diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-05-26 12:20:46 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-05-26 12:20:46 +0200 |
| commit | f40f39b715dbf9ea40b64464944d6c4406473745 (patch) | |
| tree | 8afd089918e71f2fdadecd0374f92ed7c7045462 /ga | |
| parent | d5d6cf629bd4014b9b3660ab48fb84115172a464 (diff) | |
Grupos
Diffstat (limited to 'ga')
| -rw-r--r-- | ga/n.lyx | 14 | ||||
| -rw-r--r-- | ga/n4.lyx | 3819 |
2 files changed, 3833 insertions, 0 deletions
@@ -179,5 +179,19 @@ filename "n3.lyx" \end_layout +\begin_layout Chapter +Grupos +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n4.lyx" + +\end_inset + + +\end_layout + \end_body \end_document diff --git a/ga/n4.lyx b/ga/n4.lyx new file mode 100644 index 0000000..d17a1ad --- /dev/null +++ b/ga/n4.lyx @@ -0,0 +1,3819 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\begin_modules +algorithm2e +\end_modules +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Podemos hablar de un grupo +\begin_inset Formula $G$ +\end_inset + + con: +\end_layout + +\begin_layout Itemize + +\series bold +Notación multiplicativa +\series default +: Llamamos a la operación +\begin_inset Formula $\cdot$ +\end_inset + +, aunque podemos omitirla. + Llamamos 1 al neutro y +\begin_inset Formula $a^{-1}$ +\end_inset + + al inverso de +\begin_inset Formula $a\in G$ +\end_inset + +. + Definimos +\begin_inset Formula $a^{0}:=1$ +\end_inset + + y, para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $a^{n+1}:=aa^{n}$ +\end_inset + + y +\begin_inset Formula $a^{-n}:=(a^{n})^{-1}=(a^{-1})^{n}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize + +\series bold +Notación aditiva +\series default +: Solo para grupos abelianos. + Llamamos a la operación +\begin_inset Formula $+$ +\end_inset + +. + Llamamos 0 al neutro y +\begin_inset Formula $-a$ +\end_inset + + al inverso de +\begin_inset Formula $a\in G$ +\end_inset + +. + Definimos +\begin_inset Formula $0a:=0$ +\end_inset + + y, para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $(n+1)a=a+na$ +\end_inset + + y +\begin_inset Formula $(-n)a=-(na)=n(-a)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Llamamos +\series bold +orden +\series default + de +\begin_inset Formula $G$ +\end_inset + + al cardinal del conjunto. + Algunos grupos: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + es un anillo, +\begin_inset Formula $(A,+)$ +\end_inset + + es su +\series bold +grupo aditivo +\series default +, que es abeliano, y +\begin_inset Formula $(A^{*},\cdot)$ +\end_inset + + es su +\series bold +grupo de unidades +\series default +, que es abeliano cuando el anillo es conmutativo. + Por ejemplo, si +\begin_inset Formula $K$ +\end_inset + + es un cuerpo, +\begin_inset Formula $({\cal GL}_{n}(K)={\cal M}_{n}(K)^{*},\cdot)$ +\end_inset + + es un grupo. +\end_layout + +\begin_layout Enumerate +El +\series bold +grupo simétrico +\series default + de un conjunto +\begin_inset Formula $X$ +\end_inset + + es el conjunto +\begin_inset Formula $S_{X}$ +\end_inset + + de las biyecciones +\begin_inset Formula $X\to X$ +\end_inset + + con la composición. +\end_layout + +\begin_layout Enumerate +Dada una familia +\begin_inset Formula $(G_{i})_{i\in I}$ +\end_inset + + de grupos, +\begin_inset Formula $\prod_{i\in I}G_{i}$ +\end_inset + + es un grupo con el producto componente a componente. +\end_layout + +\begin_layout Enumerate +Llamamos +\series bold +grupo cíclico +\series default + de orden +\begin_inset Formula $n\in\mathbb{N}^{*}$ +\end_inset + + a +\begin_inset Formula $C_{n}:=\{1,a,a^{2},\dots,a^{n-1}\}$ +\end_inset + + con la operación +\begin_inset Formula $a^{i}a^{j}:=a^{[i+j]_{n}}$ +\end_inset + +, donde +\begin_inset Formula $[x]_{n}$ +\end_inset + + es el resto de +\begin_inset Formula $x$ +\end_inset + + entre +\begin_inset Formula $n$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $n\in\mathbb{N}^{*}$ +\end_inset + +, llamamos +\series bold +grupo diédrico +\series default + de orden +\begin_inset Formula $2n$ +\end_inset + + a +\begin_inset Formula +\[ +D_{n}:=\{1,a,a^{2},\dots,a^{n-1},b,ab,a^{2}b,\dots,a^{n-1}b\} +\] + +\end_inset + +con la operación +\begin_inset Formula $(a^{i_{1}}b^{j_{1}})(a^{i_{2}}b^{j_{2}}):=a^{[i_{1}+(-1)^{j_{1}}i_{2}]_{n}}b^{[j_{1}+j_{2}]_{2}}$ +\end_inset + +. + Intuitivamente los elementos de +\begin_inset Formula $D_{n}$ +\end_inset + + son los movimientos del plano que dejan fijos a un polígono regular de + +\begin_inset Formula $n$ +\end_inset + + lados, donde +\begin_inset Formula $a$ +\end_inset + + es una rotación de ángulo +\begin_inset Formula $\frac{2\pi}{n}$ +\end_inset + + y +\begin_inset Formula $b$ +\end_inset + + es una cierta simetría. +\end_layout + +\begin_layout Enumerate +El +\series bold +grupo diédrico infinito +\series default + es +\begin_inset Formula $D_{\infty}:=\{a^{n},a^{n}b\}_{n\in\mathbb{Z}}$ +\end_inset + + con +\begin_inset Formula +\[ +(a^{i_{1}}b^{j_{1}})(a^{i_{2}}b^{j_{2}}):=a^{i_{1}+(-1)^{j_{1}}i_{2}}b^{[j_{1}+j_{2}]_{2}}. +\] + +\end_inset + + +\end_layout + +\begin_layout Section +Subgrupos +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $G$ +\end_inset + + es un grupo, +\begin_inset Formula $S\subseteq G$ +\end_inset + + es un subgrupo de +\begin_inset Formula $G$ +\end_inset + + si y sólo si +\begin_inset Formula $1\in S\land\forall a,b\in S,(ab,a^{-1}\in S)$ +\end_inset + +, si y sólo si +\begin_inset Formula $S\neq\emptyset\land\forall a,b\in S,(ab,a^{-1}\in S)$ +\end_inset + +, si y sólo si +\begin_inset Formula $1\in S\land\forall a,b\in S,ab^{-1}\in S$ +\end_inset + +, si y sólo si +\begin_inset Formula $S\neq\emptyset\land\forall a,b\in S,ab^{-1}\in S$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies2\implies3,4\implies5]$ +\end_inset + + Obvio. +\end_layout + +\begin_layout Description +\begin_inset Formula $5\implies1]$ +\end_inset + + Sea +\begin_inset Formula $a\in S$ +\end_inset + +, entonces +\begin_inset Formula $aa^{-1}=1\in S$ +\end_inset + +. + Entonces, dados +\begin_inset Formula $a,b\in S$ +\end_inset + +, +\begin_inset Formula $b^{-1}=1b^{-1}\in S$ +\end_inset + +, luego el opuesto es una operación interna, y +\begin_inset Formula $a(b^{-1})^{-1}=ab\in S$ +\end_inset + +, luego el producto también. + Por tanto +\begin_inset Formula $S$ +\end_inset + + es un grupo con el mismo 1. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $S$ +\end_inset + + es un subgrupo de +\begin_inset Formula $G$ +\end_inset + + escribimos +\begin_inset Formula $S\leq G$ +\end_inset + +. + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $G$ +\end_inset + + es un grupo, +\begin_inset Formula $G$ +\end_inset + + es el +\series bold +subgrupo impropio +\series default + de +\begin_inset Formula $G$ +\end_inset + +, y el resto de subgrupos son +\series bold +propios +\series default +. + El +\series bold +subgrupo trivial +\series default + es +\begin_inset Formula $1:=\{1\}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $(A,+)$ +\end_inset + + es el grupo aditivo de un anillo y +\begin_inset Formula $B$ +\end_inset + + es un subanillo de +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $(B,+)\leq(A,+)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Los subgrupos de +\begin_inset Formula $(\mathbb{Z},+)$ +\end_inset + + son de la forma +\begin_inset Formula $n\mathbb{Z}$ +\end_inset + + con +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula $S$ +\end_inset + + es un subgrupo de +\begin_inset Formula $\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $nx\in S$ +\end_inset + + para todo +\begin_inset Formula $n\in\mathbb{Z}$ +\end_inset + + y +\begin_inset Formula $x\in S$ +\end_inset + +, luego +\begin_inset Formula $S$ +\end_inset + + es un ideal de +\begin_inset Formula $\mathbb{Z}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Dado un cuerpo +\begin_inset Formula $K$ +\end_inset + +, +\begin_inset Formula ${\cal SL}_{n}(K):={\cal SO}_{n}(K)$ +\end_inset + + es un subgrupo de +\begin_inset Formula $({\cal GL}_{n}(K),\cdot)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + es un anillo, el conjunto +\begin_inset Formula $\text{Aut}(A)$ +\end_inset + + de los automorfismos de anillos de +\begin_inset Formula $A$ +\end_inset + + es un subgrupo de +\begin_inset Formula $S_{A}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $X$ +\end_inset + + es un espacio topológico, el conjunto de los homeomorfismos +\begin_inset Formula $X\to X$ +\end_inset + + es un subgrupo de +\begin_inset Formula $S_{X}$ +\end_inset + +. + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $X$ +\end_inset + + es un espacio métrico, el conjunto de las +\series bold +isometrías +\series default + (biyecciones que conservan distancias) +\begin_inset Formula $X\to X$ +\end_inset + + es un subgrupo de +\begin_inset Formula $S_{X}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $X\subseteq G$ +\end_inset + +, +\begin_inset Formula $\langle X\rangle:=\{x_{1}^{n_{1}}\cdots x_{m}^{n_{m}}\}_{m\in\mathbb{N},n_{1},\dots,n_{m}\in\mathbb{Z}}$ +\end_inset + + es el +\series bold +subgrupo generado +\series default + por +\begin_inset Formula $X$ +\end_inset + +, y es el menor subgrupo de +\begin_inset Formula $G$ +\end_inset + + que contiene a +\begin_inset Formula $X$ +\end_inset + +. + Si +\begin_inset Formula $X=\{g\}$ +\end_inset + +, decimos que +\begin_inset Formula $\langle g\rangle:=\langle X\rangle$ +\end_inset + + es el +\series bold +grupo cíclico +\series default + generado por +\begin_inset Formula $g$ +\end_inset + +. + Un grupo +\begin_inset Formula $G$ +\end_inset + + es +\series bold +cíclico +\series default + si existe +\begin_inset Formula $g\in G$ +\end_inset + + tal que +\begin_inset Formula $G=\langle g\rangle$ +\end_inset + +, en cuyo caso +\begin_inset Formula $g$ +\end_inset + + es un +\series bold +generador +\series default + de +\begin_inset Formula $G$ +\end_inset + +. + Por ejemplo, +\begin_inset Formula $(\mathbb{Z},+)$ +\end_inset + + y +\begin_inset Formula $(\mathbb{Z}_{n},+)$ +\end_inset + + son grupos cíclicos generados por 1, y +\begin_inset Formula $C_{n}$ +\end_inset + + y +\begin_inset Formula $C_{\infty}$ +\end_inset + + son cíclicos generados por +\begin_inset Formula $a$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $(G_{i})_{i\in I}$ +\end_inset + + es una familia de grupos, +\begin_inset Formula $\bigoplus_{i\in I}G_{i}:=\{(g_{i})_{i\in I}\in\prod_{i\in I}G_{i}:\{i\in I:g_{i}\ne1\}\text{ es finito}\}$ +\end_inset + + es un subgrupo de +\begin_inset Formula $\prod_{i\in I}G_{i}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Dado un grupo +\begin_inset Formula $G$ +\end_inset + +, el +\series bold +centralizador +\series default + de +\begin_inset Formula $x$ +\end_inset + + en +\begin_inset Formula $G$ +\end_inset + + es el subgrupo +\begin_inset Formula $C_{G}(x):=\{g\in G:gx=xg\}$ +\end_inset + +, y el +\series bold +centro +\series default + de +\begin_inset Formula $G$ +\end_inset + + es el subgrupo abeliano +\begin_inset Formula $Z(G):=\{g\in G:\forall x\in G,gx=xg\}=\bigcap_{x\in X}C_{G}(x)$ +\end_inset + +. + Si +\begin_inset Formula $G$ +\end_inset + + es abeliano, +\begin_inset Formula $Z(G)=G$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $H\leq G$ +\end_inset + +, definimos la relación de equivalencia en +\begin_inset Formula $G$ +\end_inset + + +\begin_inset Formula +\[ +a\equiv_{i}b\bmod H:\iff a^{-1}b\in H; +\] + +\end_inset + +la clase de equivalencia de +\begin_inset Formula $a\in G$ +\end_inset + +, llamada +\series bold +clase lateral módulo +\begin_inset Formula $H$ +\end_inset + + por la izquierda +\series default +, es +\begin_inset Formula $aH=\{ah\}_{h\in H}$ +\end_inset + +, y llamamos +\begin_inset Formula $G/H:=G/(\equiv_{i}\bmod H)$ +\end_inset + +. + Definimos también la relación de equivalencia en +\begin_inset Formula $G$ +\end_inset + + +\begin_inset Formula +\[ +a\equiv_{d}b\bmod H:\iff ab^{-1}\in H; +\] + +\end_inset + +la clase de equivalencia de +\begin_inset Formula $a\in G$ +\end_inset + +, llamada +\series bold +clase lateral módulo +\begin_inset Formula $H$ +\end_inset + + por la derecha +\series default +, es +\begin_inset Formula $Ha=\{ah\}_{h\in H}$ +\end_inset + +, y llamamos +\begin_inset Formula $H\backslash G:=G/(\equiv_{d}\bmod H)$ +\end_inset + +. + La función +\begin_inset Formula $\sigma:G/H\to H\backslash G$ +\end_inset + + dada por +\begin_inset Formula $\sigma(aH):=Ha^{-1}$ +\end_inset + + es biyectiva, luego +\begin_inset Formula $|G/H|=|H\backslash G|$ +\end_inset + +, y llamamos +\series bold +índice +\series default + de +\begin_inset Formula $H$ +\end_inset + + en +\begin_inset Formula $G$ +\end_inset + + a +\begin_inset Formula $[G:H]:=|G/H|$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Lagrange: +\series default + Si +\begin_inset Formula $G$ +\end_inset + + es un grupo finito y +\begin_inset Formula $H\leq G$ +\end_inset + +, +\begin_inset Formula $|G|=|H|[G:H]$ +\end_inset + +. + En particular, si +\begin_inset Formula $|G|$ +\end_inset + + es primo, los únicos subgrupos de +\begin_inset Formula $G$ +\end_inset + + son 1 y +\begin_inset Formula $G$ +\end_inset + +, +\begin_inset Formula $G$ +\end_inset + + es cíclico y cualquier elemento suyo distinto de 1 es generador de +\begin_inset Formula $G$ +\end_inset + +. +\end_layout + +\begin_layout Section +Subgrupos normales +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $A,B\subseteq G$ +\end_inset + +, llamamos +\begin_inset Formula $AB:=\{ab\}_{a\in A,b\in B}$ +\end_inset + +, y es fácil ver que esta operación es asociativa. +\end_layout + +\begin_layout Standard +Un subgrupo +\begin_inset Formula $N\leq G$ +\end_inset + + es +\series bold +normal +\series default + si +\begin_inset Formula $N\backslash G=G/N$ +\end_inset + +, si y sólo si +\begin_inset Formula $\forall x\in G,Nx=xN$ +\end_inset + +, si y sólo si +\begin_inset Formula $\forall x\in G,x^{-1}Nx=N$ +\end_inset + +, si y sólo si +\begin_inset Formula $\forall x\in G,Nx\subseteq xN$ +\end_inset + +, si y sólo si +\begin_inset Formula $\forall x\in G,xN\subseteq Nx$ +\end_inset + +, si y sólo si +\begin_inset Formula $\forall a,b\in G,aNbN=abN$ +\end_inset + +, si y sólo si +\begin_inset Formula $\forall a,b\in G,NaNb=Nab$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\iff2\iff3\implies4,5]$ +\end_inset + + Obvio. +\end_layout + +\begin_layout Description +\begin_inset Formula $4\implies2]$ +\end_inset + + Si para +\begin_inset Formula $x\in G$ +\end_inset + + es +\begin_inset Formula $Nx\subseteq xN$ +\end_inset + + entonces +\begin_inset Formula $x^{-1}Nx\subseteq N$ +\end_inset + +, y por tanto para +\begin_inset Formula $x\in G$ +\end_inset + + es +\begin_inset Formula $xNx^{-1}\subseteq N$ +\end_inset + +, pero entonces +\begin_inset Formula $xNx^{-1}x=xN\subseteq Nx$ +\end_inset + +, luego +\begin_inset Formula $xN=Nx$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $5\implies2]$ +\end_inset + + Por simetría con lo anterior. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies6]$ +\end_inset + + Como +\begin_inset Formula $N$ +\end_inset + + es un subgrupo, +\begin_inset Formula $NN=N$ +\end_inset + +, y entonces, para +\begin_inset Formula $a,b\in G$ +\end_inset + +, +\begin_inset Formula $aNbN=abNN=abN$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $6\implies4]$ +\end_inset + + Para +\begin_inset Formula $x\in G$ +\end_inset + +, +\begin_inset Formula $x^{-1}Nx\subseteq x^{-1}NxN=x^{-1}xNN=N$ +\end_inset + +, luego +\begin_inset Formula $xx^{-1}Nx=Nx\subseteq xN$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies7\implies5]$ +\end_inset + + Por simetría con los dos anteriores. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $N\leq G$ +\end_inset + + es normal, escribimos +\begin_inset Formula $N\unlhd G$ +\end_inset + +, y si además es propio, escribimos +\begin_inset Formula $N\lhd G$ +\end_inset + +. + Si +\begin_inset Formula $N\unlhd G$ +\end_inset + +, +\begin_inset Formula $G/N$ +\end_inset + + es un grupo, el +\series bold +grupo cociente +\series default + de +\begin_inset Formula $G$ +\end_inset + + +\series bold +módulo +\series default + +\begin_inset Formula $N$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $H\leq G$ +\end_inset + + está contenido en +\begin_inset Formula $Z(G)$ +\end_inset + +, +\begin_inset Formula $H\unlhd G$ +\end_inset + +. + En particular, en un grupo abeliano, todo subgrupo es normal. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $I$ +\end_inset + + es un ideal de +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $(A,+)/I$ +\end_inset + + es el grupo aditivo del conjunto cociente. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $H\leq G$ +\end_inset + + tiene índice 2, es normal. +\end_layout + +\begin_deeper +\begin_layout Standard +Como las clases por la izquierda módulo +\begin_inset Formula $H$ +\end_inset + + forman una partición de +\begin_inset Formula $G$ +\end_inset + +, solo hay dos y una es +\begin_inset Formula $H$ +\end_inset + +, entonces +\begin_inset Formula $G/H=\{H,G\setminus H\}$ +\end_inset + +, y del mismo modo +\begin_inset Formula $H\backslash G=\{H,G\setminus H\}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula ${\cal SL}_{n}(\mathbb{R})\unlhd{\cal GL}_{n}(\mathbb{R})$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula $a,b\in{\cal GL}_{n}(\mathbb{R})$ +\end_inset + +, +\begin_inset Formula $\det(ba)=\det(ab)$ +\end_inset + +, luego dos elementos son de la misma clase izquierda o derecha módulo +\begin_inset Formula ${\cal SL}_{n}(\mathbb{R})$ +\end_inset + + si y sólo si tienen igual determinante. +\end_layout + +\end_deeper +\begin_layout Standard + +\series bold +Teorema de la correspondencia: +\series default + Si +\begin_inset Formula $N\unlhd G$ +\end_inset + +, +\begin_inset Formula $H\mapsto H/N$ +\end_inset + + es una biyección entre el conjunto de los subgrupos de +\begin_inset Formula $G$ +\end_inset + + que contienen a +\begin_inset Formula $N$ +\end_inset + + y el de los subgrupos de +\begin_inset Formula $G/N$ +\end_inset + + que conserva las inclusiones y la normalidad. + +\series bold +Demostración: +\series default + Basta seguir la prueba del teorema de correspondencia de anillos. + Para la normalidad, si +\begin_inset Formula $H$ +\end_inset + + es normal, para +\begin_inset Formula $gN\in G/N$ +\end_inset + + y +\begin_inset Formula $hN\in H/N$ +\end_inset + +, como +\begin_inset Formula $g^{-1}hg\in H$ +\end_inset + +, +\begin_inset Formula $(gN)^{-1}hNgN=g^{-1}NhNgN=g^{-1}hgN\in H/N$ +\end_inset + +, y +\begin_inset Formula $H/N\unlhd G/N$ +\end_inset + +. + Si +\begin_inset Formula $H/N$ +\end_inset + + es normal, para +\begin_inset Formula $g\in G$ +\end_inset + + y +\begin_inset Formula $h\in H$ +\end_inset + +, como +\begin_inset Formula $g^{-1}NhNgN=g^{-1}hgN\in H/N$ +\end_inset + +, +\begin_inset Formula $g^{-1}hg\in H$ +\end_inset + +, y +\begin_inset Formula $H\unlhd G$ +\end_inset + +. +\end_layout + +\begin_layout Section +Homomorfismos +\end_layout + +\begin_layout Standard +Una función +\begin_inset Formula $f:G\to H$ +\end_inset + + entre dos grupos es un +\series bold +homomorfismo de grupos +\series default + si +\begin_inset Formula $\forall a,b\in G,f(ab)=f(a)f(b)$ +\end_inset + +. + Si +\begin_inset Formula $G=H$ +\end_inset + +, es un +\series bold +endomorfismo +\series default +. + Si es biyectiva, es un +\series bold +isomorfismo +\series default +, y si además +\begin_inset Formula $G=H$ +\end_inset + +, es un +\series bold +automorfismo +\series default +. + Si +\begin_inset Formula $G$ +\end_inset + + es un grupo, el conjunto +\begin_inset Formula $\text{Aut}(G)$ +\end_inset + + de los automorfismos de anillos de +\begin_inset Formula $G$ +\end_inset + + es un subgrupo de +\begin_inset Formula $S_{G}$ +\end_inset + +. + Llamamos +\begin_inset Formula $\ker f:=f^{-1}(1)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Propiedades: Si +\begin_inset Formula $G\overset{f}{\to}H\overset{g}{\to}K$ +\end_inset + + son homomorfismos de grupos, +\begin_inset Formula $G'\leq G$ +\end_inset + +, +\begin_inset Formula $H'\leq H$ +\end_inset + +, +\begin_inset Formula $a,a_{1},\dots,a_{n}\in G$ +\end_inset + + y +\begin_inset Formula $m\in\mathbb{Z}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $f(1)=1$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $f(1)f(1)=f(1\cdot1)=f(1)=f(1)1\implies f(1)=1$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $f(a)^{-1}=f(a^{-1})$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $f(a)f(a^{-1})=f(aa^{-1})=f(1)=1$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $f(a_{1}\cdots a_{n})=f(a_{1})\cdots f(a_{n})$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Para +\begin_inset Formula $n=0$ +\end_inset + +, +\begin_inset Formula $f(1)=1$ +\end_inset + +. + Supuesto esto probado para un cierto +\begin_inset Formula $n\geq0$ +\end_inset + +, +\begin_inset Formula $f(a_{1}\cdots a_{n+1})=f(a_{1}\cdots a_{n})f(a_{n+1})=f(a_{1})\cdots f(a_{n})f(a_{n+1})$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $f(a^{m})=f(a)^{m}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Para +\begin_inset Formula $m=0$ +\end_inset + +, +\begin_inset Formula $f(a^{0})=1=f(a)^{0}$ +\end_inset + +. + Supuesto esto probado para un cierto +\begin_inset Formula $m\geq0$ +\end_inset + +, +\begin_inset Formula $f(a^{m+1})=f(aa^{m})=f(a)f(a^{m})=f(a)f(a)^{m}=f(a)^{m+1}$ +\end_inset + +. + Para +\begin_inset Formula $m<0$ +\end_inset + +, +\begin_inset Formula $f(a^{m})=f((a^{-m})^{-1})=f(a^{-m})^{-1}=(f(a)^{-m})^{-1}=f(a)^{m}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $f$ +\end_inset + + es un isomorfismo, +\begin_inset Formula $f^{-1}:H\to G$ +\end_inset + + también. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $x,y\in H$ +\end_inset + + con +\begin_inset Formula $f(a)=x$ +\end_inset + + y +\begin_inset Formula $f(b)=y$ +\end_inset + +, entonces +\begin_inset Formula $f^{-1}(xy)=f^{-1}(f(a)f(b))=f^{-1}(f(ab))=ab=f^{-1}(x)f^{-1}(y)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $g\circ f:G\to K$ +\end_inset + + es un homomorfismo de grupos. +\end_layout + +\begin_deeper +\begin_layout Standard +Para +\begin_inset Formula $a,b\in G$ +\end_inset + +, +\begin_inset Formula $g(f(ab))=g(f(a)f(b))=g(f(a))g(f(b))$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $f^{-1}(H')\leq G$ +\end_inset + +. + Si además +\begin_inset Formula $H'\unlhd H$ +\end_inset + +, +\begin_inset Formula $f^{-1}(H')\unlhd G$ +\end_inset + +. + En particular, +\begin_inset Formula $\ker f\unlhd G$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Claramente +\begin_inset Formula $1\in f^{-1}(H')$ +\end_inset + +. + Además, si +\begin_inset Formula $a,b\in f^{-1}(H')$ +\end_inset + +, +\begin_inset Formula +\[ +ab^{-1}=f^{-1}(f(ab^{-1}))=f^{-1}(f(a)f(b)^{-1}), +\] + +\end_inset + + y como +\begin_inset Formula $f(a),f(b)\in H'$ +\end_inset + +, +\begin_inset Formula $f(ab^{-1})$ +\end_inset + + también. + Si +\begin_inset Formula $H'$ +\end_inset + + es normal, sean +\begin_inset Formula $g\in G$ +\end_inset + + y +\begin_inset Formula $s\in f^{-1}(H')$ +\end_inset + +, entonces +\begin_inset Formula $f(g^{-1}sg)=f(g)^{-1}f(s)f(g)\in H'$ +\end_inset + +, luego +\begin_inset Formula $g^{-1}sg\in f^{-1}(H')$ +\end_inset + +. +\begin_inset Newpage pagebreak +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $f$ +\end_inset + + es inyectivo si y sólo si +\begin_inset Formula $\ker f=1$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Como +\begin_inset Formula $f(1)=1$ +\end_inset + +, +\begin_inset Formula $1\in\ker f$ +\end_inset + +, y si +\begin_inset Formula $b\in\ker f$ +\end_inset + +, +\begin_inset Formula $f(b)=1=f(1)$ +\end_inset + + y por tanto +\begin_inset Formula $b=1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $a,b\in G$ +\end_inset + + cumplen +\begin_inset Formula $f(a)=f(b)$ +\end_inset + +, entonces +\begin_inset Formula $f(ab^{-1})=f(a)f(b)^{-1}=1$ +\end_inset + + y por tanto +\begin_inset Formula $ab^{-1}=1$ +\end_inset + + y +\begin_inset Formula $a=b$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $f(G')\leq H$ +\end_inset + +. + En particular +\begin_inset Formula $f(G)\leq H$ +\end_inset + +. + Si además +\begin_inset Formula $G'\unlhd G$ +\end_inset + + y +\begin_inset Formula $f$ +\end_inset + + es suprayectiva, entonces +\begin_inset Formula $f(G')\unlhd H$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Claramente +\begin_inset Formula $1\in f(G')$ +\end_inset + +. + Además, si +\begin_inset Formula $x,y\in f(G')$ +\end_inset + +, sean +\begin_inset Formula $a,b\in G'$ +\end_inset + + con +\begin_inset Formula $f(a)=x$ +\end_inset + + y +\begin_inset Formula $f(b)=y$ +\end_inset + +, entonces +\begin_inset Formula $xy^{-1}=f(a)f(b)^{-1}=f(ab^{-1})\in f(G')$ +\end_inset + +. + Si +\begin_inset Formula $G'$ +\end_inset + + es normal, sean +\begin_inset Formula $h\in H$ +\end_inset + +, +\begin_inset Formula $t\in f(G')$ +\end_inset + +, +\begin_inset Formula $g\in G$ +\end_inset + + con +\begin_inset Formula $f(g)=h$ +\end_inset + + y +\begin_inset Formula $s\in G'$ +\end_inset + + con +\begin_inset Formula $f(s)=t$ +\end_inset + +, entonces +\begin_inset Formula $h^{-1}th=f(g)^{-1}f(s)f(g)=f(g^{-1}sg)\in f(G')$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Algunos homomorfismos: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $H\leq G$ +\end_inset + +, la inclusión +\begin_inset Formula $H\to G$ +\end_inset + + es un homomorfismo inyectivo. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $N\unlhd G$ +\end_inset + +, la +\series bold +proyección canónica +\series default + +\begin_inset Formula $\pi:G\to G/N$ +\end_inset + + dada por +\begin_inset Formula $\pi(x):=xN$ +\end_inset + + es un homomorfismo suprayectivo con núcleo +\begin_inset Formula $N$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Dados dos grupos +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $H$ +\end_inset + +, +\begin_inset Formula $f:G\to H$ +\end_inset + + dada por +\begin_inset Formula $f(a):=1_{H}$ +\end_inset + + es el +\series bold +homomorfismo trivial +\series default + de +\begin_inset Formula $G$ +\end_inset + + en +\begin_inset Formula $H$ +\end_inset + +, con núcleo +\begin_inset Formula $G$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Dado +\begin_inset Formula $n\in\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula $f:\mathbb{Z}\to\mathbb{Z}$ +\end_inset + + dada por +\begin_inset Formula $f(n):=an$ +\end_inset + + es un endomorfismo de +\begin_inset Formula $(\mathbb{Z},+)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $G$ +\end_inset + + es un grupo y +\begin_inset Formula $x\in G$ +\end_inset + +, +\begin_inset Formula $f:\mathbb{Z}\to G$ +\end_inset + + dada por +\begin_inset Formula $f(n):=x^{n}$ +\end_inset + + es un homomorfismo, esto es, +\begin_inset Formula $x^{n+m}=x^{n}x^{m}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Dado +\begin_inset Formula $\alpha\in\mathbb{R}^{+}:=\mathbb{R}^{>0}$ +\end_inset + +, +\begin_inset Formula $f:(\mathbb{R},+)\to(\mathbb{R}^{+},\cdot)$ +\end_inset + + dada por +\begin_inset Formula $f(r):=\alpha^{r}$ +\end_inset + + es un isomorfismo de grupos con inversa +\begin_inset Formula $f^{-1}(s):=\log_{\alpha}s$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teoremas de isomorfía para grupos: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $f:G\to H$ +\end_inset + + es un homomorfismo de grupos, existe un único isomorfismo +\begin_inset Formula $\tilde{f}:G/\ker f\to\text{Im}f$ +\end_inset + + tal que +\begin_inset Formula $f=i\circ\tilde{f}\circ p$ +\end_inset + +, donde +\begin_inset Formula $i:\text{Im}f\to H$ +\end_inset + + es la inclusión y +\begin_inset Formula $p:G\to G/\ker f$ +\end_inset + + es la proyección canónica. + En particular, +\begin_inset Formula +\[ +\frac{G}{\ker f}\cong\text{Im}f. +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $N,H\unlhd G$ +\end_inset + + con +\begin_inset Formula $N\subseteq H$ +\end_inset + +, +\begin_inset Formula $H/N\unlhd G/N$ +\end_inset + + y +\begin_inset Formula +\[ +\frac{G/N}{H/N}\cong G/H. +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $H\leq G$ +\end_inset + + y +\begin_inset Formula $N\unlhd G$ +\end_inset + +, entonces +\begin_inset Formula $NH\leq G$ +\end_inset + +, +\begin_inset Formula $N\cap H\unlhd G$ +\end_inset + + y +\begin_inset Formula +\[ +\frac{H}{N\cap H}\cong\frac{NH}{N}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Newpage newpage +\end_inset + + +\end_layout + +\begin_layout Standard +Así: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $f:G\to H$ +\end_inset + + es un homomorfismo de grupos, +\begin_inset Formula $K\mapsto f(K)$ +\end_inset + + es una biyección entre los subgrupos de +\begin_inset Formula $G$ +\end_inset + + que contienen a +\begin_inset Formula $\ker f$ +\end_inset + + y los subgrupos de +\begin_inset Formula $\text{Im}f$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbb{C}^{*}/{\cal C}(0,1)\cong\mathbb{R}^{+}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +La norma +\begin_inset Formula $|\cdot|:\mathbb{C}^{*}\to\mathbb{R}^{*}$ +\end_inset + + es un homomorfismo con núcleo la circunferencia unidad en +\begin_inset Formula $\mathbb{C}$ +\end_inset + + y con imagen +\begin_inset Formula $\mathbb{R}^{+}$ +\end_inset + +, y aplicamos el primer teorema de isomorfía. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula ${\cal GL}_{n}(\mathbb{R})/{\cal SL}_{n}(\mathbb{R})\cong\mathbb{R}^{*}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +El determinante +\begin_inset Formula $\det:{\cal GL}_{n}(\mathbb{R})\to\mathbb{R}$ +\end_inset + + es un homomorfismo con núcleo +\begin_inset Formula ${\cal SL}_{n}(\mathbb{R})$ +\end_inset + + e imagen +\begin_inset Formula $\mathbb{R}^{*}$ +\end_inset + +, y aplicamos el primer teorema de isomorfía. +\end_layout + +\end_deeper +\begin_layout Standard +En general, +\begin_inset Formula $H,K\leq G$ +\end_inset + + no implica +\begin_inset Formula $HK\leq G$ +\end_inset + +. + En efecto, si +\begin_inset Formula $\sigma,\tau\in S_{3}$ +\end_inset + + vienen dadas por +\begin_inset Formula $\sigma(1)=2$ +\end_inset + +, +\begin_inset Formula $\sigma(2)=1$ +\end_inset + +, +\begin_inset Formula $\sigma(3)=3$ +\end_inset + +, +\begin_inset Formula $\tau(1)=3$ +\end_inset + +, +\begin_inset Formula $\tau(2)=2$ +\end_inset + + y +\begin_inset Formula $\tau(3)=1$ +\end_inset + +, entonces +\begin_inset Formula $\langle\sigma\rangle=\{1,\sigma\}$ +\end_inset + + y +\begin_inset Formula $\langle\tau\rangle=\{1,\tau\}$ +\end_inset + +, luego +\begin_inset Formula $\langle\sigma\rangle\langle\tau\rangle=\{1,\sigma,\tau,\sigma\tau\}$ +\end_inset + +, pero +\begin_inset Formula $|\langle\sigma\rangle\langle\tau\rangle|=4\nmid6$ +\end_inset + +, luego esto no es un grupo. +\end_layout + +\begin_layout Section +Orden de un elemento +\end_layout + +\begin_layout Standard +Llamamos +\series bold +orden +\series default + de +\begin_inset Formula $a\in G$ +\end_inset + + al orden de +\begin_inset Formula $\langle a\rangle$ +\end_inset + +, +\begin_inset Formula $|a|:=|\langle a\rangle|$ +\end_inset + +, y escribimos +\begin_inset Formula $\langle a\rangle_{n}$ +\end_inset + + para referirnos a +\begin_inset Formula $\langle a\rangle$ +\end_inset + + indicando que tiene orden +\begin_inset Formula $n$ +\end_inset + +. + El orden de +\begin_inset Formula $a$ +\end_inset + + divide al de +\begin_inset Formula $G$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $f:\mathbb{Z}\to G$ +\end_inset + + el homomorfismo dado por +\begin_inset Formula $f(n):=a^{n}$ +\end_inset + +, +\begin_inset Formula $\ker f=n\mathbb{Z}$ +\end_inset + + para algún +\begin_inset Formula $n\geq0$ +\end_inset + +. + Si +\begin_inset Formula $n=0$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + es inyectivo y +\begin_inset Formula $(\mathbb{Z},+)\cong\langle a\rangle$ +\end_inset + +, y en otro caso +\begin_inset Formula $\mathbb{Z}_{n}\cong\langle a\rangle$ +\end_inset + +, con lo que +\begin_inset Formula $n=|a|$ +\end_inset + + y +\begin_inset Formula $a^{n}=1\iff|a|\mid n$ +\end_inset + +. + De aquí, +\begin_inset Formula $a^{k}=a^{l}\iff k\equiv l\bmod n$ +\end_inset + +, con lo que +\begin_inset Formula $|a|$ +\end_inset + + es el menor entero positivo con +\begin_inset Formula $a^{n}=1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $a$ +\end_inset + + tiene orden finito y +\begin_inset Formula $n>0$ +\end_inset + +, +\begin_inset Formula +\[ +|a^{n}|=\frac{|a|}{\text{mcd}\{|a|,n\}}. +\] + +\end_inset + +En efecto, sean +\begin_inset Formula $m:=|a|$ +\end_inset + + y +\begin_inset Formula $d:=\text{mcd}\{m,n\}$ +\end_inset + +, entonces +\begin_inset Formula $\text{mcd}\{\frac{m}{d},\frac{n}{d}\}=1$ +\end_inset + + y +\begin_inset Formula $(a^{n})^{k}=a^{nk}=1\iff m\mid nk\iff\frac{m}{d}\mid\frac{nk}{d}=\frac{n}{d}k\iff\frac{m}{d}\mid k$ +\end_inset + +, luego +\begin_inset Formula $|a^{n}|=\frac{m}{d}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $G=\langle a\rangle$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $G$ +\end_inset + + tiene orden infinito, +\begin_inset Formula $G\cong(\mathbb{Z},+)\cong C_{\infty}$ +\end_inset + + y los subgrupos de +\begin_inset Formula $G$ +\end_inset + + son los +\begin_inset Formula $\langle a^{n}\rangle$ +\end_inset + + con +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $|G|=n$ +\end_inset + +, +\begin_inset Formula $G\cong(\mathbb{Z}_{n},+)\cong C_{n}$ +\end_inset + + y los subgrupos de +\begin_inset Formula $G$ +\end_inset + + son exactamente uno de orden +\begin_inset Formula $d$ +\end_inset + + por cada +\begin_inset Formula $d\mid n$ +\end_inset + +, +\begin_inset Formula $\langle a^{n/d}\rangle_{d}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Todos los subgrupos y grupos cociente de +\begin_inset Formula $G$ +\end_inset + + son cíclicos. +\end_layout + +\begin_layout Standard +Así, si +\begin_inset Formula $p\in\mathbb{N}$ +\end_inset + + es primo, todos los grupos de orden +\begin_inset Formula $p$ +\end_inset + + son isomorfos a +\begin_inset Formula $(\mathbb{Z}_{p},+)$ +\end_inset + +. + Si +\begin_inset Formula $G=\langle g_{1},\dots,g_{n}\rangle$ +\end_inset + + y +\begin_inset Formula $N\unlhd G$ +\end_inset + +, +\begin_inset Formula $G/N=\langle g_{1}N,\dots,g_{n}N\rangle$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{samepage} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema chino de los restos para grupos: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $H$ +\end_inset + + son subgrupos cíclicos de órdenes respectivos +\begin_inset Formula $n$ +\end_inset + + y +\begin_inset Formula $m$ +\end_inset + +, +\begin_inset Formula $G\times H$ +\end_inset + + es cíclico si y sólo si +\begin_inset Formula $n$ +\end_inset + + y +\begin_inset Formula $m$ +\end_inset + + son coprimos. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $G\cong(\mathbb{Z}_{n},+)$ +\end_inset + + y +\begin_inset Formula $H\cong(\mathbb{Z}_{m},+)$ +\end_inset + +, y por el teorema chino de los restos para anillos, +\begin_inset Formula $\mathbb{Z}_{n}\times\mathbb{Z}_{m}\cong\frac{\mathbb{Z}}{nm\mathbb{Z}}=\mathbb{Z}_{nm}$ +\end_inset + + como anillos, luego los grupos aditivos también son isomorfos y +\begin_inset Formula $G\times H\cong(\mathbb{Z}_{n},+)\times(\mathbb{Z}_{m},+)\cong(\mathbb{Z}_{nm},+)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $d:=\text{mcd}\{n,m\}>1$ +\end_inset + +, entonces +\begin_inset Formula $G$ +\end_inset + + tiene un subgrupo +\begin_inset Formula $G'$ +\end_inset + + de orden +\begin_inset Formula $d$ +\end_inset + + y +\begin_inset Formula $H$ +\end_inset + + un subgrupo +\begin_inset Formula $H'$ +\end_inset + + de orden +\begin_inset Formula $d$ +\end_inset + +, con lo que +\begin_inset Formula $G'\times1$ +\end_inset + + y +\begin_inset Formula $1\times H'$ +\end_inset + + son subgrupos distintos de +\begin_inset Formula $G\times H$ +\end_inset + + del mismo orden, luego +\begin_inset Formula $G\times H$ +\end_inset + + no es cíclico. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $g,h\in G$ +\end_inset + + tienen órdenes respectivos +\begin_inset Formula $n$ +\end_inset + + y +\begin_inset Formula $m$ +\end_inset + + coprimos y +\begin_inset Formula $gh=hg$ +\end_inset + +, entonces +\begin_inset Formula $\langle g,h\rangle$ +\end_inset + + es cíclico de orden +\begin_inset Formula $nm$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +La función +\begin_inset Formula $f:\mathbb{Z}_{n}\times\mathbb{Z}_{m}\to G$ +\end_inset + + dada por +\begin_inset Formula $f(i,j):=g^{i}h^{j}$ +\end_inset + + es un homomorfismo de grupos con imagen +\begin_inset Formula $\langle g,h\rangle$ +\end_inset + +. + Si +\begin_inset Formula $f(i,j)=1$ +\end_inset + +, +\begin_inset Formula $a^{i}b^{j}=1\implies a^{-i}=b^{j}\in\langle g\rangle\cap\langle h\rangle$ +\end_inset + + pero por el teorema de Lagrange, el orden de +\begin_inset Formula $\langle g\rangle\cap\langle h\rangle$ +\end_inset + + divide a +\begin_inset Formula $n$ +\end_inset + + y a +\begin_inset Formula $m$ +\end_inset + + y por tanto a 1, luego +\begin_inset Formula $a^{-i}=b^{j}=1$ +\end_inset + +, +\begin_inset Formula $(i,j)=(0,0)$ +\end_inset + + y +\begin_inset Formula $f$ +\end_inset + + es inyectiva. + Por tanto +\begin_inset Formula $\mathbb{Z}_{nm}\cong\mathbb{Z}_{n}\times\mathbb{Z}_{m}\cong\text{Im}f=\langle g,h\rangle$ +\end_inset + + y +\begin_inset Formula $\langle g,h\rangle$ +\end_inset + + es cíclico de orden +\begin_inset Formula $nm$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{samepage} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Acciones de grupos en conjuntos +\end_layout + +\begin_layout Standard +Dados un grupo +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $a\in G$ +\end_inset + +, llamamos +\series bold +conjugado +\series default + de +\begin_inset Formula $g\in G$ +\end_inset + + por +\begin_inset Formula $a$ +\end_inset + + a +\begin_inset Formula $g^{a}:=a^{-1}ga$ +\end_inset + +, y conjugado de +\begin_inset Formula $X\subseteq G$ +\end_inset + + por +\begin_inset Formula $a$ +\end_inset + + a +\begin_inset Formula $X^{a}:=\{x^{a}\}_{x\in X}$ +\end_inset + +. + Dos elementos +\begin_inset Formula $x,y\in G$ +\end_inset + + o conjuntos +\begin_inset Formula $x,y\subseteq G$ +\end_inset + + son +\series bold +conjugados +\series default + en +\begin_inset Formula $G$ +\end_inset + + si existe +\begin_inset Formula $a\in G$ +\end_inset + + con +\begin_inset Formula $x^{a}=y$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $a\in G$ +\end_inset + +, llamamos +\series bold +automorfismo interno +\series default + definido por +\begin_inset Formula $a$ +\end_inset + + al automorfismo +\begin_inset Formula $\iota_{a}:G\to G$ +\end_inset + + dado por +\begin_inset Formula $\iota_{a}(x):=x^{a}$ +\end_inset + +. + Su inverso es +\begin_inset Formula $\iota_{a^{-1}}$ +\end_inset + +. + El conjugado por +\begin_inset Formula $a$ +\end_inset + + de un subgrupo de +\begin_inset Formula $G$ +\end_inset + + es otro subgrupo de +\begin_inset Formula $G$ +\end_inset + + del mismo orden. +\end_layout + +\begin_layout Standard +Vemos que +\begin_inset Formula $\forall g,a,b\in G,g^{ab}=(g^{a})^{b}$ +\end_inset + +, y con esto es fácil comprobar que la relación de ser conjugados es de + equivalencia. + Las clases de equivalencia se llaman +\series bold +clases de conjugación +\series default + de +\begin_inset Formula $G$ +\end_inset + +, y llamamos +\begin_inset Formula $a^{G}:=[a]=\{a^{g}\}_{g\in G}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $X$ +\end_inset + + un conjunto. + Una +\series bold +acción por la izquierda +\series default + de +\begin_inset Formula $G$ +\end_inset + + en +\begin_inset Formula $X$ +\end_inset + + es una función +\begin_inset Formula $\cdot:X\times G\to X$ +\end_inset + + tal que +\begin_inset Formula $\forall x\in X,(\forall g,h\in G,(gh)\cdot x=g\cdot(h\cdot x)\land1\cdot x=x)$ +\end_inset + +, y una +\series bold +acción por la derecha +\series default + de +\begin_inset Formula $G$ +\end_inset + + en +\begin_inset Formula $X$ +\end_inset + + es una función +\begin_inset Formula $\cdot:G\times X\to X$ +\end_inset + + tal que +\begin_inset Formula $\forall x\in X,(\forall g,h\in G,x\cdot(gh)=(x\cdot g)\cdot h\land x\cdot1=x)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\cdot:G\times X\to X$ +\end_inset + + es una acción por la izquierda de +\begin_inset Formula $G$ +\end_inset + + en +\begin_inset Formula $X$ +\end_inset + + y +\begin_inset Formula $x\in X$ +\end_inset + +, llamamos +\series bold +órbita +\series default + de +\begin_inset Formula $x$ +\end_inset + + en +\begin_inset Formula $G$ +\end_inset + + a +\begin_inset Formula $G\cdot x:=\{g\cdot x\}_{g\in G}$ +\end_inset + + y +\series bold +estabilizador +\series default + de +\begin_inset Formula $x$ +\end_inset + + en +\begin_inset Formula $G$ +\end_inset + + a +\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G:g\cdot x=x\}$ +\end_inset + +. + Si +\begin_inset Formula $\cdot:X\times G\to X$ +\end_inset + + es una acción por la derecha de +\begin_inset Formula $G$ +\end_inset + + en +\begin_inset Formula $X$ +\end_inset + + y +\begin_inset Formula $x\in X$ +\end_inset + +, llamamos órbita de +\begin_inset Formula $x$ +\end_inset + + en +\begin_inset Formula $G$ +\end_inset + + a +\begin_inset Formula $x\cdot G:=\{x\cdot g\}_{g\in G}$ +\end_inset + + y estabilizador de +\begin_inset Formula $x$ +\end_inset + + en +\begin_inset Formula $G$ +\end_inset + + a +\begin_inset Formula $\text{Estab}_{G}(x):=\{g\in G:x\cdot g=x\}$ +\end_inset + +. + Las órbitas forman una partición de +\begin_inset Formula $G$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Ejemplos: +\end_layout + +\begin_layout Enumerate +Llamamos +\series bold +acción por translación a la izquierda +\series default + a la acción por la izquierda de +\begin_inset Formula $G$ +\end_inset + + en +\begin_inset Formula $G/H$ +\end_inset + + dada por +\begin_inset Formula $g\cdot xH=gxH$ +\end_inset + +. + Entonces +\begin_inset Formula $G\cdot xH=G/H$ +\end_inset + + y +\begin_inset Formula +\[ +\text{Estab}_{G}(xH)=\{g\in G:gxH=xH\}=\{g\in G:x^{-1}gx\in H\}=xHx^{-1}=H^{x^{-1}}. +\] + +\end_inset + +Análogamente llamamos +\series bold +acción por traslación a la derecha +\series default + a la acción por la derecha de +\begin_inset Formula $G$ +\end_inset + + en +\begin_inset Formula $H\backslash G$ +\end_inset + + dada por +\begin_inset Formula $Hx\cdot g=Hxg$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Cuando +\begin_inset Formula $H=1$ +\end_inset + +, la acción de traslación es de +\begin_inset Formula $G$ +\end_inset + + en +\begin_inset Formula $G$ +\end_inset + +, con +\begin_inset Formula $G\cdot x=G$ +\end_inset + + y +\begin_inset Formula $\text{Estab}_{G}(x)=1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +La +\series bold +acción por conjugación +\series default + de +\begin_inset Formula $G$ +\end_inset + + en +\begin_inset Formula $G$ +\end_inset + + es la acción por la derecha +\begin_inset Formula $x\cdot g:=x^{g}$ +\end_inset + +. + Entonces +\begin_inset Formula $x\cdot G=x^{G}$ +\end_inset + + y +\begin_inset Formula $\text{Estab}_{G}(x)=C_{G}(x)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $S$ +\end_inset + + es el conjunto de subgrupos de +\begin_inset Formula $G$ +\end_inset + +, la +\series bold +acción por conjugación de +\begin_inset Formula $G$ +\end_inset + + en sus subgrupos +\series default + es la acción por la derecha de +\begin_inset Formula $G$ +\end_inset + + en +\begin_inset Formula $S$ +\end_inset + + +\begin_inset Formula $H\cdot g=H^{g}$ +\end_inset + +. + El +\series bold +normalizador +\series default + de un subgrupo +\begin_inset Formula $H$ +\end_inset + + en +\begin_inset Formula $G$ +\end_inset + + es +\begin_inset Formula $N_{G}(H):=\text{Estab}_{G}(H)=\{g\in G:H^{g}=H\}$ +\end_inset + +, el mayor subgrupo de +\begin_inset Formula $G$ +\end_inset + + que contiene a +\begin_inset Formula $H$ +\end_inset + + como subgrupo normal. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + y +\begin_inset Formula $X$ +\end_inset + + es un conjunto, +\begin_inset Formula $\cdot:S_{n}\times X^{n}\to X^{n}$ +\end_inset + + dada por +\begin_inset Formula $\sigma\cdot(x_{1},\dots,x_{n}):=(x_{\sigma(1)},\dots,x_{\sigma(n)})$ +\end_inset + + es una acción por la izquierda. +\end_layout + +\begin_layout Enumerate +Sean +\begin_inset Formula $\cdot:G\times X\to X$ +\end_inset + + una acción por la izquierda, +\begin_inset Formula $H\leq G$ +\end_inset + + e +\begin_inset Formula $Y\subseteq X$ +\end_inset + +, si +\begin_inset Formula $\forall h\in H,y\in Y,h\cdot y\in Y$ +\end_inset + +, +\begin_inset Formula $\cdot|_{H\times Y}$ +\end_inset + + es una acción por la izquierda de +\begin_inset Formula $H$ +\end_inset + + en +\begin_inset Formula $Y$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $G$ +\end_inset + + un grupo actuando sobre un conjunto +\begin_inset Formula $X$ +\end_inset + +, +\begin_inset Formula $x\in X$ +\end_inset + + y +\begin_inset Formula $g\in G$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{Estab}_{G}(x)\leq G$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Como +\begin_inset Formula $1\cdot x=x$ +\end_inset + +, +\begin_inset Formula $1\in\text{Estab}_{G}(x)$ +\end_inset + +. + Dados +\begin_inset Formula $a,b\in\text{Estab}_{G}(x)$ +\end_inset + +, +\begin_inset Formula $ab\cdot x=a\cdot(b\cdot x)=a\cdot x=x$ +\end_inset + + y +\begin_inset Formula $a^{-1}\cdot x=a^{-1}\cdot(a\cdot x)=a^{-1}a\cdot x=1\cdot x=x$ +\end_inset + +, luego +\begin_inset Formula $ab,a^{-1}\in\text{Estab}_{G}(x)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $[G:\text{Estab}_{G}(x)]=|G\cdot x|$ +\end_inset + +. + En particular, si +\begin_inset Formula $G$ +\end_inset + + es finito, +\begin_inset Formula $|G\cdot x|\mid|G|$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sea +\begin_inset Formula $H:=\text{Estab}_{G}(x)$ +\end_inset + +, +\begin_inset Formula $f:G/H\to G\cdot x$ +\end_inset + + dada por +\begin_inset Formula $f(gH):=g^{-1}\cdot x$ +\end_inset + + está bien definida, pues si +\begin_inset Formula $gh^{-1}\in H$ +\end_inset + +, +\begin_inset Formula $f(gH)=g^{-1}\cdot x=g^{-1}\cdot(gh^{-1}\cdot x)=h^{-1}\cdot x=f(hH)$ +\end_inset + +, y queremos ver que es biyectiva. + Es claramente sobreyectiva, y es inyectiva porque si +\begin_inset Formula $f(gH)=f(hH)$ +\end_inset + +, +\begin_inset Formula $g^{-1}\cdot x=h^{-1}\cdot x$ +\end_inset + + y entonces +\begin_inset Formula $gh^{-1}\cdot x=g\cdot(h^{-1}\cdot x)=g\cdot(g^{-1}\cdot x)=x$ +\end_inset + +, con lo que +\begin_inset Formula $gh^{-1}\in H$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si la acción es por la izquierda, +\begin_inset Formula $\text{Estab}_{G}(g\cdot x)=\text{Estab}_{G}(x)^{g^{-1}}$ +\end_inset + +, y si es por la derecha, +\begin_inset Formula $\text{Estab}_{G}(x\cdot g)=\text{Estab}_{G}(x)^{g}$ +\end_inset + +. + En particular, si +\begin_inset Formula $x,g\in G$ +\end_inset + + y +\begin_inset Formula $H\leq G$ +\end_inset + +, +\begin_inset Formula $C_{G}(x^{g})=C_{G}(x)^{g}$ +\end_inset + + y +\begin_inset Formula $N_{G}(H^{g})=N_{G}(H)^{g}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Si la acción es por la izquierda, +\begin_inset Formula $\text{Estab}_{G}(x)^{g^{-1}}=\{ghg^{-1}:h\cdot x=x\}=\{p\in G:g^{-1}pg\cdot x=x\}=\{p\in G:p\cdot(g\cdot x)=g\cdot x\}=\text{Estab}_{G}(g\cdot x)$ +\end_inset + +. + Si es por la derecha, +\begin_inset Formula $\text{Estab}_{G}(x)^{g}=\{g^{-1}hg:x\cdot h=x\}=\{p\in G:x\cdot gpg^{-1}=x\}=\{p\in G:(x\cdot g)\cdot p=x\cdot g\}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $R$ +\end_inset + + es un conjunto irredundante de representantes de las órbitas, +\begin_inset Formula $|X|=\sum_{r\in R}|G\cdot r|=\sum_{r\in R}[G:\text{Estab}_{G}(r)]$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Se debe a que las órbitas forman una partición de +\begin_inset Formula $X$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Así, si +\begin_inset Formula $G$ +\end_inset + + es un grupo y +\begin_inset Formula $a\in G$ +\end_inset + +, +\begin_inset Formula $|a^{G}|=[G:C_{G}(a)]$ +\end_inset + +, y en particular +\begin_inset Formula $a^{G}$ +\end_inset + + es unipuntual si y sólo si +\begin_inset Formula $a\in Z(G)$ +\end_inset + +. + +\series bold +Ecuación de clases: +\series default + Si +\begin_inset Formula $G$ +\end_inset + + es finito y +\begin_inset Formula $X\subseteq G$ +\end_inset + + contiene exactamente un elemento de cada clase de conjugación con al menos + dos elementos, entonces +\begin_inset Formula $|G|=|Z(G)|+\sum_{x\in X}[G:C_{G}(x)]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dado un número primo +\begin_inset Formula $p$ +\end_inset + +, un +\series bold + +\begin_inset Formula $p$ +\end_inset + +-grupo finito +\series default + es un grupo finito cuyo orden es potencia de +\begin_inset Formula $p$ +\end_inset + +. + Si +\begin_inset Formula $G$ +\end_inset + + es un +\begin_inset Formula $p$ +\end_inset + +-grupo finito no trivial, +\begin_inset Formula $Z(G)\neq1$ +\end_inset + +. + En efecto, si +\begin_inset Formula $X\subseteq G$ +\end_inset + + tiene exactamente un elemento de cada clase de conjugación con al menos + dos elementos, +\begin_inset Formula $|G|=|Z(G)|+\sum_{x\in X}[G:C_{G}(x)]=|Z(G)|+\sum_{x\in X}|x^{G}|$ +\end_inset + +, pero +\begin_inset Formula $|G|$ +\end_inset + + y +\begin_inset Formula $|x^{G}|$ +\end_inset + + son múltiplos de +\begin_inset Formula $p$ +\end_inset + + para todo +\begin_inset Formula $x\in X$ +\end_inset + +, luego +\begin_inset Formula $|Z(G)|$ +\end_inset + + también y por tanto +\begin_inset Formula $Z(G)\neq1$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Cauchy: +\series default + Si +\begin_inset Formula $G$ +\end_inset + + es un grupo finito con orden múltiplo de un primo +\begin_inset Formula $p$ +\end_inset + +, +\begin_inset Formula $G$ +\end_inset + + tiene un elemento de orden +\begin_inset Formula $p$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $X:=\{(g_{1},\dots,g_{p})\in G^{p}:g_{1}\cdots g_{p}=1\}$ +\end_inset + +, +\begin_inset Formula +\[ +(g_{1},\dots,g_{p-1})\mapsto(g_{1},\cdots,g_{p-1},(g_{1}\cdots g_{p-1})^{-1} +\] + +\end_inset + + es una biyección de +\begin_inset Formula $G^{p-1}$ +\end_inset + + a +\begin_inset Formula $X$ +\end_inset + +, luego +\begin_inset Formula $|X|=|G|^{p-1}$ +\end_inset + +. + Sean ahora +\begin_inset Formula $\cdot$ +\end_inset + + la acción de +\begin_inset Formula $S_{p}$ +\end_inset + + a +\begin_inset Formula $G^{p}$ +\end_inset + + dada por +\begin_inset Formula $\sigma\cdot(g_{1},\dots,g_{p})=(g_{\sigma(1)},\dots,g_{\sigma(p)})$ +\end_inset + + y +\begin_inset Formula $\sigma\in S_{p}$ +\end_inset + + dada por +\begin_inset Formula $\sigma(i)=i+1$ +\end_inset + + para +\begin_inset Formula $i\neq p$ +\end_inset + + y +\begin_inset Formula $\sigma(p)=1$ +\end_inset + +. + Si +\begin_inset Formula $(x_{1},\dots,x_{p})\in X$ +\end_inset + +, +\begin_inset Formula $x_{p}x_{1}\cdots x_{p-1}=x_{p}(x_{1}\cdots x_{p})x_{p}^{-1}=1$ +\end_inset + +, luego para +\begin_inset Formula $x\in X$ +\end_inset + +, +\begin_inset Formula $\sigma\cdot x\in X$ +\end_inset + + y +\begin_inset Formula $\cdot$ +\end_inset + + es una acción de +\begin_inset Formula $\langle\sigma\rangle$ +\end_inset + + en +\begin_inset Formula $X$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como +\begin_inset Formula $|\sigma|=p$ +\end_inset + +, las órbitas de +\begin_inset Formula $\cdot|_{\langle\sigma\rangle\times X}$ +\end_inset + + tienen cardinal 1 o +\begin_inset Formula $p$ +\end_inset + +, y si +\begin_inset Formula $n$ +\end_inset + + es el número de órbitas con un elemento y +\begin_inset Formula $m$ +\end_inset + + el de órbitas con +\begin_inset Formula $p$ +\end_inset + + elementos, +\begin_inset Formula $|G|^{p-1}=|X|=n+pm$ +\end_inset + +, y como +\begin_inset Formula $p\mid|G|$ +\end_inset + +, +\begin_inset Formula $p\mid n$ +\end_inset + +. + Como +\begin_inset Formula $|\langle\sigma\rangle\cdot(1,\dots,1)|=1$ +\end_inset + +, +\begin_inset Formula $n\geq1$ +\end_inset + +, y como +\begin_inset Formula $p\mid n$ +\end_inset + +, +\begin_inset Formula $n\geq2$ +\end_inset + +, luego existe +\begin_inset Formula $x\in X\setminus\{(1,\dots,1)\}$ +\end_inset + + con +\begin_inset Formula $|G\cdot x|=1$ +\end_inset + + y +\begin_inset Formula $(x_{1},\dots,x_{p})=\sigma\cdot x=(x_{p},x_{1},\dots,x_{p-1})$ +\end_inset + +. + Por tanto, todos los +\begin_inset Formula $x_{i}$ +\end_inset + + son iguales a un +\begin_inset Formula $g\in G\setminus1$ +\end_inset + + con +\begin_inset Formula $g^{p}=x_{1}\cdots x_{p}=1$ +\end_inset + +, y entonces +\begin_inset Formula $|g|=p$ +\end_inset + +. +\end_layout + +\begin_layout Section +Teoremas de Sylow +\end_layout + +\begin_layout Standard +Dados un grupo finito +\begin_inset Formula $G$ +\end_inset + + y un número primo +\begin_inset Formula $p$ +\end_inset + +, +\begin_inset Formula $H\leq G$ +\end_inset + + es un +\series bold + +\begin_inset Formula $p$ +\end_inset + +-subgrupo de Sylow +\series default + de +\begin_inset Formula $G$ +\end_inset + + si es un +\begin_inset Formula $p$ +\end_inset + +-grupo y +\begin_inset Formula $[G:H]$ +\end_inset + + es coprimo con +\begin_inset Formula $p$ +\end_inset + +, si y sólo si es un +\begin_inset Formula $p$ +\end_inset + +-grupo y +\begin_inset Formula $|H|$ +\end_inset + + es la mayor potencia de +\begin_inset Formula $p$ +\end_inset + + que divide a +\begin_inset Formula $|G|$ +\end_inset + +. + Llamamos +\begin_inset Formula $s_{p}(G)$ +\end_inset + + al número de +\begin_inset Formula $p$ +\end_inset + +-subgrupos de Sylow de +\begin_inset Formula $G$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Teoremas de Sylow: +\series default + Sean +\begin_inset Formula $p$ +\end_inset + + un número primo y +\begin_inset Formula $G$ +\end_inset + + un grupo finito de orden +\begin_inset Formula $n:=p^{k}m$ +\end_inset + + para ciertos +\begin_inset Formula $k,m\in\mathbb{N}$ +\end_inset + + con +\begin_inset Formula $p\nmid m$ +\end_inset + +. + Entonces: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $G$ +\end_inset + + tiene al menos un +\begin_inset Formula $p$ +\end_inset + +-subgrupo de Sylow, que tendrá orden +\begin_inset Formula $p^{k}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $P$ +\end_inset + + es un +\begin_inset Formula $p$ +\end_inset + +-subgrupo de Sylow de +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $Q$ +\end_inset + + es un +\begin_inset Formula $p$ +\end_inset + +-subgrupo de +\begin_inset Formula $G$ +\end_inset + +, existe +\begin_inset Formula $g\in G$ +\end_inset + + tal que +\begin_inset Formula $Q\subseteq P^{g}$ +\end_inset + +. + En particular, todos los +\begin_inset Formula $p$ +\end_inset + +-subgrupos de Sylow de +\begin_inset Formula $G$ +\end_inset + + son conjugados en +\begin_inset Formula $G$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $s_{p}(G)\mid m$ +\end_inset + + y +\begin_inset Formula $s_{p}(G)\equiv1\bmod p$ +\end_inset + +. +\end_layout + +\end_body +\end_document |
