son espacios topológicos, +\begin_inset Formula $f:\Omega\rightarrow T$ +\end_inset + + es +\begin_inset Formula $(\Sigma,{\cal B}(T))$ +\end_inset + +-medible y +\begin_inset Formula $g:T\rightarrow T'$ +\end_inset + + es continua, +\begin_inset Formula $g\circ f$ +\end_inset + + es +\begin_inset Formula $(\Sigma,{\cal B}(T'))$ +\end_inset + +-medible. +\end_layout + +\begin_deeper +\begin_layout Standard +Para +\begin_inset Formula $E\in\Sigma''$ +\end_inset + +, +\begin_inset Formula $g^{-1}(E)\in\Sigma'$ +\end_inset + + por ser +\begin_inset Formula $g$ +\end_inset + + medible y +\begin_inset Formula $f^{-1}(g^{-1}(E))=(g\circ f)^{-1}(E)\in\Sigma$ +\end_inset + + por ser +\begin_inset Formula $g$ +\end_inset + + medible, luego +\begin_inset Formula $g\circ f$ +\end_inset + + es medible. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $u_{1},\dots u_{n}:\Omega\rightarrow\mathbb{R}$ +\end_inset + + son medibles, +\begin_inset Formula $\varphi:\Omega\rightarrow\mathbb{R}^{n}$ +\end_inset + + dada por +\begin_inset Formula $\varphi(\omega):=(u_{1}(\omega),\dots,u_{n}(\omega))$ +\end_inset + + es medible. +\end_layout + +\begin_deeper +\begin_layout Standard +Un abierto +\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ +\end_inset + + se puede expresar como unión numerable de cubos diádicos disjuntos, y como + estos están en +\begin_inset Formula ${\cal B}(\mathbb{R}^{n})$ +\end_inset + +, lo generan. + Si +\begin_inset Formula $[a,b)$ +\end_inset + + es uno de estos cubos, +\begin_inset Formula +\[ +\varphi^{-1}([a,b))=\bigcap_{i=1}^{n}u_{i}^{-1}([a_{i},b_{i}))\in\Sigma +\] + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $f:\Omega\rightarrow\mathbb{C}$ +\end_inset + + es medible si y sólo si lo son +\begin_inset Formula $\omega\mapsto\text{Re}(f(\omega))$ +\end_inset + + e +\begin_inset Formula $\omega\mapsto\text{Im}(f(\omega))$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + + Se deriva de que +\begin_inset Formula $x\mapsto\text{Re}(x)$ +\end_inset + + y +\begin_inset Formula $x\mapsto\text{Im}(x)$ +\end_inset + + son continuas. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{sloppypar} +\end_layout + +\end_inset + +Sea +\begin_inset Formula $\pi:\mathbb{R}^{2}\rightarrow\mathbb{C}$ +\end_inset + + el isomorfismo canónico, como +\begin_inset Formula $\pi$ +\end_inset + + es continua y +\begin_inset Formula $f(\omega)=\pi(\text{Re}(f(\omega)),\text{Im}(f(\omega)))$ +\end_inset + +, el punto anterior nos da que +\begin_inset Formula $f$ +\end_inset + + es medible. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{sloppypar} +\end_layout + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $f,g:\Omega\rightarrow\mathbb{C}$ +\end_inset + + son medibles, +\begin_inset Formula $f+g$ +\end_inset + +, +\begin_inset Formula $fg$ +\end_inset + + y +\begin_inset Formula $\frac{f}{g}\chi_{\{g\neq0\}}$ +\end_inset + + también lo son. +\end_layout + +\begin_deeper +\begin_layout Standard +Se debe a que +\begin_inset Formula $(x,y)\mapsto x+y$ +\end_inset + +, +\begin_inset Formula $(x,y)\mapsto xy$ +\end_inset + + son continuas. + Para el cociente, si +\begin_inset Formula $\{g=0\}=\emptyset$ +\end_inset + +, la continuidad de +\begin_inset Formula $(x,y)\mapsto\frac{x}{y}$ +\end_inset + + cuando +\begin_inset Formula $y\neq0$ +\end_inset + + implica que +\begin_inset Formula $\frac{f}{g}$ +\end_inset + + es medible. + En el caso general, sea +\begin_inset Formula $S\subseteq\mathbb{C}$ +\end_inset + + medible, +\begin_inset Formula +\begin{multline*} +\left(\frac{f}{g}\chi_{\{g\neq0\}}\right)^{-1}(S)=\left(\left(\frac{f}{g}\chi_{\{g\neq0\}}\right)^{-1}(S)\cap\{g\neq0\}\right)\cup\left(\left(\frac{f}{g}\chi_{\{g\neq0\}}\right)^{-1}(S)\cap\{g=0\}\right)\\ +=\left(\frac{f}{g}\chi_{\{g\neq0\}}\right)^{-1}(S\backslash\{0\}))\cup\left(\frac{f}{g}\chi_{\{g\neq0\}}\right)^{-1}(S\cap\{0\}) +\end{multline*} + +\end_inset + +El primer elemento de esta última unión no contiene elementos de +\begin_inset Formula $\{g=0\}$ +\end_inset + +, pues para todos ellos +\begin_inset Formula $\frac{f}{g}\chi_{\{g\neq0\}}(\omega)\neq0$ +\end_inset + +, por tanto el conjunto es igual a +\begin_inset Formula $\left(\frac{f}{g}\right)^{-1}(S\backslash\{0\})$ +\end_inset + +, que es medible. + El segundo elemento es +\begin_inset Formula $\emptyset$ +\end_inset + + si +\begin_inset Formula $0\notin S$ +\end_inset + + o +\begin_inset Formula $\{f=0\}\cup\{g=0\}$ +\end_inset + + si +\begin_inset Formula $0\in S$ +\end_inset + +; en cualquier caso es medible. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $f:\Omega\rightarrow\mathbb{C}$ +\end_inset + + es medible, +\begin_inset Formula $|f|$ +\end_inset + + también lo es y existe +\begin_inset Formula $\alpha:\Omega\rightarrow\mathbb{C}$ +\end_inset + + tal que +\begin_inset Formula $\forall\omega\in\Omega,|\alpha(\omega)|=1$ +\end_inset + + y +\begin_inset Formula $|f|=\alpha f$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $|f|$ +\end_inset + + es medible por ser +\begin_inset Formula $\omega\mapsto\sqrt{\text{Re}(f(\omega))^{2}+\text{Im}(f(\omega))^{2}}$ +\end_inset + +, al igual que +\begin_inset Formula $\alpha$ +\end_inset + + dada por +\begin_inset Formula $\alpha(\omega)=\chi_{\{f=0\}}+\frac{f}{|f|}\chi_{\{f\neq0\}}$ +\end_inset + +, que cumple las condiciones. +\end_layout + +\end_deeper +\begin_layout Standard +Una función +\begin_inset Formula $f:\Omega\rightarrow[-\infty,+\infty]$ +\end_inset + + es +\series bold + +\begin_inset Formula $\Sigma$ +\end_inset + +-medible +\series default + si es +\begin_inset Formula $(\Sigma,\Sigma':=\sigma(\{(a,+\infty]\}_{a\in\mathbb{R}}))$ +\end_inset + +-medible. + Todos los cubos diádicos +\begin_inset Formula $[a,b)\subseteq\mathbb{R}$ +\end_inset + + están en +\begin_inset Formula $\Sigma'$ +\end_inset + +, luego también están todos los abiertos de +\begin_inset Formula $\mathbb{R}$ +\end_inset + + como unión numerable de cubos diádicos y por tanto +\begin_inset Formula ${\cal B}(\mathbb{R})\subseteq\Sigma'$ +\end_inset + +. + Adoptamos el convenio +\begin_inset Formula $\pm\infty\cdot0=0\cdot\pm\infty=0$ +\end_inset + + y la notación +\begin_inset Formula $\{f\bullet a\}:=\{\omega\in\Omega:f(\omega)\bullet a\}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $f:\Omega\rightarrow[-\infty,+\infty]$ +\end_inset + +, si tenemos que +\begin_inset Formula +\begin{multline*} +f\text{ es medible}\iff\forall a\in\mathbb{R},\{f>a\}\in\Sigma\iff\forall a\in\mathbb{R},\{f\geq a\}\in\Sigma\\ +\iff\forall a\in\mathbb{R},\{f<a\}\in\Sigma\iff\forall a\in\mathbb{R},\{f\leq a\}\in\Sigma +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies3]$ +\end_inset + + Como +\begin_inset Formula $(a,+\infty]$ +\end_inset + + es medible, +\begin_inset Formula $f^{-1}((a,+\infty])=\{f>a\}$ +\end_inset + + también lo es. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies1]$ +\end_inset + + Para cada elemento de +\begin_inset Formula $\{(a,+\infty]\}_{a\in\mathbb{R}}$ +\end_inset + +, +\begin_inset Formula $f^{-1}((a,+\infty])=\{f>a\}\in\Sigma$ +\end_inset + +, y por tanto +\begin_inset Formula $f$ +\end_inset + + es medible. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies3]$ +\end_inset + + +\begin_inset Formula $\{f\geq a\}=\bigcap_{k=1}^{\infty}\{f>a-\frac{1}{k}\}$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies4]$ +\end_inset + + +\begin_inset Formula $\{f<a\}=\Omega\backslash\{f\geq a\}$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $4\implies5]$ +\end_inset + + +\begin_inset Formula $\{f\leq a\}=\bigcap_{k=1}^{\infty}\{f<a+\frac{1}{k}\}$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $5\implies2]$ +\end_inset + + +\begin_inset Formula $\{f>a\}=\Omega\backslash\{f\leq a\}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Además, si +\begin_inset Formula $f$ +\end_inset + + es medible, +\begin_inset Formula $\{f>-\infty\}$ +\end_inset + +, +\begin_inset Formula $\{f<+\infty\}$ +\end_inset + +, +\begin_inset Formula $\{f=-\infty\}$ +\end_inset + +, +\begin_inset Formula $\{f=+\infty\}$ +\end_inset + +, +\begin_inset Formula $\{a\leq f\leq b\}$ +\end_inset + +, +\begin_inset Formula $\{f=a\}$ +\end_inset + +, etc. + son medibles, y +\begin_inset Formula $f$ +\end_inset + + es medible si y sólo si +\begin_inset Formula $\{f=-\infty\}$ +\end_inset + + es medible y para +\begin_inset Formula $a\in\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $\{a<f<+\infty\}$ +\end_inset + + es medible. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $\{a<f<+\infty\}=\{f>a\}\cap\bigcup_{k=1}^{\infty}\{f<k\}$ +\end_inset + +, +\begin_inset Formula $\{f=-\infty\}=\bigcap_{k=1}^{\infty}\{f<-k\}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $\{f>a\}=\{a<f<+\infty\}\cup\left(\{f=-\infty\}\cup\bigcup_{k=1}^{\infty}\{-k<f<+\infty\}\right)^{\complement}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dado un subconjunto denso +\begin_inset Formula $A\subseteq[-\infty,+\infty]$ +\end_inset + +, si +\begin_inset Formula $\{f>a\}$ +\end_inset + + es medible para todo +\begin_inset Formula $a\in A$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + es medible. + +\series bold +Demostración: +\series default + Para +\begin_inset Formula $a\in\mathbb{R}$ +\end_inset + +, existe una sucesión +\begin_inset Formula $(a_{k})_{k}$ +\end_inset + + de elementos de +\begin_inset Formula $A$ +\end_inset + + que converge a +\begin_inset Formula $a$ +\end_inset + + con +\begin_inset Formula $a_{k}>a\forall k\in\mathbb{N}$ +\end_inset + +, y entonces +\begin_inset Formula $\{f>a\}=\bigcup\{f>a_{k}\}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $f:\Omega\rightarrow[-\infty,+\infty]$ +\end_inset + + es medible si y sólo si para todo abierto +\begin_inset Formula $G\subseteq\mathbb{R}^{n}$ +\end_inset + +, +\begin_inset Formula $f^{-1}(G)$ +\end_inset + + es medible. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Los abiertos de +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + + están en +\begin_inset Formula $\sigma(\{(a,+\infty]\}_{a\in\mathbb{R}})$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Para todo +\begin_inset Formula $a\in\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $f^{-1}((a,+\infty))=\{a<f<+\infty\}$ +\end_inset + + es medible, luego +\begin_inset Formula $f$ +\end_inset + + lo es. +\end_layout + +\begin_layout Standard +Una propiedad se cumple +\series bold +en casi todo punto +\series default + de +\begin_inset Formula $\Omega$ +\end_inset + + si el conjunto de puntos +\begin_inset Formula $\omega\in\Omega$ +\end_inset + + en los que no se cumple tiene medida cero. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $f,g:\Omega\rightarrow[-\infty,+\infty]$ +\end_inset + + son medibles, +\begin_inset Formula $\{f>g\}$ +\end_inset + + también lo es. +\end_layout + +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula $\{r_{k}\}_{k\in\mathbb{N}}=\mathbb{Q}$ +\end_inset + +, entonces +\begin_inset Formula $\{f>g\}=\bigcup_{k=1}^{\infty}\{f>r_{k}>g\}=\bigcup_{k=1}^{\infty}(\{f>r_{k}\}\cap\{g<r_{k}\})$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $f$ +\end_inset + + es medible y +\begin_inset Formula $g=f$ +\end_inset + + en casi todo punto, +\begin_inset Formula $g$ +\end_inset + + es medible y +\begin_inset Formula $\mu(\{g>a\})=\mu(\{f>a\})$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula $Z:=\{f\neq g\}$ +\end_inset + +, +\begin_inset Formula $\{g>a\}\cup Z=\{f>a\}\cup Z$ +\end_inset + +, luego si +\begin_inset Formula $f$ +\end_inset + + es medible, +\begin_inset Formula $\{g>a\}\cup Z$ +\end_inset + + lo es y como difiere de +\begin_inset Formula $\{g>a\}$ +\end_inset + + por un conjunto de medida cero, +\begin_inset Formula $g$ +\end_inset + + es medible. + Por último, +\begin_inset Formula $\mu(\{g>a\})=\mu(\{g>a\}\cup Z)=\mu(\{f>a\}\cup Z)=\mu(\{f>a\})$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $f$ +\end_inset + + es medible y +\begin_inset Formula $\lambda\in\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $f+\lambda$ +\end_inset + + y +\begin_inset Formula $\lambda f$ +\end_inset + + son medibles. +\end_layout + +\begin_deeper +\begin_layout Standard +Para +\begin_inset Formula $a\in\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $\{f+\lambda>a\}=\{f>a-\lambda\}$ +\end_inset + + y +\begin_inset Formula +\[ +\{\lambda f>a\}=\begin{cases} +f>\frac{a}{\lambda} & \text{si }\lambda>0\\ +f<\frac{a}{\lambda} & \text{si }\lambda<0\\ +\Omega & \text{si }\lambda=0\land a<0\\ +\emptyset & \text{si }\lambda=0\land a\geq0 +\end{cases} +\] + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + son medibles, también lo es +\begin_inset Formula $f+g$ +\end_inset + +. + Esto significa que las combinaciones lineales +\begin_inset Formula $\lambda_{1}f_{1}+\dots+\lambda_{n}f_{n}$ +\end_inset + + de funciones medibles +\begin_inset Formula $f_{1},\dots,f_{n}$ +\end_inset + + son medibles, por lo que el conjunto de funciones +\begin_inset Formula $\Omega\rightarrow[-\infty,+\infty]$ +\end_inset + + +\begin_inset Formula $\Sigma$ +\end_inset + +-medibles es un espacio vectorial. +\end_layout + +\begin_deeper +\begin_layout Standard +Para +\begin_inset Formula $a\in\mathbb{R}$ +\end_inset + +, si +\begin_inset Formula $g$ +\end_inset + + es medible, también lo es +\begin_inset Formula $a-g$ +\end_inset + +, y entonces +\begin_inset Formula $\{f+g>a\}=\{f>a-g\}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Para +\begin_inset Formula $f,g:\Omega\rightarrow[-\infty,+\infty]$ +\end_inset + + medibles, +\begin_inset Formula $fg$ +\end_inset + + es medible y, si +\begin_inset Formula $g\neq0$ +\end_inset + + en casi todo punto, +\begin_inset Formula $f/g$ +\end_inset + + (definida en casi todo punto) es medible. +\end_layout + +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula $f$ +\end_inset + + es medible, es fácil ver que +\begin_inset Formula $f^{2}=|f|^{2}$ +\end_inset + + también lo es. + Para valores finitos, +\begin_inset Formula $fg=\frac{(f+g)^{2}-(f-g)^{2}}{4}$ +\end_inset + +. + Si alguna de las funciones puede tener valores infinitos, vemos que +\begin_inset Formula $\{f=+\infty\}$ +\end_inset + +, +\begin_inset Formula $\{f=-\infty\}$ +\end_inset + +, +\begin_inset Formula $\{f=0\}$ +\end_inset + +, +\begin_inset Formula $\{g=+\infty\}$ +\end_inset + +, etc. + son medibles y por tanto +\begin_inset Formula $\{fg=0\}=\{f=0\}\cup\{g=0\}$ +\end_inset + +, +\begin_inset Formula $\{fg=+\infty\}$ +\end_inset + + y +\begin_inset Formula $\{fg=-\infty\}$ +\end_inset + + también lo son. + Para +\begin_inset Formula $f/g$ +\end_inset + +, basta ver que +\begin_inset Formula $1/g$ +\end_inset + + es medible, pero dado +\begin_inset Formula $a\in\mathbb{R}$ +\end_inset + +, +\begin_inset Formula +\[ +\{1/g>a\}=\begin{cases} +\{0<g<\frac{1}{a}\} & \text{si }a>0\\ +\{0<g<+\infty\} & \text{si }a=0\\ +\{g<\frac{1}{a}\}\cup\{0<g<+\infty\} & \text{si }a<0 +\end{cases} +\] + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +Dada una sucesión de funciones medibles +\begin_inset Formula $(f_{k}:\Omega\rightarrow\mathbb{R})_{k}$ +\end_inset + +, las funciones +\begin_inset Formula $\sup_{k}f_{k}(\omega)$ +\end_inset + +, +\begin_inset Formula $\inf_{k}f_{k}(\omega)$ +\end_inset + +, +\begin_inset Formula $\limsup_{k}f_{k}(\omega)$ +\end_inset + + y +\begin_inset Formula $\liminf_{k}f_{k}(\omega)$ +\end_inset + + son medibles. + De aquí que, si +\begin_inset Formula $E$ +\end_inset + + es el conjunto de puntos +\begin_inset Formula $\omega\in\Omega$ +\end_inset + + en los que +\begin_inset Formula $(f_{n}(\omega))_{n}$ +\end_inset + + converge, entonces el límite puntual de +\begin_inset Formula $(f_{n}|_{E})_{n}$ +\end_inset + + es medible y +\begin_inset Formula $E$ +\end_inset + + también lo es. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{sloppypar} +\end_layout + +\end_inset + +Basta probarlo para el supremo, pues +\begin_inset Formula $\inf_{k}f_{k}(x)=-\sup_{k}(-f_{k})$ +\end_inset + +, +\begin_inset Formula $\limsup_{n}f_{n}(\omega)=\inf_{m\in\mathbb{N}}\{\sup_{k\geq m}\{f_{k}(\omega)\}\}$ +\end_inset + + y +\begin_inset Formula $\liminf_{n}f_{n}(\omega)=\sup_{m\in\mathbb{N}}\{\inf_{k\geq m}\{f_{k}(\omega)\}\}$ +\end_inset + +, pero +\begin_inset Formula $\{\sup_{k}f_{k}>a\}=\bigcup_{k}\{f_{k}>a\}$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{sloppypar} +\end_layout + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Section +Funciones simples +\end_layout + +\begin_layout Standard +Una +\series bold +función simple +\series default + es aquella cuya imagen es finita. + Si +\begin_inset Formula $f:\Omega\rightarrow\Omega'$ +\end_inset + + es una función simple que toma valores distintos +\begin_inset Formula $a_{1},\dots,a_{n}$ +\end_inset + + en conjuntos disjuntos respectivos +\begin_inset Formula $E_{1},\dots,E_{n}$ +\end_inset + +, su +\series bold +forma canónica +\series default + es +\begin_inset Formula +\[ +f=\sum_{k=1}^{n}a_{k}\chi_{E_{k}} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Claramente +\begin_inset Formula $\chi_{E}$ +\end_inset + + es medible si y sólo si +\begin_inset Formula $E$ +\end_inset + + lo es, por lo que +\begin_inset Formula $f$ +\end_inset + + es medible si y sólo si lo son +\begin_inset Formula $E_{1},\dots,E_{n}$ +\end_inset + +. + Algunos autores sólo llaman funciones simples a las que además son medibles. + Como +\series bold +teorema +\series default +: +\end_layout + +\begin_layout Enumerate +Toda función +\begin_inset Formula $f:\Omega\rightarrow[0,+\infty]$ +\end_inset + + es límite de una sucesión creciente de funciones simples. +\end_layout + +\begin_deeper +\begin_layout Standard +Para +\begin_inset Formula $k\in\mathbb{N}$ +\end_inset + +, subdividimos +\begin_inset Formula $[0,k]$ +\end_inset + + en subintervalos +\begin_inset Formula $\{[(j-1)2^{-k},j2^{-k}]\}_{j\in\{1,\dots,k2^{k}\}}$ +\end_inset + + y definimos +\begin_inset Formula +\[ +f_{k}(x):=\begin{cases} +\frac{j-1}{2^{k}} & \text{si }\frac{j-1}{2^{k}}\leq f(x)<\frac{j}{2^{k}},j\in\{1,\dots,k2^{k}\}\\ +k & \text{si }f(x)\geq k +\end{cases} +\] + +\end_inset + +Cada +\begin_inset Formula $f_{k}$ +\end_inset + + es una función simple definida en todo +\begin_inset Formula $\Omega$ +\end_inset + +, +\begin_inset Formula $f_{k}\leq f_{k+1}$ +\end_inset + + porque al pasar de +\begin_inset Formula $f_{k}$ +\end_inset + + a +\begin_inset Formula $f_{k+1}$ +\end_inset + + dividimos los intervalos por la mitad y permitimos valores mayores en la + imagen, y +\begin_inset Formula $f_{k}\rightarrow f$ +\end_inset + + porque para un valor +\begin_inset Formula $k$ +\end_inset + + lo suficientemente grande, +\begin_inset Formula $0\leq f(x)-f_{k}(x)\leq2^{-k}$ +\end_inset + + si +\begin_inset Formula $f(x)$ +\end_inset + + es finito y +\begin_inset Formula $f_{k}=k\rightarrow+\infty$ +\end_inset + + si +\begin_inset Formula $f(x)=+\infty$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Toda función +\begin_inset Formula $f:\Omega\rightarrow[-\infty,+\infty]$ +\end_inset + + es límite de una sucesión de funciones simples. +\end_layout + +\begin_deeper +\begin_layout Standard +Basta aplicar lo anterior a +\begin_inset Formula $f^{+}:=\max\{0,f\}$ +\end_inset + + y +\begin_inset Formula $f^{-}:=-\min\{0,f\}$ +\end_inset + + y restar las sucesiones resultantes. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si la función +\begin_inset Formula $f$ +\end_inset + + en los dos apartados anteriores es medible, podemos hacer que las +\begin_inset Formula $f_{k}$ +\end_inset + + también lo sean. +\end_layout + +\begin_deeper +\begin_layout Standard +En el primer apartado, +\begin_inset Formula +\[ +f_{k}=\sum_{j=1}^{k2^{k}}\frac{j-1}{2^{k}}\chi_{\left\{ \frac{j-1}{2^{k}}\leq f<\frac{j}{2^{k}}\right\} }+k\chi_{\{f\geq k\}} +\] + +\end_inset + +que es medible porque todos los conjuntos involucrados lo son, y en el segundo + basta considerar +\begin_inset Formula $f^{+}$ +\end_inset + + y +\begin_inset Formula $f^{-}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Si +\begin_inset Formula $f$ +\end_inset + + es acotada, las funciones simples dadas convergerán uniformemente a +\begin_inset Formula $f$ +\end_inset + +. +\end_layout + +\begin_layout Section +Integrales en funciones positivas +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $(\Omega,\Sigma,\mu)$ +\end_inset + + un espacio de medida, +\begin_inset Formula ${\cal S}(\Omega)$ +\end_inset + + el espacio vectorial de las funciones simples +\begin_inset Formula $\Omega\rightarrow[-\infty,+\infty]$ +\end_inset + + y +\begin_inset Formula ${\cal S}(\Omega)^{+}:=\{h\in{\cal S}(\Omega):h\geq0\}$ +\end_inset + +, llamamos +\series bold +integral +\series default + de una función simple +\begin_inset Formula $h:=\sum_{k=1}^{n}a_{k}\chi_{E_{k}}\in{\cal S}(\Omega)^{+}$ +\end_inset + + como +\begin_inset Formula +\[ +\int h\,d\mu:=\sum_{k=1}^{n}a_{k}\mu(E_{k}) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f,g\in{\cal S}(\Omega)^{+}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\alpha\in[0,+\infty)$ +\end_inset + +, +\begin_inset Formula $\int\alpha f\,d\mu=\alpha\int f\,d\mu$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Supongamos +\begin_inset Formula $f=:\sum_{i=1}^{n}a_{i}\chi_{A_{i}}$ +\end_inset + + y +\begin_inset Formula $g=:\sum_{j=1}^{m}b_{j}\chi_{B_{j}}$ +\end_inset + +. + Entonces +\begin_inset Formula $\alpha f=\sum_{i=1}^{n}\alpha a_{i}\chi_{A_{i}}$ +\end_inset + + y +\begin_inset Formula +\[ +\int\alpha f\,d\mu=\sum_{i=1}^{n}\alpha a_{i}\mu(A_{i})=\alpha\sum_{i=1}^{n}a_{i}\mu(A_{i})=\alpha\int f\,d\mu +\] + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\int(f+g)d\mu=\int f\,d\mu+\int g\,d\mu$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $C:=\{c_{1},\dots,c_{r}\}=\{a_{i}+b_{j}\}_{i\in\{1,\dots,n\},j\in\{1,\dots,m\}}$ +\end_inset + +, y +\begin_inset Formula $C_{k}:=\bigcup_{a_{i}+b_{j}=c_{k}}(A_{i}\cap B_{j})$ +\end_inset + + para cada +\begin_inset Formula $c_{k}$ +\end_inset + +, tenemos +\begin_inset Formula $f+g=\sum_{k=1}^{r}c_{k}\chi_{C_{k}}$ +\end_inset + +. + Entonces +\begin_inset Formula +\begin{multline*} +\int f+g\,d\mu=\sum_{k=1}^{r}c_{k}\mu(C_{k})=\sum_{k=1}^{r}c_{k}\mu(C_{k})=\sum_{k=1}^{r}c_{k}\left(\sum_{a_{i}+b_{j}=c_{k}}\mu(A_{i}\cap B_{j})\right)=\\ +=\sum_{k=1}^{r}\sum_{a_{i}+b_{j}=c_{k}}(a_{i}+b_{j})\mu(A_{i}\cap B_{j})=\sum_{i=1}^{n}\sum_{j=1}^{m}((a_{i}+b_{j})\mu(A_{i}\cap B_{j})=\\ +=\sum_{i=1}^{n}a_{i}\left(\sum_{j=1}^{m}\mu(A_{i}\cap B_{j})\right)+\sum_{j=1}^{m}b_{j}\left(\sum_{i=1}^{n}\mu(A_{i}\cap B_{j})\right)=\sum_{i=1}^{n}a_{i}\mu(A_{i})+\sum_{j=1}^{m}b_{i}\mu(B_{j}) +\end{multline*} + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $f\leq g$ +\end_inset + + entonces +\begin_inset Formula $\int f\,d\mu\leq\int g\,d\mu$ +\end_inset + +. +\begin_inset Formula +\[ +\int g\,d\mu=\int f\,d\mu+\int(g-f)d\mu\geq\int f\,d\mu +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\nu:\Sigma\rightarrow[0,+\infty]$ +\end_inset + + dada por +\begin_inset Formula $\nu(E):=\int f\chi_{E}d\mu$ +\end_inset + + es una medida finita. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\nu(E)=\sum_{i=1}^{n}a_{i}\mu(A_{i}\cap E)$ +\end_inset + +, y como las aplicaciones +\begin_inset Formula $\nu_{i}(E)=\mu(E\cap A_{i})$ +\end_inset + + son medidas, +\begin_inset Formula $\nu$ +\end_inset + + también lo es. +\end_layout + +\end_deeper +\begin_layout Standard +Para +\begin_inset Formula $f:\Omega\rightarrow[0,+\infty]$ +\end_inset + + medible, se define +\begin_inset Formula +\[ +\int f\,d\mu:=\sup\left\{ \int s\,d\mu:s\in{\cal S}(\Omega)\land0\leq s\leq f\right\} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Esta definición es compatible con la dada inicialmente para funciones simples. + Para +\begin_inset Formula $E\in\Sigma$ +\end_inset + +, se define +\begin_inset Formula +\[ +\int_{E}f\,d\mu:=\int\chi_{E}f\,d\mu +\] + +\end_inset + + +\begin_inset Newpage pagebreak +\end_inset + + +\end_layout + +\begin_layout Standard +Para +\begin_inset Formula $f,g:\Omega\rightarrow[0,+\infty]$ +\end_inset + + medibles y +\begin_inset Formula $A,B\in\Sigma$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $f\leq g\implies\int f\,d\mu\leq\int g\,d\mu$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A\subseteq B\implies\int_{A}f\,d\mu\leq\int_{B}f\,d\mu$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall\alpha\in[0,+\infty),\int\alpha f\,d\mu=\alpha\int f\,d\mu$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $f|_{A}=0\implies\int_{A}f\,d\mu=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mu(A)=0\implies\int_{A}f\,d\mu=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +La +\series bold +desigualdad de Tchevichev +\series default + afirma que si +\begin_inset Formula $f:\Omega\rightarrow[0,+\infty]$ +\end_inset + + es medible y +\begin_inset Formula $E\in\Sigma$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Si para +\begin_inset Formula $t>0$ +\end_inset + + definimos +\begin_inset Formula $E_{t}:=E\cap\{f>t\}$ +\end_inset + +, entonces +\begin_inset Formula +\[ +t\mu(E_{t})\leq\int_{E_{t}}f\,d\mu\leq\int f\,d\mu +\] + +\end_inset + +Se obtiene de integrar en +\begin_inset Formula $t\chi_{E_{t}}\leq f\chi_{E_{t}}\leq f$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\int_{E}f\,d\mu=0$ +\end_inset + + entonces +\begin_inset Formula $f(\omega)=0$ +\end_inset + + para casi todo +\begin_inset Formula $\omega\in E$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Por lo anterior, +\begin_inset Formula $\forall k\in\mathbb{N},\mu(E_{\frac{1}{k}})=0$ +\end_inset + +, y como +\begin_inset Formula $\{f\neq0\}=\bigcup_{k}E_{\frac{1}{k}}$ +\end_inset + +, este conjunto también tiene medida nula. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $\int_{E}f\,d\mu<+\infty$ +\end_inset + + entonces +\begin_inset Formula $f(\omega)<+\infty$ +\end_inset + + para casi todo +\begin_inset Formula $\omega\in E$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\mu(E_{k})\leq\frac{1}{k}\int f\,d\mu$ +\end_inset + +, luego +\begin_inset Formula $\mu(\{f=+\infty\})=\mu\left(\bigcap_{k}E_{k}\right)=\lim_{n}\mu(E_{k})=0$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $\int_{E}f\,d\mu<+\infty$ +\end_inset + + entonces +\begin_inset Formula $\{f>0\}$ +\end_inset + + es +\begin_inset Formula $\sigma$ +\end_inset + +-finito. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\{f>0\}=\bigcup_{k}E_{\frac{1}{k}}$ +\end_inset + + y cada +\begin_inset Formula $E_{\frac{1}{k}}$ +\end_inset + + tiene medida finita. +\end_layout + +\end_deeper +\begin_layout Standard +El +\series bold +teorema de convergencia monótona de Lebesgue +\series default + afirma que si +\begin_inset Formula $(f_{n}:\Omega\rightarrow[0,+\infty])_{n}$ +\end_inset + + es una sucesión creciente de funciones medibles que converge puntualmente + a +\begin_inset Formula $f:\Omega\rightarrow[0,+\infty]$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\int f\,d\mu=\lim_{n}\int f_{n}d\mu +\] + +\end_inset + + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $\alpha:=\sup\int f_{n}d\mu\in[0,+\infty]$ +\end_inset + +, como +\begin_inset Formula $f_{n}\leq f\forall n$ +\end_inset + + y +\begin_inset Formula $f$ +\end_inset + + es medible por ser límite puntual de medibles, +\begin_inset Formula $\alpha\leq\int f$ +\end_inset + +. + Sea +\begin_inset Formula $s\leq f$ +\end_inset + + una función simple, al ser +\begin_inset Formula $f_{n}$ +\end_inset + + creciente y convergente a +\begin_inset Formula $f$ +\end_inset + +, se tiene que +\begin_inset Formula $(E_{n}:=\{f_{n}\geq s\})_{n}$ +\end_inset + + es creciente con +\begin_inset Formula $\bigcup_{n}E_{n}=\Omega$ +\end_inset + +. + Tenemos que +\begin_inset Formula $\int f_{n}d\mu\geq\int\chi_{E_{n}}f_{n}d\mu\geq\int\chi_{E_{n}}s\,d\mu$ +\end_inset + +. + Tomando límites aquí, vemos que +\begin_inset Formula $\alpha\geq\int\chi_{\Omega}s\,d\mu=\int s\,d\mu$ +\end_inset + +, y tomando supremos entre las funciones simples +\begin_inset Formula $s\leq f$ +\end_inset + +, +\begin_inset Formula $\alpha\geq\int f\,d\mu$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Usando esto podemos probar para +\begin_inset Formula $f,g:\Omega\rightarrow[0,+\infty]$ +\end_inset + + que +\begin_inset Formula $\int(f+g)d\mu=\int f\,d\mu+\int g\,d\mu$ +\end_inset + +, partiendo de la propiedad correspondiente para funciones simples. +\end_layout + +\begin_layout Standard +El +\series bold +teorema de Beppo-Levi +\series default + afirma que la suma de una sucesión de funciones medibles +\begin_inset Formula $f_{n}:\Omega\rightarrow[0,+\infty]$ +\end_inset + + es medible y +\begin_inset Formula +\[ +\int\left(\sum_{n=1}^{\infty}f_{n}\right)d\mu=\sum_{n=1}^{\infty}\int f_{n}d\mu +\] + +\end_inset + + +\series bold +Demostración: +\series default + +\begin_inset Formula $(F_{n}:=\sum_{k=1}^{n}f_{k})_{n}$ +\end_inset + + es una sucesión de funciones medibles, por lo que basta tomar límites en + +\begin_inset Formula $\int F_{n}d\mu=\sum_{k=1}^{n}\int f_{k}d\mu$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una función +\begin_inset Formula $\Omega\rightarrow[0,+\infty]$ +\end_inset + + medible es +\series bold +integrable +\series default + si su integral es finita. + Por ejemplo, si +\begin_inset Formula $\Sigma={\cal P}(\Omega)$ +\end_inset + + y +\begin_inset Formula $\mu(E)=|E|\forall E\in\Sigma$ +\end_inset + +, una función +\begin_inset Formula $f$ +\end_inset + + medible positiva es integrable si y sólo si +\begin_inset Formula $\int f\,d\mu=\sum_{\omega\in\Omega}f(\omega)<+\infty$ +\end_inset + +, y si además +\begin_inset Formula $\Omega=\mathbb{N}$ +\end_inset + +, la sucesión +\begin_inset Formula $f$ +\end_inset + + es integrable si y sólo si la serie +\begin_inset Formula $\sum_{n}f(n)$ +\end_inset + + converge, y la integral coincide con la suma. + En tal caso, el teorema de Beppo-Levi nos dice que si +\begin_inset Formula $a_{n,m}$ +\end_inset + + es una sucesión doble de números positivos, entonces +\begin_inset Formula +\[ +\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}a_{m,n}=\sum_{m=1}^{\infty}\sum_{n=1}^{\infty}a_{m,n} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +El +\series bold +lema de Fatou +\series default + afirma que si +\begin_inset Formula $f_{n}:\Omega\rightarrow[0,+\infty]$ +\end_inset + + es una sucesión de funciones medibles, su límite inferior +\begin_inset Formula $f(\omega):=\liminf_{n}f_{n}(\omega)$ +\end_inset + + es medible y +\begin_inset Formula $\int f\,d\mu\leq\liminf_{n}\int f_{n}d\mu$ +\end_inset + +. + +\series bold +Demostración: +\series default + +\begin_inset Formula $(g_{n}:=\inf_{m\geq n}\{f_{m}(x)\})_{n}$ +\end_inset + + define una sucesión creciente de funciones medibles convergente hacia +\begin_inset Formula $f$ +\end_inset + +, y por la monotonía de la integral y el teorema de convergencia monótona, + +\begin_inset Formula +\[ +\int f\,d\mu=\sup_{n\in\mathbb{N}}\left\{ \int g_{n}d\mu\right\} \leq\sup_{n\in\mathbb{N}}\left\{ \inf_{m\geq n}\left\{ \int f_{m}d\mu\right\} \right\} =\liminf_{n}\int f_{n}d\mu +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $g:\Omega\rightarrow[0,+\infty]$ +\end_inset + + es medible, entonces +\begin_inset Formula $\nu:\Sigma\rightarrow[0,+\infty]$ +\end_inset + + dada por +\begin_inset Formula $\nu(E):=\int_{E}g\,d\mu$ +\end_inset + + es una medida y para +\begin_inset Formula $f:\Omega\rightarrow[0,+\infty]$ +\end_inset + +, +\begin_inset Formula +\[ +\int f\,d\nu=\int fg\,d\mu +\] + +\end_inset + + +\series bold +Demostración: +\series default + +\begin_inset Formula $\nu(\emptyset)=0$ +\end_inset + + y, dada una sucesión +\begin_inset Formula $(A_{n})_{n}$ +\end_inset + + de medibles disjuntos, +\begin_inset Formula $g\chi_{\bigcup_{n}A_{n}}=\sum_{n}g\chi_{A_{n}}$ +\end_inset + + y el teorema de Beppo-Levi nos da que +\begin_inset Formula $\nu(\bigcup_{n}A_{n})=\sum_{n}\nu(A_{n})$ +\end_inset + + y por tanto +\begin_inset Formula $\nu$ +\end_inset + + es una medida. + Sea +\begin_inset Formula $s:=\sum_{i=1}^{m}a_{i}\chi_{E_{i}}\in{\cal S}(\Omega)^{+}$ +\end_inset + +, +\begin_inset Formula +\[ +\int s\,d\nu=\sum_{i=1}^{m}a_{i}\int\chi_{E_{i}}g\,d\mu=\int\left(\sum_{i=1}^{m}a_{i}\chi_{E_{i}}\right)g\,d\mu=\int sg\,d\mu +\] + +\end_inset + +Usando el teorema de la convergencia monótona para tomar límites en una + sucesión creciente de funciones simples que converge a +\begin_inset Formula $f$ +\end_inset + + se completa la prueba. +\end_layout + +\begin_layout Section +Funciones integrables +\end_layout + +\begin_layout Standard +Una función medible +\begin_inset Formula $f:\Omega\rightarrow\mathbb{R}$ +\end_inset + + es integrable si +\begin_inset Formula $\int|f|d\mu<+\infty$ +\end_inset + +, si y sólo si +\begin_inset Formula $f^{+}=\max\{f,0\},f^{-}=\min\{f,0\}:\Omega\rightarrow[-\infty,+\infty]$ +\end_inset + + son integrables, y definimos +\begin_inset Formula +\[ +\int f\,d\mu:=\int f^{+}\,d\mu-\int f^{-}\,d\mu +\] + +\end_inset + +Si solo una de entre +\begin_inset Formula $f^{+}$ +\end_inset + + y +\begin_inset Formula $f^{-}$ +\end_inset + + es integrable, usamos esta misma definición y entonces +\begin_inset Formula $\int f\,d\mu\in[-\infty,+\infty]$ +\end_inset + +. + Una función medible +\begin_inset Formula $f:\Omega\rightarrow\mathbb{C}$ +\end_inset + + es integrable si +\begin_inset Formula $\int|f|d\mu<+\infty$ +\end_inset + +. + Si +\begin_inset Formula $u,v:\Omega\rightarrow\mathbb{R}$ +\end_inset + + son tales que +\begin_inset Formula $f=u+iv$ +\end_inset + +, es claro que +\begin_inset Formula $f$ +\end_inset + + es integrable si y sólo si +\begin_inset Formula $u$ +\end_inset + + y +\begin_inset Formula $v$ +\end_inset + + lo son, y definimos +\begin_inset Formula +\[ +\int f\,d\mu:=\int u\,d\mu+i\int v\,d\mu +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Llamamos +\begin_inset Formula ${\cal L}^{1}(\Omega,\Sigma,\mu)$ +\end_inset + + al conjunto de funciones integrables +\begin_inset Formula $f:\Omega\rightarrow\mathbb{C}$ +\end_inset + +. + Cuando basta indicar uno de los componentes de la terna y se sobreentiende + el resto, podemos escribir +\begin_inset Formula ${\cal L}^{1}(\Omega)$ +\end_inset + +, +\begin_inset Formula ${\cal L}^{1}(\Sigma)$ +\end_inset + + o +\begin_inset Formula ${\cal L}^{1}(\mu)$ +\end_inset + +. + El subconjunto de +\begin_inset Formula ${\cal L}^{1}$ +\end_inset + + formado por las funciones reales se denota +\begin_inset Formula ${\cal L}_{\mathbb{R}}^{1}(\mu)$ +\end_inset + +, y por definición +\begin_inset Formula $f\in{\cal L}^{1}(\mu)\iff|f|\in{\cal L}^{1}(\mu)$ +\end_inset + +. + Propiedades: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula ${\cal L}^{1}(\mu)$ +\end_inset + + es un espacio vectorial complejo y, si lo consideramos como un espacio + vectorial real por el isomorfismo canónico entre +\begin_inset Formula $\mathbb{C}$ +\end_inset + + y +\begin_inset Formula $\mathbb{R}^{2}$ +\end_inset + +, +\begin_inset Formula ${\cal L}_{\mathbb{R}}^{1}$ +\end_inset + + es un subespacio suyo. +\begin_inset Newline newline +\end_inset + +Sean +\begin_inset Formula $f,g\in{\cal L}^{1}(\mu)$ +\end_inset + + y +\begin_inset Formula $\alpha\in\mathbb{C}$ +\end_inset + +, +\begin_inset Formula $\alpha f+g$ +\end_inset + + es medible y +\begin_inset Formula $|\alpha f+g|\leq|\alpha||f|+|g|$ +\end_inset + +, e integrando y aplicando las propiedades de la integral en funciones positivas +, +\begin_inset Formula $\int|\alpha f+g|d\mu\leq\int(|\alpha||f|+|g|)d\mu=|\alpha|\int|f|d\mu+\int|g|d\mu<+\infty$ +\end_inset + +, +\end_layout + +\begin_layout Enumerate +La aplicación +\begin_inset Formula $\nu:{\cal L}^{1}(\mu)\rightarrow\mathbb{C}$ +\end_inset + + dada por +\begin_inset Formula $\nu(f):=\int f\,d\mu$ +\end_inset + + es lineal. +\begin_inset Newline newline +\end_inset + +Sean +\begin_inset Formula $u,v\in{\cal L}_{\mathbb{R}}^{1}(\mu)$ +\end_inset + + y +\begin_inset Formula $\alpha\in\mathbb{R}$ +\end_inset + +: +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Formula $i\int(u+iv)d\mu=i\int ud\mu+i^{2}\int v\,d\mu=\int(-v+iu)d\mu=\int i(u+iv)d\mu$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $h:=u+v\implies h^{+}-h^{-}=u^{+}-u^{-}+v^{+}-v^{-}\implies h^{+}+(u^{-}+v^{-})=(u^{+}+v^{+})+h^{-}\implies\int h^{+}d\mu+\int u^{-}d\mu+\int v^{-}d\mu=\int u^{+}d\mu+\int v^{+}d\mu+\int h^{-}d\mu\implies\int h\,d\mu=\int h^{+}d\mu-\int h^{-}d\mu=\int u^{+}d\mu-\int u^{-}d\mu+\int v^{+}d\mu-\int v^{-}d\mu=\int u\,d\mu+\int v\,d\mu$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\alpha\geq0\implies(\alpha u)^{+}=\alpha u^{+}\land(\alpha u)^{-}=\alpha u^{-}\implies\int\alpha u\,d\mu=\int\alpha u^{+}d\mu-\int\alpha u^{-}d\mu=\alpha\left(\int u^{+}d\mu-\int u^{-}d\mu\right)=\alpha\int u\,d\mu$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\alpha<0\implies(\alpha u)^{+}=(-\alpha)u^{-}\land(\alpha u)^{-}=(-\alpha)u^{+}\implies\int\alpha u\,d\mu=\int(-\alpha)u^{-}d\mu-\int(-\alpha)u^{+}d\mu=(-\alpha)\left(\int u^{-}d\mu-\int u^{+}d\mu\right)=\alpha\int u\,d\mu$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Desigualdad triangular: +\begin_inset Formula +\[ +\forall f\in{\cal L}^{1}(\mu),\left|\int f\,d\mu\right|\leq\int|f|d\mu +\] + +\end_inset + +Si +\begin_inset Formula $\left|\int f\,d\mu\right|=0$ +\end_inset + + es trivial. + Si +\begin_inset Formula $\left|\int f\,d\mu\right|\neq0$ +\end_inset + +, sea +\begin_inset Formula $a:=\frac{\int f\,d\mu}{|\int f\,d\mu|}$ +\end_inset + + y como +\begin_inset Formula $\forall z\in\mathbb{C},|\text{Re}(z)|\leq|z|$ +\end_inset + +, +\begin_inset Formula $|\text{Re}(af)|\leq|af|=|f|$ +\end_inset + +; de aquí que +\begin_inset Formula $\left|\int f\,d\mu\right|=a\int f\,d\mu=\text{Re}\left(\int af\,d\mu\right)=\int\text{Re}(af)d\mu\leq\int|f|d\mu$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una función medible +\begin_inset Formula $f:E\rightarrow\mathbb{C}$ +\end_inset + + definida en +\begin_inset Formula $E\in\Sigma$ +\end_inset + + es +\series bold +integrable sobre +\begin_inset Formula $E$ +\end_inset + + +\series default + si la +\series bold +extensión canónica +\series default + +\begin_inset Formula $\tilde{f}:=f\chi_{E}$ +\end_inset + + es integrable, y entonces se define +\begin_inset Formula $\int_{E}f\,d\mu:=\int\tilde{f}\,d\mu$ +\end_inset + +. + Con esto: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $f:E\rightarrow\mathbb{C}$ +\end_inset + + es una función medible definida en +\begin_inset Formula $E\in\Sigma$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + es integrable sobre +\begin_inset Formula $E$ +\end_inset + + y +\begin_inset Formula $\forall A\in\Sigma\cap{\cal P}(E),\int_{A}f\,d\mu=0$ +\end_inset + + si y sólo si +\begin_inset Formula $f$ +\end_inset + + se anula en casi todo +\begin_inset Formula $\omega\in E$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +En particular, +\begin_inset Formula $\int(\text{Re}(f))^{+}d\mu=\text{Re}\left(\int_{\{\text{Re}(f)\geq0\}}f\,d\mu\right)=0$ +\end_inset + +, y por la desigualdad de Tchevichev, +\begin_inset Formula $\mu\{\text{Re}(f)^{+}>t\}\leq\frac{1}{t}\int(\text{Re}(f))^{+}d\mu=0$ +\end_inset + + para todo +\begin_inset Formula $t>0$ +\end_inset + +, por lo que +\begin_inset Formula $\text{Re}(f)^{+}$ +\end_inset + + se anula en casi todo punto. + Lo mismo sucede con +\begin_inset Formula $(\text{Re}(f))^{-}$ +\end_inset + +, +\begin_inset Formula $(\text{Im}(f))^{+}$ +\end_inset + + e +\begin_inset Formula $(\text{Im}(f))^{-}$ +\end_inset + +. + Por tanto +\begin_inset Formula $f$ +\end_inset + + se anula en casi todo punto. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Para +\begin_inset Formula $A\in\Sigma\cap{\cal P}(E)$ +\end_inset + +, +\begin_inset Formula $(\text{Re}(f))^{+}$ +\end_inset + +, +\begin_inset Formula $(\text{Re}(f))^{-}$ +\end_inset + +, +\begin_inset Formula $(\text{Im}(f))^{+}$ +\end_inset + + e +\begin_inset Formula $(\text{Im}(f))^{-}$ +\end_inset + + se anulan en casi todo +\begin_inset Formula $\omega\in A\subseteq E$ +\end_inset + +, por lo que +\begin_inset Formula $\text{Re}\left(\int f\,d\mu\right)=\int\text{Re}(f)d\mu=\int(\text{Re}(f))^{+}d\mu-\int(\text{Re}(f))^{-}d\mu=0-0=0$ +\end_inset + + y, análogamente, +\begin_inset Formula $\text{Im}\left(\int f\,d\mu\right)=0$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $f,g:E\rightarrow\mathbb{C}$ +\end_inset + + son medibles iguales en casi todo punto y +\begin_inset Formula $f$ +\end_inset + + es integrable sobre +\begin_inset Formula $E$ +\end_inset + + entonces +\begin_inset Formula $g$ +\end_inset + + también lo es y +\begin_inset Formula $\int_{E}f\,d\mu=\int_{E}g\,d\mu$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Basta aplicar el punto anterior a +\begin_inset Formula $f-g$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El +\series bold +teorema de la convergencia dominada +\series default + afirma que, dada una sucesión +\begin_inset Formula $(f_{n}:\Omega\rightarrow\mathbb{C})_{n}$ +\end_inset + + de funciones que converge en casi todo punto, si existe +\begin_inset Formula $g:\Omega\rightarrow\mathbb{C}$ +\end_inset + + integrable con +\begin_inset Formula $|f_{n}|\leq g\forall n\in\mathbb{N}$ +\end_inset + +, entonces la función límite +\begin_inset Formula $f(\omega):=\lim_{n}f_{n}(\omega)$ +\end_inset + +, definida en casi todo punto, es integrable, +\begin_inset Formula +\[ +\lim_{n}\int|f_{n}-f|d\mu=0 +\] + +\end_inset + +y, en particular, +\begin_inset Formula +\[ +\lim_{n}\int f_{n}d\mu=\int f\,d\mu +\] + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Las +\begin_inset Formula $f_{n}$ +\end_inset + + son integrables al estar acotadas por una función integrable. + Te +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +ne +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +mos que +\begin_inset Formula $|f-f_{n}|\leq|f|+|f_{n}|\leq2g$ +\end_inset + + y, teniendo en cuenta que +\begin_inset Formula $\limsup_{n}|f-f_{n}|=0$ +\end_inset + + y aplicando el lema de Fatou a la sucesión de medibles positivas +\begin_inset Formula $2g-|f-f_{n}|$ +\end_inset + +, queda que +\begin_inset Formula $\int2g\,d\mu=\int\liminf_{n}(2g-|f-f_{n}|)d\mu\leq\liminf_{n}\int(2g-|f-f_{n}|)d\mu=\int2g\,d\mu-\limsup_{n}\int|f-f_{n}|$ +\end_inset + +. + Restando la cantidad finita +\begin_inset Formula $\int2g\,d\mu$ +\end_inset + + a ambos miembros de la desigualdad, +\begin_inset Formula $0\leq-\limsup_{n}\int|f-f_{n}|\leq0$ +\end_inset + +, con lo que +\begin_inset Formula $\lim_{n}\int|f-f_{n}|=0$ +\end_inset + + y +\begin_inset Formula $f$ +\end_inset + + es integrable porque +\begin_inset Formula $|f|\leq|f_{n}|+|f-f_{n}|$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{sloppypar} +\end_layout + +\end_inset + +Como +\series bold +teorema +\series default +, dada una sucesión de funciones integrables +\begin_inset Formula $(f_{n}:\Omega\rightarrow\mathbb{C})_{n}$ +\end_inset + + con +\begin_inset Formula $\sum_{n=1}^{\infty}\int|f_{n}|d\mu<+\infty$ +\end_inset + +, la serie +\begin_inset Formula $\sum_{n=1}^{\infty}f_{n}(\omega)$ +\end_inset + + converge absolutamente en casi todo punto y su suma es integrable con +\begin_inset Formula $\int\left(\sum_{n=1}^{\infty}f_{n}\right)d\mu=\sum_{n=1}^{\infty}\int f_{n}d\mu$ +\end_inset + +. + +\series bold +Demostración: +\series default + Por el teorema de la convergencia monótona, +\begin_inset Formula $G:=\sum_{n}|f_{n}|$ +\end_inset + + converge en casi todo punto y es integrable, y +\begin_inset Formula $S:=\sum_{n}f_{n}$ +\end_inset + + también, y como para +\begin_inset Formula $(g_{m}:=\sum_{n=0}^{m}f_{n})_{m}$ +\end_inset + + se tiene +\begin_inset Formula $|g_{m}|\leq G$ +\end_inset + +, podemos aplicar el teorema de la convergencia dominada para obtener el + resultado. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{sloppypar} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Relación entre las integrales de Riemann y Lebesgue +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, las funciones integrables Riemann son integrables respecto a la medida + de Lebesgue y las integrales coinciden. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $f:[a,b]\rightarrow\mathbb{R}$ +\end_inset + + integrable Riemann, y por tanto acotada, existe una sucesión +\begin_inset Formula $(P_{k})_{k}$ +\end_inset + + de particiones en +\begin_inset Formula $[a,b]$ +\end_inset + + con +\begin_inset Formula $\Vert P_{n}\Vert\rightarrow0$ +\end_inset + + y +\begin_inset Formula $\int_{[a,b]}f(\vec{x})d\vec{x}=\lim_{k}s(f,P_{k})$ +\end_inset + +, y si +\begin_inset Formula $\{N_{k1},\dots,N_{km_{k}}\}$ +\end_inset + + es el conjunto de subrectángulos de +\begin_inset Formula $P_{k}$ +\end_inset + +, la sucesión +\begin_inset Formula $(s_{k})_{k}$ +\end_inset + + de funciones simples +\begin_inset Formula $s_{k}(t):=\sum_{i=1}^{m_{k}}\chi_{N_{ki}}\inf_{x\in N_{ki}}\{f(x)\}$ +\end_inset + + está acotada por la función constante +\begin_inset Formula $M:=\chi_{[a,b]}\sup_{x\in[a,b]}\{|f(x)|\}$ +\end_inset + + y converge a +\begin_inset Formula $f$ +\end_inset + + en todos sus puntos de continuidad y por tanto en casi todo punto. + Entonces, por el teorema de la convergencia dominada, +\begin_inset Formula $f$ +\end_inset + + es integrable Lebesgue en +\begin_inset Formula $[a,b]$ +\end_inset + + y +\begin_inset Formula $\int_{[a,b]}f\,d\lambda_{n}=\int_{[a,b]}f(\vec{x})d\vec{x}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una función +\begin_inset Formula $f:S\rightarrow\mathbb{R}$ +\end_inset + + definida en un intervalo +\begin_inset Formula $n$ +\end_inset + +-dimensional +\begin_inset Formula $S\subseteq\mathbb{R}^{n}$ +\end_inset + + se dice +\series bold +localmente integrable Riemann +\series default + si es integrable Riemann sobre cada intervalo compacto +\begin_inset Formula $I\subseteq S$ +\end_inset + +. + Definimos entonces la +\series bold +integral impropia +\series default + de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $S$ +\end_inset + + como +\begin_inset Formula +\[ +\int_{S}f(x)dx:=\lim_{I\nearrow S}\int_{I}f(x)dx +\] + +\end_inset + +y si existe, decimos que +\series bold +converge +\series default +. + La integral impropia +\begin_inset Formula $\int_{S}f(x)dx$ +\end_inset + + es +\series bold +absolutamente convergente +\series default + si +\begin_inset Formula $\int_{S}|f(x)|dx$ +\end_inset + + es convergente. +\end_layout + +\begin_layout Standard +Para +\begin_inset Formula $f:S\rightarrow\mathbb{R}$ +\end_inset + + localmente integrable Riemann sobre un intervalo +\begin_inset Formula $n$ +\end_inset + +-dimensional +\begin_inset Formula $S\subseteq\mathbb{R}^{n}$ +\end_inset + +, +\begin_inset Formula $\int_{S}f(x)dx$ +\end_inset + + es absolutamente convergente si y sólo si +\begin_inset Formula $f$ +\end_inset + + es integrable Lebesgue sobre +\begin_inset Formula $S$ +\end_inset + + y +\begin_inset Formula $\int_{S}f\,d\lambda_{n}=\int_{S}f(x)dx$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $f$ +\end_inset + + es integrable Riemann, y por tanto Lebesgue, sobre todo intervalo compacto + +\begin_inset Formula $I\subseteq S$ +\end_inset + +, y dada una sucesión +\begin_inset Formula $(I_{k})_{k}$ +\end_inset + + de intervalos compactos en +\begin_inset Formula $S$ +\end_inset + + que tiende a +\begin_inset Formula $S$ +\end_inset + +, +\begin_inset Formula $(f_{k}:=\chi_{I_{k}}f)$ +\end_inset + + es una sucesión de funciones que tiende a +\begin_inset Formula $f$ +\end_inset + + tal que +\begin_inset Formula $|f_{k}|<|f|\forall k\in\mathbb{N}$ +\end_inset + +, y por la convergencia dominada tenemos que +\begin_inset Formula $\int_{S}f\,d\lambda_{n}=\lim_{k}\int f_{k}d\lambda_{n}=\lim_{k}\int_{I_{k}}f\,dx=\int_{S}f(x)dx$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{sloppypar} +\end_layout + +\end_inset + +Si +\begin_inset Formula $f$ +\end_inset + + es integrable Riemann en un intervalo compacto +\begin_inset Formula $I\subseteq S$ +\end_inset + +, también es acotada en ese intervalo y por tanto +\begin_inset Formula $f^{+}$ +\end_inset + + y +\begin_inset Formula $f^{-}$ +\end_inset + + también lo son. + Si además +\begin_inset Formula $f$ +\end_inset + + es integrable Lebesgue sobre +\begin_inset Formula $S$ +\end_inset + +, por la convergencia monótona tenemos que si +\begin_inset Formula $(I_{k})_{k}$ +\end_inset + + es una sucesión creciente de in +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +ter +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +va +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +los compactos que tiende a +\begin_inset Formula $S$ +\end_inset + +, +\begin_inset Formula $\int_{S}f^{+}(x)dx=\lim_{I\nearrow S}\int_{I}f^{+}(x)dx=\lim_{k}\int_{I_{k}}f^{+}(x)dx=\lim_{k}\int_{I_{k}}f^{+}(x)d\lambda_{n}=\int\lim_{k}\chi_{I_{k}}f^{+}(x)d\lambda_{n}=\int_{S}f^{+}(x)d\lambda_{n}<+\infty$ +\end_inset + +, y análogamente +\begin_inset Formula $\int_{S}f^{-}(x)dx<+\infty$ +\end_inset + +, por lo que +\begin_inset Formula $\int_{S}|f(x)|dx=\int_{S}f^{+}(x)dx+\int_{S}f^{-}(x)dx<+\infty$ +\end_inset + +. +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{sloppypar} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Llamamos +\series bold +soporte +\series default + de una función +\begin_inset Formula $g:\Omega\rightarrow\mathbb{C}$ +\end_inset + + a +\begin_inset Formula $\text{sop}(g):=\overline{\{g\neq0\}}$ +\end_inset + +, y +\begin_inset Formula ${\cal C}_{0}(\Omega)$ +\end_inset + + al conjunto de funciones continuas +\begin_inset Formula $g:\Omega\rightarrow\mathbb{C}$ +\end_inset + + con soporte compacto. + Como +\series bold +teorema +\series default +, +\begin_inset Formula ${\cal C}_{0}(\mathbb{R}^{n})$ +\end_inset + + es denso en +\begin_inset Formula ${\cal L}^{1}(\mathbb{R}^{n})$ +\end_inset + +. + +\series bold +Demostración: +\series default + Como las funciones simples medibles son densas en +\begin_inset Formula ${\cal L}^{1}(\mathbb{R}^{n})$ +\end_inset + +, basta ver que la función característica de cualquier conjunto medible + Lebesgue es límite de una sucesión de funciones en +\begin_inset Formula ${\cal C}_{0}(\mathbb{R}^{n})$ +\end_inset + +. + Para ello, dado un medible +\begin_inset Formula $E$ +\end_inset + + y +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, existen +\begin_inset Formula $K$ +\end_inset + + compacto y +\begin_inset Formula $A$ +\end_inset + + abierto con +\begin_inset Formula $K\subseteq E\subseteq A$ +\end_inset + + y +\begin_inset Formula $\lambda(A\backslash K)<\frac{\varepsilon}{2}$ +\end_inset + +, y si +\begin_inset Formula $f\in{\cal C}_{0}(\mathbb{R}^{n})$ +\end_inset + + cumple que +\begin_inset Formula $K\subseteq\text{sop}(f)\subseteq A$ +\end_inset + + y +\begin_inset Formula $\chi_{K}\leq f\leq1$ +\end_inset + +, entonces +\begin_inset Formula $\Vert f-\chi_{E}\Vert_{\infty}\leq2\chi_{A\backslash K}$ +\end_inset + + y +\begin_inset Formula $\Vert f-\chi_{E}\Vert_{\infty}\leq2\lambda(A\backslash K)<\varepsilon$ +\end_inset + +. + Para ver que existe +\begin_inset Formula $f$ +\end_inset + +, fijado un cerrado +\begin_inset Formula $F\subseteq\mathbb{R}^{n}$ +\end_inset + +, +\begin_inset Formula $d(x,F)$ +\end_inset + + es continua, y como +\begin_inset Formula $\delta:=\min\{d(x,K):x\notin A\}>0$ +\end_inset + +, +\begin_inset Formula $A_{0}:=\{x:d(x,K)<\frac{\delta}{2}\}$ +\end_inset + + es un abierto acotado con +\begin_inset Formula $K\subseteq A_{0}\subseteq\overline{A_{0}}\subseteq A$ +\end_inset + +. + Tomando +\begin_inset Formula $F_{0}:=\mathbb{R}^{n}\backslash A_{0}=\{x:d(x,K)\geq\frac{\delta}{2}\}$ +\end_inset + +, podemos definir +\begin_inset Formula $f_{0}(y):=\frac{d(y,F_{0})}{1+d(y,F_{0})}$ +\end_inset + +, que cumple +\begin_inset Formula $0\leq f_{0}\leq1$ +\end_inset + +, +\begin_inset Formula $f_{0}(x)=0\forall x\in F_{0}\supseteq\mathbb{R}^{n}\backslash A$ +\end_inset + + y, como para +\begin_inset Formula $y\in K$ +\end_inset + +, +\begin_inset Formula $d(y,F_{0})\geq\frac{\delta}{2}$ +\end_inset + +, +\begin_inset Formula $f_{0}(y)\geq k_{0}:=\frac{\frac{\delta}{2}}{1+\frac{\delta}{2}}$ +\end_inset + + y la función continua +\begin_inset Formula $f(x):=\min\{1,\frac{f_{0}(x)}{k_{0}}\}$ +\end_inset + + tiene soporte compacto en +\begin_inset Formula $\overline{A_{0}}\subseteq A$ +\end_inset + + y +\begin_inset Formula $\chi_{K}\leq f\leq1$ +\end_inset + +. +\end_layout + +\begin_layout Section +Integrales dependientes de un parámetro +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default + sean +\begin_inset Formula $(\Omega,\Sigma,\mu)$ +\end_inset + + un espacio de medida, +\begin_inset Formula $(X,d)$ +\end_inset + + un espacio métrico y +\begin_inset Formula $f:X\times\Omega\rightarrow\mathbb{C}$ +\end_inset + + una función tal que: +\end_layout + +\begin_layout Enumerate +Para casi todo +\begin_inset Formula $\omega\in\Omega$ +\end_inset + + +\begin_inset Formula $f^{\omega}(x):=f(x,\omega)$ +\end_inset + + es continua. +\end_layout + +\begin_layout Enumerate +Para todo +\begin_inset Formula $x\in X$ +\end_inset + + +\begin_inset Formula $f_{x}(\omega):=f(x,\omega)$ +\end_inset + + es medible. +\end_layout + +\begin_layout Enumerate +Existe +\begin_inset Formula $g:\Omega\rightarrow[0,+\infty)$ +\end_inset + + tal que para todo +\begin_inset Formula $x\in X$ +\end_inset + +, para casi todo +\begin_inset Formula $\omega\in\Omega$ +\end_inset + +, +\begin_inset Formula $|f(x,\omega)|\leq g(\omega)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Entonces para todo +\begin_inset Formula $x\in X$ +\end_inset + + +\begin_inset Formula $f_{x}$ +\end_inset + + es integrable y +\begin_inset Formula $F(x):=\int f(x,\omega)d\mu(\omega)$ +\end_inset + + es continua. +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Como +\begin_inset Formula $(X,d)$ +\end_inset + + es un espacio métrico, la continuidad de las funciones en +\begin_inset Formula $X$ +\end_inset + + se puede caracterizar mediante sucesiones, por lo que basta tomar una sucesión + +\begin_inset Formula $(x_{n})_{n}$ +\end_inset + + de elementos de +\begin_inset Formula $X$ +\end_inset + + que converge a un cierto +\begin_inset Formula $x$ +\end_inset + + arbitrario y probar que +\begin_inset Formula +\[ +\left(F(x_{n})=\int f(x_{n},\omega)d\mu(\omega)\right)_{n} +\] + +\end_inset + + converge a +\begin_inset Formula $F(x)$ +\end_inset + +. + Sea +\begin_inset Formula $N\in\Sigma$ +\end_inset + + de medida cero tal que +\begin_inset Formula $f^{\omega}$ +\end_inset + + es continua para +\begin_inset Formula $\omega\notin N$ +\end_inset + + y por tanto +\begin_inset Formula $f^{\omega}(x_{n})=f(x_{n},\omega)\rightarrow f(x,\omega)$ +\end_inset + +. + Podemos tomar una sucesión +\begin_inset Formula $(A_{n})_{n}$ +\end_inset + + de conjuntos de medida nula tales que para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + y +\begin_inset Formula $\omega\notin A_{n}$ +\end_inset + +, +\begin_inset Formula $|f(x_{n},\omega)|\leq g(\omega)$ +\end_inset + +. + Entonces +\begin_inset Formula $N\cup\bigcup_{n}A_{n}$ +\end_inset + + tiene medida nula y fuera de él, como la sucesión +\begin_inset Formula $(f_{x_{n}})_{n}$ +\end_inset + + converge puntualmente y +\begin_inset Formula $|f_{x_{n}}|\leq g\forall n\in\mathbb{N}$ +\end_inset + +, podemos aplicar el teorema de la convergencia dominada y +\begin_inset Formula +\[ +\lim_{n}F(x_{n})=\lim_{n}\int f(x_{n},\omega)d\mu(\omega)=\int\lim_{n}f(x_{n},\omega)d\mu(\omega)=\int f(x,\omega)d\mu(\omega)=F(x) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Otro +\series bold +teorema +\series default + nos dice que si +\begin_inset Formula $I\subseteq\mathbb{R}$ +\end_inset + + es un intervalo y +\begin_inset Formula $f:I\times\Omega\rightarrow\mathbb{C}$ +\end_inset + + cumple que: +\end_layout + +\begin_layout Enumerate +Para casi todo +\begin_inset Formula $\omega\in\Omega$ +\end_inset + + +\begin_inset Formula $f^{\omega}(x):=f(x,\omega)$ +\end_inset + + es derivable ( +\begin_inset Formula $\exists\frac{\partial f}{\partial x}(x,\omega)$ +\end_inset + +). +\end_layout + +\begin_layout Enumerate +Para todo +\begin_inset Formula $x\in I$ +\end_inset + + +\begin_inset Formula $f_{x}(\omega):=f(x,\omega)$ +\end_inset + + es medible, siendo integrable para algún +\begin_inset Formula $x_{0}\in I$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Existe +\begin_inset Formula $g:\Omega\rightarrow[0,+\infty)$ +\end_inset + + integrable tal que para casi todo +\begin_inset Formula $\omega\in\Omega$ +\end_inset + + para todo +\begin_inset Formula $x\in I$ +\end_inset + + +\begin_inset Formula $\left|\frac{\partial f}{\partial x}(x,\omega)\right|\leq g(\omega)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Entonces para todo +\begin_inset Formula $x\in I$ +\end_inset + +, +\begin_inset Formula $f_{x}$ +\end_inset + + es integrable, +\begin_inset Formula $F(x):=\int f(x,\omega)d\mu(\omega)$ +\end_inset + + es derivable y +\begin_inset Formula $F'(x)=\int\frac{\partial f}{\partial x}(x,\omega)d\mu(\omega)$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $A\in\Sigma$ +\end_inset + + de medida nula tal que +\begin_inset Formula +\[ +\left|\frac{\partial f}{\partial x}(s,\omega)\right|\leq g(\omega) +\] + +\end_inset + + para +\begin_inset Formula $\omega\notin A$ +\end_inset + + para todo +\begin_inset Formula $s\in I$ +\end_inset + +, por el teorema del incremento finito, si +\begin_inset Formula $\omega\notin A$ +\end_inset + +, +\begin_inset Formula +\[ +|f(x,\omega)-f(x_{0},\omega)|=\left|\frac{\partial f}{\partial x}(\xi_{x,\omega},\omega)(x-x_{0})\right|\leq g(\omega)|x-x_{0}| +\] + +\end_inset + +Entonces +\begin_inset Formula $f_{x}$ +\end_inset + + se diferencia de +\begin_inset Formula $f_{x_{0}}$ +\end_inset + + en un múltiplo de una función integrable +\begin_inset Formula $g$ +\end_inset + +, por lo que también es integrable. + Para ver que la integral es derivable, basta tomar una sucesión +\begin_inset Formula $(x_{n})_{n}$ +\end_inset + + de elementos de +\begin_inset Formula $X$ +\end_inset + + que converge a un cierto +\begin_inset Formula $x$ +\end_inset + + arbitrario y probar que existe +\begin_inset Formula $\lim_{n}\frac{F(x_{n})-F(x)}{x_{n}-x}$ +\end_inset + +. + Sea +\begin_inset Formula $N\in\Sigma$ +\end_inset + + de medida nula tal que para +\begin_inset Formula $\omega\notin N$ +\end_inset + +, +\begin_inset Formula $f^{\omega}$ +\end_inset + + es derivable y por tanto +\begin_inset Formula +\[ +\frac{f(x_{n},\omega)-f(x,\omega)}{x_{n}-x}\rightarrow\frac{\partial f}{\partial x}(x,\omega) +\] + +\end_inset + +Entonces +\begin_inset Formula $N\cup A$ +\end_inset + + tiene medida nula y fuera de él, la sucesión +\begin_inset Formula +\[ +\left(h_{n,\omega}:=\frac{f(x_{n},\omega)-f(x,\omega)}{x_{n}-x}\right)_{n} +\] + +\end_inset + + cumple que +\begin_inset Formula +\[ +|h_{n,\omega}|=\left|\frac{f(x_{n},\omega)-f(x,\omega)}{x_{n}-x}\right|=\left|\frac{\partial f}{\partial x}f(\eta_{x,x_{n},\omega},\omega)\right|\leq g(\omega) +\] + +\end_inset + + y, como además converge puntualmente, podemos aplicar el teorema de la + convergencia dominada y +\begin_inset Formula +\begin{eqnarray*} +F'(x) & = & \lim_{n}\frac{F(x_{n})-F(x)}{x_{n}-x}=\lim_{n}\frac{\int f(x_{n},\omega)d\mu(\omega)-\int f(x_{n},\omega)d\mu(\omega)}{x_{n}-x}\\ + & = & \lim_{n}\int\frac{f(x_{n},\omega)-f(x,\omega)}{x_{n}-x}d\mu(\omega)=\int\left(\lim_{n}\frac{f(x_{n},\omega)-f(x,\omega)}{x_{n}-x}\right)d\mu(\omega)\\ + & = & \int\frac{\partial f}{\partial x}(x,\omega)d\mu(\omega) +\end{eqnarray*} + +\end_inset + + +\end_layout + +\end_body +\end_document |
