diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2021-01-13 21:21:23 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2021-01-13 21:21:23 +0100 |
| commit | 6818cf1fa4b18ba9a8082ed5125d55cea8083547 (patch) | |
| tree | a6b1fac5f480e3c9ac73a1f4f71307bf0b932c3e /gcs | |
| parent | 7a49addafa161ada5dec98b716e083ebf510e3fc (diff) | |
gcs+
Diffstat (limited to 'gcs')
| -rw-r--r-- | gcs/n3.lyx | 331 |
1 files changed, 331 insertions, 0 deletions
@@ -1563,5 +1563,336 @@ identidad de polarización: \end_layout +\begin_layout Section +Curvas geodésica y normal +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $S$ +\end_inset + + una superficie regular y +\begin_inset Formula $V:\mathbb{R}\to T_{p}S$ +\end_inset + + diferenciable, llamamos +\series bold +derivada covariante +\series default + a +\begin_inset Formula +\[ +\frac{DV}{dt}(t):=\pi_{T_{p}S}V'(t), +\] + +\end_inset + +la proyección de +\begin_inset Formula $V'(t)$ +\end_inset + + en +\begin_inset Formula $T_{p}S$ +\end_inset + +. + Propiedades: Sean +\begin_inset Formula $V,W:\mathbb{R}\to T_{p}S$ +\end_inset + + y +\begin_inset Formula $f:I\subseteq\mathbb{R}\to\mathbb{R}$ +\end_inset + + diferenciables, siendo +\begin_inset Formula $I$ +\end_inset + + un intervalo: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\frac{D(fV)}{dt}=f'V+f\frac{DV}{dt}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula $\pi:=\pi_{T_{p}S}$ +\end_inset + +, +\begin_inset Formula $\frac{D(fV)}{dt}=\pi((fV)')=\pi(fV'+f'V)=f\pi V'+f'\pi V=f\frac{DV}{dt}+f'V$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\frac{D(V+W)}{dt}=\frac{DV}{dt}+\frac{DW}{dt}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\frac{D(V+W)}{dt}=\pi((V+W)')=\pi V'+\pi W'=\frac{DV}{dt}+\frac{DW}{dt}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\frac{d}{dt}\langle V,W\rangle=\langle\frac{DV}{dt}W\rangle+\langle V,\frac{DW}{dt}\rangle$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $\frac{d}{dt}\langle V,W\rangle=\langle\frac{dV}{dt},W\rangle+\langle V,\frac{dW}{dt}\rangle$ +\end_inset + +, pero dada una base ortonormal +\begin_inset Formula $(v_{1},v_{2},v_{3})$ +\end_inset + + con +\begin_inset Formula $T_{p}S=\text{span}\{v_{1},v_{2}\}$ +\end_inset + +, si +\begin_inset Formula $\frac{dV}{dt}(t)=\sum_{i}x_{i}v_{i}$ +\end_inset + + y +\begin_inset Formula $W(t)=\sum_{i}y_{i}v_{i}$ +\end_inset + +, +\begin_inset Formula $\langle\frac{dV}{dt}(t),W(t)\rangle=\sum_{i=1}^{3}x_{i}y_{i}\overset{y_{3}=0}{=}x_{1}y_{1}+x_{2}y_{2}=\langle\pi_{T_{p}S}\frac{dV}{dt}(t),W(t)\rangle=\langle\frac{DV}{dt}(t),W(t)\rangle$ +\end_inset + +, y análogamente para +\begin_inset Formula $\langle V,\frac{dW}{dt}\rangle$ +\end_inset + +, luego +\begin_inset Formula $\frac{d}{dt}\langle V,W\rangle=\langle\frac{DV}{dt},W\rangle+\langle V,\frac{dW}{dt}\rangle$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Sean +\begin_inset Formula $S$ +\end_inset + + una superficie regular orientada por +\begin_inset Formula $N$ +\end_inset + + y +\begin_inset Formula $\alpha:I\to S$ +\end_inset + + una curva, entonces +\begin_inset Formula $\alpha'(t)\in T_{\alpha(t)}S$ +\end_inset + + para +\begin_inset Formula $t\in I$ +\end_inset + +, pero en general +\begin_inset Formula $\alpha''(t)\notin T_{\alpha(t)}S$ +\end_inset + +, aunque se escribe de forma única como la suma de una +\series bold +aceleración tangencial +\series default + o +\series bold +intrínseca +\series default + +\begin_inset Formula $\alpha''(t)^{\top}\in T_{\alpha(t)}S$ +\end_inset + + y una +\series bold +aceleración normal +\series default + o +\series bold +extrínseca +\series default + +\begin_inset Formula $\alpha''(t)^{\bot}\in\text{span}\{N(\alpha(t))\}$ +\end_inset + +. + Como +\begin_inset Formula $\alpha''(t)^{\top}=\frac{D\alpha'}{dt}$ +\end_inset + +, +\begin_inset Formula +\[ +\alpha''(t)=\frac{D\alpha'}{dt}(t)+\langle\alpha''(t),N(\alpha(t))\rangle N(\alpha(t)). +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $\alpha:I\to S$ +\end_inset + + una curva parametrizada por longitud de arco, el +\series bold +triedro de Darboux +\series default + es la base ortonormal positivamente orientada +\begin_inset Formula $(\alpha'(s),J\alpha'(s):=\alpha'(s)\wedge N(\alpha(s)),N(\alpha(s))\rangle$ +\end_inset + +. + Entonces +\begin_inset Formula $\frac{D\alpha'}{ds}(s)=\kappa_{g}(s)J\alpha'(s)$ +\end_inset + +, donde +\begin_inset Formula $\kappa_{g}:=\langle\alpha'',J\alpha'\rangle:I\to\mathbb{R}$ +\end_inset + +, es la +\series bold +curvatura geodésica +\series default + de +\begin_inset Formula $\alpha$ +\end_inset + +, cuyo signo depende de +\begin_inset Formula $N$ +\end_inset + +. + En efecto, +\begin_inset Formula $\langle\frac{D\alpha'}{ds}(s),\alpha'(s)\rangle=\langle\alpha''(s)-\langle\alpha''(s),N(\alpha(s))\rangle N(\alpha(s)),\alpha'(s)\rangle=\langle\alpha''(s),\alpha'(s)\rangle-\langle\alpha''(s),N(\alpha(s))\rangle\langle N(\alpha(s)),\alpha'(s)\rangle=0$ +\end_inset + +, y +\begin_inset Formula $\kappa_{g}(s)=\langle\frac{D\alpha'}{ds}(s),J\alpha'(s)\rangle=\langle\alpha''(s),J\alpha'(s)\rangle$ +\end_inset + +, pero +\begin_inset Formula $J\alpha'(s)$ +\end_inset + + puede ser un vector o su opuesto según lo sea +\begin_inset Formula $N$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dada una curva +\begin_inset Formula $\alpha:I\to S$ +\end_inset + +, +\begin_inset Formula ${\cal II}_{\alpha(t)}(\alpha'(t))=\langle\alpha''(t),N(\alpha(t))\rangle$ +\end_inset + +. + En efecto, como +\begin_inset Formula $\alpha'(t)\in T_{\alpha(t)}S$ +\end_inset + + para cada +\begin_inset Formula $t$ +\end_inset + +, +\begin_inset Formula $\langle\alpha'(t),N(\alpha(t))\rangle=0$ +\end_inset + + y, derivando, +\begin_inset Formula $\langle\alpha''(t),N(\alpha(t))\rangle+\langle\alpha'(t),(N\circ\alpha)'(t)\rangle=0$ +\end_inset + +, pero +\begin_inset Formula $(N\circ\alpha)'(t)=dN_{\alpha(t)}(\alpha'(t))$ +\end_inset + +, luego +\begin_inset Formula $\langle\alpha''(t),N(\alpha(t))\rangle=-\langle\alpha'(t),dN_{\alpha(t)}(\alpha'(t))\rangle=\langle\alpha'(t),A_{\alpha(t)}\alpha'(t)\rangle={\cal II}_{\alpha(t)}(\alpha'(t))$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Entonces, dados +\begin_inset Formula $p\in S$ +\end_inset + + y +\begin_inset Formula $v\in T_{p}S$ +\end_inset + + unitario, llamamos +\series bold +curvatura normal +\series default + de +\begin_inset Formula $S$ +\end_inset + + en +\begin_inset Formula $p$ +\end_inset + + en la dirección de +\begin_inset Formula $v$ +\end_inset + + a +\begin_inset Formula $\kappa_{n}(v,p):={\cal II}_{p}(v)=\langle\alpha''(0),N(p)\rangle$ +\end_inset + +, siendo +\begin_inset Formula $\alpha:(-\delta,\delta)\to S$ +\end_inset + + una curva con +\begin_inset Formula $\alpha(0)=p$ +\end_inset + + y +\begin_inset Formula $\alpha'(0)=v$ +\end_inset + +. +\end_layout + \end_body \end_document |
