diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-24 18:54:42 +0100 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-24 18:54:42 +0100 |
| commit | 6afdfbec3b81821c378df28b5f7d1918f2885e94 (patch) | |
| tree | 5b140fda6a421d27c6b1c424f3df6382ad7206d8 /ga | |
| parent | 6e1cd63230fcec50b8a62420dc15463b5a90f38f (diff) | |
Errata
Translación -> traslación
Diffstat (limited to 'ga')
| -rw-r--r-- | ga/n4.lyx | 66 |
1 files changed, 33 insertions, 33 deletions
@@ -108,7 +108,7 @@ Notación multiplicativa . Definimos -\begin_inset Formula $a^{0}\coloneqq 1$ +\begin_inset Formula $a^{0}\coloneqq1$ \end_inset y, para @@ -120,7 +120,7 @@ Notación multiplicativa \end_inset y -\begin_inset Formula $a^{-n}\coloneqq (a^{n})^{-1}=(a^{-1})^{n}$ +\begin_inset Formula $a^{-n}\coloneqq(a^{n})^{-1}=(a^{-1})^{n}$ \end_inset . @@ -147,7 +147,7 @@ Notación aditiva . Definimos -\begin_inset Formula $0a\coloneqq 0$ +\begin_inset Formula $0a\coloneqq0$ \end_inset y, para @@ -253,7 +253,7 @@ grupo cíclico \end_inset a -\begin_inset Formula $C_{n}\coloneqq \{1,a,a^{2},\dots,a^{n-1}\}$ +\begin_inset Formula $C_{n}\coloneqq\{1,a,a^{2},\dots,a^{n-1}\}$ \end_inset con la operación @@ -331,7 +331,7 @@ El grupo diédrico infinito \series default es -\begin_inset Formula $D_{\infty}\coloneqq \{a^{n},a^{n}b\}_{n\in\mathbb{Z}}$ +\begin_inset Formula $D_{\infty}\coloneqq\{a^{n},a^{n}b\}_{n\in\mathbb{Z}}$ \end_inset con @@ -491,7 +491,7 @@ propios subgrupo trivial \series default es -\begin_inset Formula $1\coloneqq \{1\}$ +\begin_inset Formula $1\coloneqq\{1\}$ \end_inset . @@ -577,7 +577,7 @@ Dado un cuerpo \end_inset , -\begin_inset Formula ${\cal SL}_{n}(K)\coloneqq {\cal SO}_{n}(K)$ +\begin_inset Formula ${\cal SL}_{n}(K)\coloneqq{\cal SO}_{n}(K)$ \end_inset es un subgrupo de @@ -650,7 +650,7 @@ Si \end_inset , -\begin_inset Formula $\langle X\rangle\coloneqq \{x_{1}^{n_{1}}\cdots x_{m}^{n_{m}}\}_{m\in\mathbb{N},x_{i}\in X,n_{i}\in\mathbb{Z}}$ +\begin_inset Formula $\langle X\rangle\coloneqq\{x_{1}^{n_{1}}\cdots x_{m}^{n_{m}}\}_{m\in\mathbb{N},x_{i}\in X,n_{i}\in\mathbb{Z}}$ \end_inset es el @@ -675,7 +675,7 @@ subgrupo generado \end_inset , decimos que -\begin_inset Formula $\langle g\rangle\coloneqq \langle X\rangle$ +\begin_inset Formula $\langle g\rangle\coloneqq\langle X\rangle$ \end_inset es el @@ -745,7 +745,7 @@ Si \end_inset es una familia de grupos, -\begin_inset Formula $\bigoplus_{i\in I}G_{i}\coloneqq \{(g_{i})_{i\in I}\in\prod_{i\in I}G_{i}\mid \{i\in I\mid g_{i}\ne1\}\text{ es finito}\}$ +\begin_inset Formula $\bigoplus_{i\in I}G_{i}\coloneqq\{(g_{i})_{i\in I}\in\prod_{i\in I}G_{i}\mid\{i\in I\mid g_{i}\ne1\}\text{ es finito}\}$ \end_inset es un subgrupo de @@ -773,7 +773,7 @@ centralizador \end_inset es el subgrupo -\begin_inset Formula $C_{G}(x)\coloneqq \{g\in G\mid gx=xg\}$ +\begin_inset Formula $C_{G}(x)\coloneqq\{g\in G\mid gx=xg\}$ \end_inset , y el @@ -785,7 +785,7 @@ centro \end_inset es el subgrupo abeliano -\begin_inset Formula $Z(G)\coloneqq \{g\in G\mid \forall x\in G,gx=xg\}=\bigcap_{x\in X}C_{G}(x)$ +\begin_inset Formula $Z(G)\coloneqq\{g\in G\mid\forall x\in G,gx=xg\}=\bigcap_{x\in X}C_{G}(x)$ \end_inset . @@ -896,7 +896,7 @@ clase lateral módulo \end_inset a -\begin_inset Formula $[G:H]\coloneqq |G/H|$ +\begin_inset Formula $[G:H]\coloneqq|G/H|$ \end_inset . @@ -953,7 +953,7 @@ Dados \end_inset , llamamos -\begin_inset Formula $AB\coloneqq \{ab\}_{a\in A,b\in B}$ +\begin_inset Formula $AB\coloneqq\{ab\}_{a\in A,b\in B}$ \end_inset , y es fácil ver que esta operación es asociativa. @@ -1910,7 +1910,7 @@ Dados dos grupos \end_inset dada por -\begin_inset Formula $f(a)\coloneqq 1_{H}$ +\begin_inset Formula $f(a)\coloneqq1_{H}$ \end_inset es el @@ -1986,11 +1986,11 @@ Dado \end_inset dada por -\begin_inset Formula $f(r)\coloneqq \alpha^{r}$ +\begin_inset Formula $f(r)\coloneqq\alpha^{r}$ \end_inset es un isomorfismo de grupos con inversa -\begin_inset Formula $f^{-1}(s)\coloneqq \log_{\alpha}s$ +\begin_inset Formula $f^{-1}(s)\coloneqq\log_{\alpha}s$ \end_inset . @@ -2257,7 +2257,7 @@ orden \end_inset , -\begin_inset Formula $|a|\coloneqq |\langle a\rangle|$ +\begin_inset Formula $|a|\coloneqq|\langle a\rangle|$ \end_inset , y escribimos @@ -2365,11 +2365,11 @@ status open \begin_layout Plain Layout En efecto, sean -\begin_inset Formula $m\coloneqq |a|$ +\begin_inset Formula $m\coloneqq|a|$ \end_inset y -\begin_inset Formula $d\coloneqq \text{mcd}\{m,n\}$ +\begin_inset Formula $d\coloneqq\text{mcd}\{m,n\}$ \end_inset , entonces @@ -2558,7 +2558,7 @@ status open \end_inset Si -\begin_inset Formula $d\coloneqq \text{mcd}\{n,m\}>1$ +\begin_inset Formula $d\coloneqq\text{mcd}\{n,m\}>1$ \end_inset , entonces @@ -2783,7 +2783,7 @@ conjugado \end_inset a -\begin_inset Formula $X^{a}\coloneqq \{x^{a}\}_{x\in X}$ +\begin_inset Formula $X^{a}\coloneqq\{x^{a}\}_{x\in X}$ \end_inset . @@ -2872,7 +2872,7 @@ clases de conjugación \end_inset , y llamamos -\begin_inset Formula $a^{G}\coloneqq [a]=\{a^{g}\}_{g\in G}$ +\begin_inset Formula $a^{G}\coloneqq[a]=\{a^{g}\}_{g\in G}$ \end_inset . @@ -2957,7 +2957,7 @@ Si \end_inset a -\begin_inset Formula $G\cdot x\coloneqq \{g\cdot x\}_{g\in G}$ +\begin_inset Formula $G\cdot x\coloneqq\{g\cdot x\}_{g\in G}$ \end_inset y @@ -2973,7 +2973,7 @@ estabilizador \end_inset a -\begin_inset Formula $\text{Estab}_{G}(x)\coloneqq \{g\in G\mid g\cdot x=x\}$ +\begin_inset Formula $\text{Estab}_{G}(x)\coloneqq\{g\in G\mid g\cdot x=x\}$ \end_inset . @@ -3002,7 +3002,7 @@ estabilizador \end_inset a -\begin_inset Formula $x\cdot G\coloneqq \{x\cdot g\}_{g\in G}$ +\begin_inset Formula $x\cdot G\coloneqq\{x\cdot g\}_{g\in G}$ \end_inset y estabilizador de @@ -3014,7 +3014,7 @@ estabilizador \end_inset a -\begin_inset Formula $\text{Estab}_{G}(x)\coloneqq \{g\in G\mid x\cdot g=x\}$ +\begin_inset Formula $\text{Estab}_{G}(x)\coloneqq\{g\in G\mid x\cdot g=x\}$ \end_inset . @@ -3028,7 +3028,7 @@ estabilizador \begin_layout Enumerate Llamamos \series bold -acción por translación a la izquierda +acción por traslación a la izquierda \series default a la acción por la izquierda de \begin_inset Formula $G$ @@ -3170,7 +3170,7 @@ normalizador \end_inset es -\begin_inset Formula $N_{G}(H)\coloneqq \text{Estab}_{G}(H)=\{g\in G\mid H^{g}=H\}$ +\begin_inset Formula $N_{G}(H)\coloneqq\text{Estab}_{G}(H)=\{g\in G\mid H^{g}=H\}$ \end_inset , el mayor subgrupo de @@ -3198,7 +3198,7 @@ Si \end_inset dada por -\begin_inset Formula $\sigma\cdot(x_{1},\dots,x_{n})\coloneqq (x_{\sigma(1)},\dots,x_{\sigma(n)})$ +\begin_inset Formula $\sigma\cdot(x_{1},\dots,x_{n})\coloneqq(x_{\sigma(1)},\dots,x_{\sigma(n)})$ \end_inset es una acción por la izquierda. @@ -3317,7 +3317,7 @@ status open \begin_layout Plain Layout Sea -\begin_inset Formula $H\coloneqq \text{Estab}_{G}(x)$ +\begin_inset Formula $H\coloneqq\text{Estab}_{G}(x)$ \end_inset , @@ -3398,7 +3398,7 @@ Si la acción es por la izquierda, . Si es por la derecha, -\begin_inset Formula $\text{Estab}_{G}(x)^{g}=\{g^{-1}hg\mid x\cdot h=x\}=\{p\in G\mid x\cdot gpg^{-1}=x\}=\{p\in G\mid (x\cdot g)\cdot p=x\cdot g\}$ +\begin_inset Formula $\text{Estab}_{G}(x)^{g}=\{g^{-1}hg\mid x\cdot h=x\}=\{p\in G\mid x\cdot gpg^{-1}=x\}=\{p\in G\mid(x\cdot g)\cdot p=x\cdot g\}$ \end_inset . @@ -3606,7 +3606,7 @@ status open Demostración: \series default Sea -\begin_inset Formula $X\coloneqq \{(g_{1},\dots,g_{p})\in G^{p}\mid g_{1}\cdots g_{p}=1\}$ +\begin_inset Formula $X\coloneqq\{(g_{1},\dots,g_{p})\in G^{p}\mid g_{1}\cdots g_{p}=1\}$ \end_inset , |
