diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2021-01-14 20:53:59 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2021-01-14 20:53:59 +0100 |
| commit | 65e1bb39e0c0f032a72c857ee63a666a49b124f0 (patch) | |
| tree | 6f5e19c0a5b8f94a099e50033597b5211e656513 /gcs | |
| parent | 0f267a9fcbcef04447cf29f1101bd525725793fb (diff) | |
gcs/a3f
Diffstat (limited to 'gcs')
| -rw-r--r-- | gcs/n3.lyx | 251 |
1 files changed, 249 insertions, 2 deletions
@@ -868,11 +868,11 @@ En adelante, cuando consideremos una parametrización \end_inset , -\begin_inset Formula $N_{u}(u,v):=\frac{\partial(N\circ X)}{\partial u}(u,v)$ +\begin_inset Formula $N_{u}:=\frac{\partial(N\circ X)}{\partial u}$ \end_inset y -\begin_inset Formula $N_{v}(u,v):=\frac{\partial(N\circ X)}{\partial v}(u,v)$ +\begin_inset Formula $N_{v}:=\frac{\partial(N\circ X)}{\partial v}$ \end_inset . @@ -2983,5 +2983,252 @@ luego . \end_layout +\begin_layout Section +Parámetros de la segunda forma fundamental +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $S$ +\end_inset + + una superficie regular orientada por +\begin_inset Formula $N$ +\end_inset + + y +\begin_inset Formula $(U,X)$ +\end_inset + + una parametrización de +\begin_inset Formula $S$ +\end_inset + +, los +\series bold +coeficientes de la segunda forma fundamental +\series default + son +\begin_inset Formula $e,f,g:U\to\mathbb{R}$ +\end_inset + + dados por +\begin_inset Formula +\begin{align*} +e & :=\langle N,X_{uu}\rangle=-\langle N_{u},X_{u}\rangle,\\ +f & :=\langle N,X_{uv}\rangle=-\langle N_{v},X_{u}\rangle=-\langle N_{u},X_{v}\rangle,\\ +g & :=\langle N,X_{vv}\rangle=-\langle N_{v},X_{v}\rangle, +\end{align*} + +\end_inset + +y para +\begin_inset Formula $p\in S$ +\end_inset + + y +\begin_inset Formula $v\in T_{p}S$ +\end_inset + +, si +\begin_inset Formula $q:=X^{-1}(p)$ +\end_inset + + y +\begin_inset Formula $v=v_{1}X_{u}(q)+v_{2}X_{v}(q)$ +\end_inset + +, entonces +\begin_inset Formula +\[ +{\cal II}_{p}(v):=v_{1}^{2}e+2v_{1}v_{2}f+v_{2}^{2}g. +\] + +\end_inset + + +\series bold +Demostración: +\series default + +\begin_inset Formula $\langle N,X_{u}\rangle=\langle N,X_{v}\rangle=0$ +\end_inset + +, y derivando se obtiene +\begin_inset Formula $\langle N_{u},X_{u}\rangle+\langle N,X_{uu}\rangle=0$ +\end_inset + +, +\begin_inset Formula $\langle N_{v},X_{u}\rangle+\langle N,X_{uv}\rangle=0$ +\end_inset + +, +\begin_inset Formula $\langle N_{u},X_{v}\rangle+\langle N,X_{vu}\rangle=0$ +\end_inset + + y +\begin_inset Formula $\langle N_{v},X_{v}\rangle+\langle N,X_{vv}\rangle=0$ +\end_inset + +, lo que nos da las igualdades en los coeficientes teniendo en cuenta que + +\begin_inset Formula $\langle N,X_{uv}\rangle=\langle N,X_{vu}\rangle$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $q:=X^{-1}(p)=(u(0),v(0))$ +\end_inset + +, por linealidad +\begin_inset Formula $dN_{p}(v)=v_{1}dN_{p}(X_{u}(q))+v_{2}dN_{p}(X_{v}(q))=v_{1}N_{u}(q)+v_{2}N_{v}(q)$ +\end_inset + +. + Entonces, evaluando las derivadas de +\begin_inset Formula $X$ +\end_inset + + y +\begin_inset Formula $N$ +\end_inset + + en +\begin_inset Formula $q$ +\end_inset + +, d +\begin_inset Formula +\begin{align*} +{\cal II}_{p}(v) & =\langle A_{p}v,v\rangle=-\langle dN_{p}(v),v\rangle=-\langle v_{1}N_{u}+v_{2}N_{v},v_{1}X_{u}+v_{2}X_{v}\rangle\\ + & =v_{1}^{2}\langle N_{u},X_{u}\rangle-v_{1}v_{2}\langle N_{u},X_{v}\rangle-v_{1}v_{2}\langle N_{v},X_{u}\rangle-v_{2}^{2}\langle N_{v},X_{v}\rangle\\ + & =v_{1}^{2}e+v_{1}v_{2}f+v_{2}^{2}g. +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula +\[ +dN_{p}\equiv\begin{pmatrix}a_{11} & a_{12}\\ +a_{21} & a_{22} +\end{pmatrix} +\] + +\end_inset + +respecto de la base +\begin_inset Formula $(X_{u},X_{v})$ +\end_inset + +, entonces +\begin_inset Formula +\begin{align*} +\begin{pmatrix}-e & -f\\ +-f & -g +\end{pmatrix} & =\begin{pmatrix}a_{11} & a_{21}\\ +a_{12} & a_{22} +\end{pmatrix}\begin{pmatrix}E & F\\ +F & G +\end{pmatrix}, & K(p) & =\frac{eg-f^{2}}{EG-F^{2}}, & H(p) & =\frac{1}{2}\frac{eG+gE-2fF}{EG-F^{2}}. +\end{align*} + +\end_inset + + +\series bold +Demostración: +\series default + +\begin_inset Formula +\begin{align*} +-e & =\langle N_{u},X_{u}\rangle=\langle a_{11}X_{u}+a_{21}X_{v},X_{u}\rangle=a_{11}E+a_{21}F,\\ +-f & =\langle N_{v},X_{u}\rangle=\langle a_{12}X_{u}+a_{22}X_{v},X_{u}\rangle=a_{12}E+a_{22}F\\ + & =\langle N_{u},X_{v}\rangle=\langle a_{11}X_{u}+a_{21}X_{v},X_{v}\rangle=a_{11}F+a_{21}G,\\ +-g & =\langle N_{v},X_{v}\rangle=\langle a_{12}X_{u}+a_{22}X_{v},X_{v}\rangle=a_{12}F+a_{22}G. +\end{align*} + +\end_inset + +Despejando, +\begin_inset Formula +\[ +\begin{pmatrix}a_{11} & a_{21}\\ +a_{12} & a_{22} +\end{pmatrix}=-\begin{pmatrix}e & f\\ +f & g +\end{pmatrix}\begin{pmatrix}E & F\\ +F & G +\end{pmatrix}^{-1}=-\frac{1}{EG-F^{2}}\begin{pmatrix}e & f\\ +f & g +\end{pmatrix}\begin{pmatrix}G & -F\\ +-F & E +\end{pmatrix}=\frac{1}{EG-F^{2}}\begin{pmatrix}fF-eG & eF-fE\\ +gF-fG & fF-gE +\end{pmatrix}. +\] + +\end_inset + +Con esto, +\begin_inset Formula +\begin{align*} +K(p) & =\det A_{p}=\det(dN_{p})=\frac{1}{EG-F^{2}}((fF-eG)(fF-gE)-(gF-fG)(eF-fE))\\ + & =\frac{1}{(EG-F^{2})^{2}}(f^{2}F^{2}-fgEF-efFG+egEG-egF^{2}+fgEF+efFG-f^{2}EG)\\ + & =\frac{f^{2}F^{2}+egEG-egF^{2}-f^{2}EG}{(EG-F^{2})^{2}}=\frac{(EG-F^{2})(eg-f^{2})}{(EG-F^{2})^{2}},\\ +H(p) & =\frac{1}{2}\text{tr}A_{p}=-\frac{1}{2}\text{tr}(dN_{p})=-\frac{1}{2}\frac{2fF-eG-gE}{EG-F^{2}}. +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Las curvaturas principales son +\begin_inset Formula +\[ +\kappa_{i}(p)=H(p)\pm\sqrt{H(p)^{2}-K(p)}. +\] + +\end_inset + + +\series bold +Demostración: +\series default + Un +\begin_inset Formula $\lambda\in\mathbb{R}$ +\end_inset + + es un valor propio de +\begin_inset Formula $A_{p}$ +\end_inset + + si y sólo si +\begin_inset Formula +\begin{align*} +0 & =\det(\lambda1_{T_{p}S}-A_{p})=\det(dN_{p}+\lambda1_{T_{p}S})=\begin{vmatrix}a_{11}+\lambda & a_{12}\\ +a_{21} & a_{22}+\lambda +\end{vmatrix}\\ + & =\lambda^{2}+(a_{11}+a_{22})\lambda+(a_{11}a_{22}-a_{12}a_{21})=\lambda^{2}-2H(p)+K(p), +\end{align*} + +\end_inset + +si y sólo si +\begin_inset Formula $\lambda=H(p)\pm\sqrt{H(p)^{2}-K(p)}$ +\end_inset + +. +\end_layout + \end_body \end_document |
