diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2021-01-15 01:16:56 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2021-01-15 01:16:56 +0100 |
| commit | dfb12d7939246eeaa7ac6bd959483f0e16021344 (patch) | |
| tree | 6ca11a73b959dd6adf8dc91750f42772a1750c54 /gcs/n3.lyx | |
| parent | 2f1821b3f22954176a26665dc0c84e9a26b8e0e4 (diff) | |
Ecuación de Gauss
Diffstat (limited to 'gcs/n3.lyx')
| -rw-r--r-- | gcs/n3.lyx | 354 |
1 files changed, 341 insertions, 13 deletions
@@ -3137,12 +3137,28 @@ respecto de la base a_{12} & a_{22} \end{pmatrix}\begin{pmatrix}E & F\\ F & G -\end{pmatrix}, & K(p) & =\frac{eg-f^{2}}{EG-F^{2}}, & H(p) & =\frac{1}{2}\frac{eG+gE-2fF}{EG-F^{2}}. +\end{pmatrix} +\end{align*} + +\end_inset + + y tenemos las +\series bold +fórmulas de Weingarten: +\series default + +\begin_inset Formula +\begin{align*} +a_{11} & =\frac{fF-eG}{EG-F^{2}}, & a_{12} & =\frac{gF-fG}{EG-F^{2}}, & a_{21} & =\frac{eF-fE}{EG-F^{2}}, & a_{22} & =\frac{fF-gE}{EG-F^{2}}. \end{align*} \end_inset +\end_layout + +\begin_layout Standard + \series bold Demostración: \series default @@ -3160,7 +3176,7 @@ Demostración: Despejando, \begin_inset Formula \[ -\begin{pmatrix}a_{11} & a_{21}\\ +\begin{pmatrix}a_{11} & a_{12}\\ a_{12} & a_{22} \end{pmatrix}=-\begin{pmatrix}e & f\\ f & g @@ -3177,22 +3193,22 @@ gF-fG & fF-gE \end_inset -Con esto, + +\end_layout + +\begin_layout Standard +De aquí, +\end_layout + +\begin_layout Standard \begin_inset Formula \begin{align*} -K(p) & =\det A_{p}=\det(dN_{p})=\frac{1}{EG-F^{2}}((fF-eG)(fF-gE)-(gF-fG)(eF-fE))\\ - & =\frac{1}{(EG-F^{2})^{2}}(f^{2}F^{2}-fgEF-efFG+egEG-egF^{2}+fgEF+efFG-f^{2}EG)\\ - & =\frac{f^{2}F^{2}+egEG-egF^{2}-f^{2}EG}{(EG-F^{2})^{2}}=\frac{(EG-F^{2})(eg-f^{2})}{(EG-F^{2})^{2}},\\ -H(p) & =\frac{1}{2}\text{tr}A_{p}=-\frac{1}{2}\text{tr}(dN_{p})=-\frac{1}{2}\frac{2fF-eG-gE}{EG-F^{2}}. +K(p) & =\frac{eg-f^{2}}{EG-F^{2}}, & H(p) & =\frac{1}{2}\frac{eG+gE-2fF}{EG-F^{2}}, \end{align*} \end_inset - -\end_layout - -\begin_layout Standard -Las curvaturas principales son +y las curvaturas principales son \begin_inset Formula \[ \kappa_{i}(p)=H(p)\pm\sqrt{H(p)^{2}-K(p)}. @@ -3201,10 +3217,25 @@ Las curvaturas principales son \end_inset +\end_layout + +\begin_layout Standard + \series bold Demostración: \series default - Un + +\begin_inset Formula +\begin{align*} +K(p) & =\det A_{p}=\det(dN_{p})=\frac{1}{EG-F^{2}}((fF-eG)(fF-gE)-(gF-fG)(eF-fE))\\ + & =\frac{1}{(EG-F^{2})^{2}}(f^{2}F^{2}-fgEF-efFG+egEG-egF^{2}+fgEF+efFG-f^{2}EG)\\ + & =\frac{f^{2}F^{2}+egEG-egF^{2}-f^{2}EG}{(EG-F^{2})^{2}}=\frac{(EG-F^{2})(eg-f^{2})}{(EG-F^{2})^{2}},\\ +H(p) & =\frac{1}{2}\text{tr}A_{p}=-\frac{1}{2}\text{tr}(dN_{p})=-\frac{1}{2}\frac{2fF-eG-gE}{EG-F^{2}}. +\end{align*} + +\end_inset + +Un \begin_inset Formula $\lambda\in\mathbb{R}$ \end_inset @@ -3775,5 +3806,302 @@ Demostración: conserva productos escalares. \end_layout +\begin_layout Section + +\lang latin +Theorema Egregium +\lang spanish + de Gauss +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $S$ +\end_inset + + una superficie regular orientada por +\begin_inset Formula $N$ +\end_inset + + y +\begin_inset Formula $(U,X)$ +\end_inset + + una parametrización de +\begin_inset Formula $S$ +\end_inset + + con la base +\begin_inset Formula $(X_{u},X_{v},N)$ +\end_inset + + de +\begin_inset Formula $\mathbb{R}^{3}$ +\end_inset + + positivamente orientada. + Las +\series bold +fórmulas de Gauss +\series default + son +\begin_inset Formula +\[ +\left\{ \begin{aligned}X_{uu} & =\Gamma_{11}^{1}X_{u}+\Gamma_{11}^{2}X_{v}+eN,\\ +X_{uv} & =\Gamma_{12}^{1}X_{u}+\Gamma_{12}^{2}X_{v}+fN,\\ +X_{vu} & =\Gamma_{21}^{1}X_{u}+\Gamma_{21}^{2}X_{v}+fN,\\ +X_{vv} & =\Gamma_{22}^{1}X_{u}+\Gamma_{22}^{2}X_{v}+gN, +\end{aligned} +\right. +\] + +\end_inset + +donde los +\begin_inset Formula $\Gamma_{ij}^{k}$ +\end_inset + + son los +\series bold +símbolos de Christoffel +\series default +, y se basan en que +\begin_inset Formula $\langle X_{uu},N\rangle=e$ +\end_inset + +, +\begin_inset Formula $\langle X_{uv},N\rangle=\langle X_{vu},N\rangle=f$ +\end_inset + + y +\begin_inset Formula $\langle X_{vv},N\rangle=g$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $\Gamma_{12}^{1}=\Gamma_{21}^{1}$ +\end_inset + + y +\begin_inset Formula $\Gamma_{12}^{2}=\Gamma_{22}^{2}$ +\end_inset + +, pues +\begin_inset Formula $X_{uv}=X_{vu}$ +\end_inset + +. + Además, +\begin_inset Formula +\[ +\begin{pmatrix}\Gamma_{11}^{1} & \Gamma_{12}^{1} & \Gamma_{22}^{1}\\ +\Gamma_{11}^{2} & \Gamma_{12}^{2} & \Gamma_{22}^{2} +\end{pmatrix}=\frac{1}{EG-F^{2}}\begin{pmatrix}G & -F\\ +-F & E +\end{pmatrix}\begin{pmatrix}\frac{E_{u}}{2} & \frac{E_{v}}{2} & F_{v}-\frac{G_{u}}{2}\\ +F_{u}-\frac{E_{v}}{2} & \frac{G_{u}}{2} & \frac{G_{v}}{2} +\end{pmatrix}. +\] + +\end_inset + + +\series bold +Demostración: +\series default + Multiplicando escalarmente las ecuaciones de Gauss por +\begin_inset Formula $X_{u}$ +\end_inset + + y +\begin_inset Formula $X_{v}$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +\langle X_{uu},X_{u}\rangle & =\Gamma_{11}^{1}E+\Gamma_{11}^{2}F, & \langle X_{uu},X_{v}\rangle & =\Gamma_{11}^{1}F+\Gamma_{11}^{2}G,\\ +\langle X_{uv},X_{u}\rangle & =\Gamma_{12}^{1}E+\Gamma_{12}^{2}F, & \langle X_{uv},X_{v}\rangle & =\Gamma_{12}^{1}F+\Gamma_{12}^{2}G,\\ +\langle X_{vv},X_{u}\rangle & =\Gamma_{22}^{1}E+\Gamma_{22}^{2}F, & \langle X_{vv},X_{v}\rangle & =\Gamma_{22}^{1}F+\Gamma_{22}^{2}G. +\end{align*} + +\end_inset + +Derivando +\begin_inset Formula $E$ +\end_inset + +, +\begin_inset Formula $F$ +\end_inset + + y +\begin_inset Formula $G$ +\end_inset + + respecto a +\begin_inset Formula $u$ +\end_inset + + y +\begin_inset Formula $v$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +E_{u} & =2\langle X_{uu},X_{u}\rangle, & F_{u} & =\langle X_{uu},X_{v}\rangle+\langle X_{u},X_{vu}\rangle, & G_{u} & =2\langle X_{vu},X_{v}\rangle,\\ +E_{v} & =2\langle X_{uv},X_{u}\rangle, & F_{v} & =\langle X_{uv},X_{v}\rangle+\langle X_{u},X_{vv}\rangle, & G_{v} & =2\langle X_{vv},X_{v}\rangle, +\end{align*} + +\end_inset + +por lo que +\begin_inset Formula +\begin{align*} +\langle X_{uu},X_{u}\rangle & =\frac{E_{u}}{2}, & \langle X_{uv},X_{u}\rangle & =\frac{E_{v}}{2}, & \langle X_{vv},X_{u}\rangle & =F_{v}-\langle X_{uv},X_{v}\rangle=F_{v}-\frac{G_{u}}{2},\\ +\langle X_{uv},X_{v}\rangle & =\frac{G_{u}}{2}, & \langle X_{vv},X_{v}\rangle & =\frac{G_{v}}{2}, & \langle X_{uu},X_{v}\rangle & =F_{u}-\langle X_{u},X_{vu}\rangle=F_{u}-\frac{E_{v}}{2}. +\end{align*} + +\end_inset + +Igualando queda el sistema +\begin_inset Formula +\[ +\left\{ \begin{aligned}E\Gamma_{11}^{1}+F\Gamma_{11}^{2} & =\frac{1}{2}E_{u}, & E\Gamma_{12}^{1}+F\Gamma_{12}^{2} & =\frac{1}{2}E_{v}, & E\Gamma_{22}^{1}+F\Gamma_{22}^{2} & =F_{v}-\frac{1}{2}G_{u},\\ +F\Gamma_{11}^{1}+G\Gamma_{11}^{2} & =F_{u}-\frac{1}{2}E_{v}, & F\Gamma_{12}^{1}+G\Gamma_{12}^{2} & =\frac{1}{2}G_{u}, & F\Gamma_{22}^{1}+G\Gamma_{22}^{2} & =\frac{1}{2}G_{v}, +\end{aligned} +\right. +\] + +\end_inset + +que se divide en tres sistemas disjuntos de izquierda a derecha. + Para el primero, +\begin_inset Formula +\[ +\begin{pmatrix}\Gamma_{11}^{1}\\ +\Gamma_{12}^{2} +\end{pmatrix}=\begin{pmatrix}E & F\\ +F & G +\end{pmatrix}^{-1}\begin{pmatrix}\frac{1}{2}E_{u}\\ +F_{u}-\frac{E_{v}}{2} +\end{pmatrix}=\frac{1}{EG-F^{2}}\begin{pmatrix}G & -F\\ +-F & E +\end{pmatrix}\begin{pmatrix}\frac{1}{2}E_{u}\\ +F_{u}-\frac{E_{v}}{2} +\end{pmatrix}, +\] + +\end_inset + +y para los otros dos es análogo. +\end_layout + +\begin_layout Standard +La +\series bold +ecuación de Gauss +\series default + es +\begin_inset Formula +\[ +\Gamma_{11}^{1}\Gamma_{12}^{2}+(\Gamma_{11}^{2})_{v}+\Gamma_{11}^{2}\Gamma_{22}^{2}-\Gamma_{12}^{1}\Gamma_{11}^{2}-(\Gamma_{12}^{2})_{u}-\Gamma_{12}^{2}\Gamma_{12}^{2}=EK. +\] + +\end_inset + + +\series bold +Demostración: +\series default + +\begin_inset Formula $X_{uuv}=X_{uvu}$ +\end_inset + +, y sustituyendo +\begin_inset Formula $X_{uu}$ +\end_inset + + y +\begin_inset Formula $X_{vv}$ +\end_inset + + según las fórmulas de Gauss, +\begin_inset Formula +\begin{multline*} +0=X_{uuv}-X_{uvu}=(\Gamma_{11}^{1})_{v}X_{u}+\Gamma_{11}^{1}X_{uv}+(\Gamma_{11}^{2})_{v}X_{v}+\Gamma_{11}^{2}X_{vv}+e_{v}N+eN_{v}-\\ +-(\Gamma_{12}^{1})_{u}X_{u}-\Gamma_{12}^{1}X_{uu}-(\Gamma_{12}^{2})_{u}X_{v}-\Gamma_{12}^{2}X_{vu}-f_{u}N-fN_{u}. +\end{multline*} + +\end_inset + +Sustituyendo con las fórmulas de Gauss, +\begin_inset Formula +\begin{multline*} +0=(\Gamma_{11}^{1})_{v}X_{u}+\Gamma_{11}^{1}(\Gamma_{12}^{1}X_{u}+\Gamma_{12}^{2}X_{v}+fN)+(\Gamma_{11}^{2})_{v}X_{v}+\Gamma_{11}^{2}(\Gamma_{22}^{1}X_{u}+\Gamma_{22}^{2}X_{v}+gN)-\\ +-(\Gamma_{12}^{1})_{u}X_{u}-\Gamma_{12}^{1}(\Gamma_{11}^{1}X_{u}+\Gamma_{11}^{2}X_{v}+eN)-(\Gamma_{12}^{2})_{u}X_{v}-\Gamma_{12}^{2}(\Gamma_{12}^{1}X_{u}+\Gamma_{12}^{2}X_{v}+fN)+\\ ++e_{v}N+e(a_{12}X_{u}+a_{22}X_{v})-f_{u}N-f(a_{11}X_{u}+a_{21}X_{v})=:A_{1}X_{u}+B_{1}X_{v}+C_{1}N. +\end{multline*} + +\end_inset + +Como +\begin_inset Formula $(X_{u},X_{v},N)$ +\end_inset + + es base de +\begin_inset Formula $\mathbb{R}^{3}$ +\end_inset + +, +\begin_inset Formula $A_{1},B_{1},C_{1}=0$ +\end_inset + +. + Como +\begin_inset Formula $B_{1}=0$ +\end_inset + +, usando las fórmulas de Weingarten, +\begin_inset Formula +\begin{multline*} +\Gamma_{11}^{1}\Gamma_{12}^{2}+(\Gamma_{11}^{2})_{v}X_{v}+\Gamma_{11}^{2}\Gamma_{22}^{2}-\Gamma_{12}^{1}\Gamma_{11}^{2}-(\Gamma_{12}^{2})_{u}-\Gamma_{12}^{2}\Gamma_{12}^{2}=fa_{21}-ea_{22}=\\ +=f\frac{eF-fE}{EG-F^{2}}-e\frac{fF-gE}{EG-F^{2}}=\frac{efF-f^{2}E-efF+egE}{EG-F^{2}}=E\frac{eg-f^{2}}{EG-F^{2}}=EK. +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Esto implica la curvatura de Gauss depende solo de la primera forma fundamental, + pues los símbolos de Christoffel solo dependen de esta y, como +\begin_inset Formula $EG-F^{2}>0$ +\end_inset + +, +\begin_inset Formula $E\neq0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\end_layout + +\end_inset + + +\end_layout + \end_body \end_document |
